

Aix–Marseille Université Faculté des Sciences Master M1 MAS Prof. Kai Schneider

TD-2 Representation and approximation of structured data

Exercise 1: Inner product and norm

We consider the complex-valued vector space \mathbb{C}^N with N = 2 and consider the four vectors $u = [3, -1]^T$, $v = [2, -5]^T$, $x = [2 + 3i, -1 - 2i]^T$ and $y = [-2 + 5i, 3 + 6i]^T$.

- a) Compute the norms $(|| \cdot ||_2)$ of the four vectors and construct the corresponding unit vectors.
- b) Compute the following inner products: $\langle u, v \rangle$ and $\langle x, y \rangle$.
- c) Compute the following distances: d(u, v) and d(x, y).

Note that $i = \sqrt{-1}$.

Exercise 2: Projection, bases and frames

A) We consider the unit vector $\phi = [1/\sqrt{2}, 1/\sqrt{2}]^T$ and the two vectors $x = [2, 1]^T$ and $[-2, 1]^T$ in \mathbb{R}^2 .

- a) Compute the orthogonal projection $\hat{x} = \langle x, \phi \rangle \phi$ of x and y onto ϕ .
- b) Show that $x \hat{x}$ is orthogonal to ϕ
- c) Make a graphical illustration.

B) Show that the vectors $e_1 = [1, 0, 0]^T$, $e_2 = [0, 1, 0]^T$ and $e_3 = [0, 0, 1]^T \in \mathbb{R}^3$ are linearly independent, i.e. $\sum_{k=1}^{3} \alpha_k e_k = 0$, if and only if $\alpha_k = 0$ for k = 1, 2, 3. Show also that any vector $x \in \mathbb{R}^3$ can be represented using these three vectors.

C) Show that the vectors $\phi_1 = [1, 0]^T$, $\phi_2 = [0, 1]^T$ and $\phi_3 = [-1, -1]^T$ are linearly dependent and that any vector $x \in \mathbb{R}^2$ can be represented using the three vectors. Construct the corresponding frame.

D) We consider the set of vectors $\Phi = \{\phi_k\}_{k \in \mathbb{N}} \subset \mathbb{C}^{[-1/2, 1/2]}$, where $\phi_0(t) = 1$ and $\phi_k(t) = \sqrt{2} \cos(2\pi kt)$ for k = 1, 2, ...

- a) Make a graphical illustration of ϕ_0, ϕ_1 and ϕ_2 .
- b) Show that the set of vectors Φ is orthogonal, i.e. $\langle \phi_k, \phi_\ell \rangle = \delta_{k,\ell}$.
- c) Show that the set of vectors is orthogonal to the set of odd functions $S_{odd} = \{s | s(t) = -s(-t) \text{ for } t \in [-1/2, 1/2] \}$

Exercise 3: Norms

Verify if $||x||_{\alpha}$ satisfies for $\alpha = 0, 1, 2$ and ∞ the properties of a norm.

Note that the ℓ^0 'norm' is defined by $||x||_0 = \lim_{p\to 0} \sum_k |x|^p$ and counts the number of non zero entries of a vector, here we define $0^0 = 0$. For $1 the corresponding <math>\ell^p$ norms are defined as $||x||_p = \sum_k |x_k|^p$ and for $p = \infty$ we have $||x||_{\infty} = \sup_k |x_k|$.