Aix-Marseille Université
Faculté des Sciences
Master M1 MAS
Prof. Kai Schneider

TD-1 Representation and approximation of structured data

Exercise 1: Complex numbers

We consider the following complex numbers $z \in \mathbb{C}$:

$$
3+2 i, \quad \frac{2-i}{2-3 i}, \quad \frac{1}{(3-i)^{2}}, \quad \exp (i 2 \pi), \quad \exp (i \pi), \quad i^{n}(n \in I N)
$$

Note that $i=\sqrt{-1}$. Decompose them into real and imaginary parts, give their polar representation $\left(z=r e^{i \phi}\right)$ and give a graphical illustration in \mathbb{R}^{2}.

Exercise 2: Discrete signals and norms

We consider three discrete signals of finite length:

$$
\begin{gathered}
S_{1}=\{3,-4,5,4,-1,2,4,5,0,-2,3,-1,5,6,7,3,-1,2,1,3\} \\
S_{2}=\{1,0,0,0,7,0,-2,0,0,0,1,2,1,0,-1,0,0,4,-4,0\} \\
S_{3}=\{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0\}
\end{gathered}
$$

a) Determine the length of each signal.
b) Compute the different norms $\ell^{0}, \ell^{1}, \ell^{2}$ and ℓ^{∞} of the three signals. What do you observe?
c) What is the difference between the three signals? Which signal is sparser?
d) Measure the difference between the signals, i.e., compute $\left\|S_{i}-S_{j}\right\|_{p}$ for $p=1,2$ and ∞ and $i, j=1,2,3$ and $i \neq j$.

The ℓ^{0} 'norm' is defined by $\|x\|_{0}=\lim _{p \rightarrow 0} \sum_{k}|x|^{p}$ and counts the number of non zero entries of a vector or sequence. For $1<p<\infty$ the corresponding ℓ^{p} norms are defined as $\|x\|_{p}=\sum_{k}\left|x_{k}\right|^{p}$ and for $p=\infty$ we have $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$

Exercise 3: Norms

Give a graphical illustration of the set $\|x\|_{\alpha}=1$ for $x \in \mathbb{R}^{2}$ and $\alpha=1,2$ and ∞.

