TD-2 Representation and approximation of structured data

Exercise 1: Inner product and norm

We consider the complex-valued vector space \mathbb{C}^{N} with $N=2$ and consider the four vectors $u=[3,-1]^{T}, v=[2,-5]^{T}, x=[2+3 i,-1-2 i]^{T}$ and $y=[-2+5 i, 3+6 i]^{T}$.
a) Compute the norms $\left(\|\cdot\|_{2}\right)$ of the four vectors and construct the corresponding unit vectors.
b) Compute the following inner products: $\langle u, v\rangle$ and $\langle x, y\rangle$.
c) Compute the following distances: $d(u, v)$ and $d(x, y)$.

Note that $i=\sqrt{-1}$.

Exercise 2: Projection, bases and frames

A) We consider the unit vector $\phi=[1 / \sqrt{2}, 1 / \sqrt{2}]^{T}$ and the two vectors $x=[2,1]^{T}$ and $[-2,1]^{T}$ in \mathbb{R}^{2}.
a) Compute the orthogonal projection $\widehat{x}=\langle x, \phi\rangle \phi$ of x and y onto ϕ.
b) Show that $x-\widehat{x}$ is orthogonal to ϕ
c) Make a graphical illustration.
B) Show that the vectors $e_{1}=[1,0,0]^{T}, e_{2}=[0,1,0]^{T}$ and $e_{3}=[0,0,1]^{T} \in \mathbb{R}^{3}$ are linearly independent, i.e. $\sum_{k=1}^{3} \alpha_{k} e_{k}=0$, if and only if $\alpha_{k}=0$ for $k=1,2,3$. Show also that any vector $x \in \mathbb{R}^{3}$ can be represented using these three vectors.
C) Show that the vectors $\phi_{1}=[1,0]^{T}, \phi_{2}=[0,1]^{T}$ and $\phi_{3}=[-1,-1]^{T}$ are linearly dependent and that any vector $x \in \mathbb{R}^{2}$ can be represented using the three vectors. Construct the corresponding frame.
D) We consider the set of vectors $\Phi=\left\{\phi_{k}\right\}_{k \in N} \subset \mathbb{C}^{[-1 / 2,1 / 2]}$, where $\phi_{0}(t)=1$ and $\phi_{k}(t)=$ $\sqrt{2} \cos (2 \pi k t)$ for $k=1,2, \ldots$.
a) Make a graphical illustration of ϕ_{0}, ϕ_{1} and ϕ_{2}.
b) Show that the set of vectors Φ is orthogonal, i.e. $\left\langle\phi_{k}, \phi_{\ell}\right\rangle=\delta_{k, \ell}$.
c) Show that the set of vectors is orthogonal to the set of odd functions $S_{\text {odd }}=\{s \mid s(t)=$ $-s(-t)$ for $t \in[-1 / 2,1 / 2]\}$

Exercise 3: Norms

Verify if $\|x\|_{\alpha}$ satisfies for $\alpha=0,1,2$ and ∞ the properties of a norm.
Note that the ℓ^{0} 'norm' is defined by $\|x\|_{0}=\lim _{p \rightarrow 0} \sum_{k}|x|^{p}$ and counts the number of non zero entries of a vector, here we define $0^{0}=0$. For $1<p<\infty$ the corresponding ℓ^{p} norms are defined as $\|x\|_{p}=\sum_{k}\left|x_{k}\right|^{p}$ and for $p=\infty$ we have $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$.

