1. Courbes planes

Exercice 1 (spirale de Bernoulli)

Soit \mathcal{C} la courbe définie par la paramétrisation

$$\gamma: t \in \mathbb{R} \mapsto \frac{e^t}{\sqrt{2}} \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}.$$

Calculer une paramétrisation par longueur d'arc de \mathcal{C} puis calculer sa fonction de courbure.

Exercice 2 (longueur d'une ellipse)

Soient a > b > 0 et \mathcal{E} l'ensemble des solutions dans \mathbb{R}^2 à l'équation $ax^2 + by^2$. Montrer que \mathcal{E} est une courbe (en donner une paramétrisation explicite), puis que sa longueur totale est donnée par

$$4a \int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}} dt$$
, où $k = \sqrt{1-\frac{a^2}{b^2}}$.

Exercice 3

Soit γ une paramétrisation d'une courbe lisse (telle que $\gamma'(t) \neq 0$ pour tout t).

(3.a) Donner la reparamétrisation par longueur d'arc, puis en déduire une formule pour la courbure en fonction des dérivées d'ordre 1 et 2 de γ .

(3.b) Montrer (sans utiliser la formule de la question précédente) que la courbure est la projection de $\frac{\gamma'(t)}{\|\gamma'(t)\|}$ sur $\mathbb{R}n_{\gamma}(t)$.

Exercice 4 (lemniscate et un calcul numérique d'intégrale)

Soit γ la paramétrisation définie par

$$\gamma(t) = \begin{pmatrix} \sqrt{t^2(1+t^2)} \\ \sqrt{t^2(1-t^2)} \end{pmatrix}$$

et \mathcal{C} son image.

(4.a) Montrer que l'équation polaire de \mathcal{C} est $r^2 = \cos(2\theta)$ (pour $\theta \in [0, \pi/2]$) et dessiner

(4.b) Montrer que la longueur de \mathcal{C} est donnée par l'intégrale $4\int_0^1 \frac{dt}{\sqrt{1-t^4}}$, et aussi par

$$2\sqrt{2}K\left(\frac{1}{\sqrt{2}}\right)$$
, où $K(k) = \int_0^1 \frac{dt}{\sqrt{(1-x^2)(1-k^2x^2)}}$.

(4.c) Montrer que

$$K\left(\frac{2\sqrt{k}}{k+1}\right) = (k+1)K(k).$$

(utiliser le changement de variable $u = \frac{(k+1)u}{1+ku^2}$). (4.d) Montrer que la longueur de la lemniscate est donnée par $\frac{\pi}{2}$ fois la moyenne arithmético-géométrique de 1 et $\sqrt{2}$.

Exercice 5 (courbure totale)

Une courbe \mathcal{C} est dite fermée si elle admet une paramétrisation $\gamma:[a,b]\to\mathbb{R}^2$ telle que les dérivées à tout ordre à droite de γ en b et celles à gauche en a sont égales.

(5.a) Montrer qu'il est équivalent de se donner une paramétrisation périodique $\mathbb{R} \to \mathbb{R}^2$.

(5.b) Vérifier que si C_1, C_2 sont des courbes fermées, γ_i une paramétrisation de C_i et f est une fonction continue $C_1 \to C_2$ alors il existe une fonction continue $\tilde{f} : \mathbb{R} \to \mathbb{R}$ telle que

$$\gamma_2 \circ \tilde{f} = f \circ \gamma_1$$

et que \tilde{f} est lisse si f l'est 1.

Montre que si \tilde{f} , \tilde{g} sont deux telles fonctions alors $\tilde{f} - \tilde{g}$ est constante et égale à un multiple entier de la période de γ_2 .

- (5.c) Soit $\gamma:[a,b]\to\mathbb{R}^2$ une paramétrisation par longueur d'arc d'une courbe fermée, et $t(\gamma(t))=\gamma'(t)$. Montrer que la dérivée de la fonction \tilde{t} est égale à la fonction courbure κ_{γ} .
- (5.d) Déduire des questions précédentes que

$$\frac{1}{2\pi} \int_{a}^{b} \kappa_{\gamma}(t) dt \in \mathbb{Z};$$

ce nombre est appelé indice de la courbe.

(5.e) Montrer que l'indice d'un cercle puis d'une ellipse vaut 1.

2. Surfaces

Exercice 6

- (6.a) Montrer que l'aire sur un plan dans \mathbb{R}^3 est donnée par la mesure de Lebesgue ².
- (6.b) Donner une paramétrisation d'une demie-sphère, puis montrer que l'aire de la sphère est égale à 4π .

Exercice 7

Soient x,y deux points antipodaux sur la sphère. Montrer que toute courbe reliant x à y est de longueur au moins égale à π et caractériser la cas d'égalité.

Exercice 8

Soit S le cylindre paramétré par $(s,t)\mapsto \begin{pmatrix} \cos(t)\\ \sin(t)\\ s \end{pmatrix}$. Déterminer les géodésiques sur S.

^{1.} On dit que f est lisse si $\gamma_2^{-1} \circ f \circ \gamma_1$ l'est.

^{2.} C'est-à-dire la mesure obtenue en identifiant le plan à \mathbb{R}^2 par une isométrie.