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 A B S T R A C T

We experimentally investigate quasi-two-dimensional (Q2D) forced shallow flows in the presence of solid 
boundaries and analyze the deviation from the Kolmogorov–Kraichnan (KK) theory. Complex motion is gen-
erated using a thin electrolyte subject to electromagnetic forces, and we employ particle tracking velocimetry 
to resolve the flow properties down to the Kolmogorov scale. Although the velocity probability distribution 
function closely resembles a Gaussian, deviations from Gaussianity emerge for velocity increments as scales 
decrease. The second-order structure function supports the onset of local anisotropy at small scales. The 
sign of the third-order structure function indicates the dominance of the inverse cascade in energy transfer, 
and the cross-correlation between longitudinal and transverse directions proves to be significant at large 
scales. The breakdown of local isotropy is consistent with the effect of bottom friction, which primarily 
affects the longitudinal motion, while leaving the perpendicular direction unaffected. This local anisotropy 
propagates to larger scales via the inverse energy cascade, with nonlinear interactions eventually influencing 
the perpendicular direction.
1. Introduction

Quasi-two-dimensional (Q2D) turbulence occurs in flows where the 
dynamics are dominated by motion in two directions. In geophysical 
fluid dynamics, the Earth’s atmosphere and oceans have thicknesses 
much smaller than the Earth’s radius; thus, studying large-scale atmo-
spheric and oceanic circulation patterns often involves two-dimensional 
approximations. Q2D turbulence helps us understand the dynamics of 
weather patterns, ocean currents, and climate phenomena such as the 
formation of jets (the jet stream) and eddies (cyclones, anticyclones, 
and turbulent vortices). Another way to reduce the role of the third 
dimension is in magnetically confined plasmas, where perturbations 
in the direction parallel to the magnetic field are much smaller than 
in the perpendicular plane [1]. Rotating or stratified flows such as 
atmospheric circulation, ocean currents, and galactic rotations also 
exhibit a reduction in dynamics in one dimension [2,3].
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Three-dimensional (3D) turbulence exhibits non-predictable rota-
tional motion occurring in three dimensions. The theoretical work of 
A. N. Kolmogorov thought of this complexity as caused by an energy 
cascade. Assuming a large Reynolds number, local isotropy, and self-
similarity, he obtained his famous 2/3-law prediction [4,5]. Kraichnan 
applied similar arguments to 2D turbulence, where not only the turbu-
lent kinetic energy (the average of the velocity square) is conserved but 
also the enstrophy (the average of the vorticity square) [6]. This led to 
the prediction of the co-existence of two cascades on either side of the 
forcing scale. In the direct cascade, enstrophy is transferred towards 
smaller scales, while in the inverse cascade, energy moves up to larger 
scales.

Two main types of laboratory experiments were elaborated to un-
derstand the dynamics of Q2D flows [7–10]. The first type is gravity-
driven soap films, where the thickness is about 100 μm, and turbulence 
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Fig. 1. The experimental setup is illustrated, showing the container with two rectangular electrodes connected to a variable DC power supply. Beneath the 
container, we insert a set of permanent magnets with opposite polarities. The green dots represent the fluorescent beads deposited on the flow surface. Ultraviolet 
light sources illuminate the flow, and a camera detects the visible light emitted by the beads. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
is generated by a grid [11,12]. Electromagnetically driven flows, on the 
other hand, use a set of permanent magnets installed underneath the 
container, and a current is driven between the electrodes [13–15]. In 
this case, the thickness may be modified from one to several millime-
ters, and turbulence is generated by the nonlinear interaction among 
the vortices. The statistical properties of Q2D flows obtained by the 
different groups do not converge on whether the laboratory flows obey 
the Kolmogorov–Kraichnan theory or not. Some have indicated a good 
agreement [16,17], but others did not [10,18].

The existence of the condensate, which is one large steady vortex, 
may be one of the reasons why the experiment disagrees with the 
theory [17]. A strong condensate leaves a footprint on the underlying 
turbulence as it reduces the randomness of the flow and reduces the 
efficiency of the inverse energy cascade [19]. In a bounded flow at low 
bottom dissipation, the inverse energy cascade leads to the generation 
of a spectral condensate below the free surface. Such a coherent flow 
can destroy 3D eddies in the bulk of the layer and enforce flow planarity 
throughout the thickness of the layer [20]. A quantitative study of the 
turbulent diffusion shows a significant decrease of the radial transport 
during the spectral condensation process [21].

The other major phenomenon is the solid no-slip boundary at the 
bottom of the container, which could lead to a profound deviation from 
the KK theory developed for 2D turbulence. It was argued that the usual 
assumption that a shallow fluid flow is Q2D is wrong and that there 
are still some 3D effects. These effects were shown to be not due to the 
bottom drag but to the impermeability of the boundaries [22].

This paper is dedicated to the experimental investigation of a Q2D 
flow that is electromagnetically driven by two electrodes and a set of 
permanent magnets. We wish to investigate the effects of the no-slip 
solid boundary on the statistics of the velocity fluctuations. Thus, no 
intermediate fluid layer is employed between the solid bottom and 
the electrolyte. We characterize the flow motion using particle track-
ing velocimetry (PTV), where 50 μm fluorescent particles are initially 
puffed on the surface and followed by visible imaging. We continue 
with the description of our experimental setup and the diagnostic 
2 
used in Section 2. In Section 3, we present the effect of increasing 
the current and achieving a turbulent regime. We emphasize that, 
throughout this paper, a clear distinction is made between a ‘turbulent 
regime’ and a ‘fully developed turbulent regime’. In the former, our 
case, the flow exhibits complex and irregular dynamics with strong non-
linear interactions, yet some degree of spatial or temporal coherence 
may persist, as is often observed in transitional or partially turbulent 
flows. In contrast, a fully developed turbulent regime corresponds to 
conditions at sufficiently high Reynolds numbers, where turbulence 
becomes statistically homogeneous and the flow is characterized by a 
broad and well-separated range of interacting scales, from the largest 
energy-containing eddies down to the smallest dissipative structures. 
The probability distribution function of the velocity and its increments 
are discussed in Section 4, showing a deviation from a Gaussian dis-
tribution at small scales. The second-order structure functions in the 
laboratory and moving frames of reference are presented in Section 5, 
which is followed by Section 6 discussing the third-order structure 
function. Conclusions are drawn in Section 7, where we discuss the 
role of the bottom no-slip boundary, which allows friction to break the 
local isotropy of the flow at small scales. Larger scales are affected by 
the inverse cascade, which is shown to dominate energy transfer. The 
strong cross-correlation between longitudinal and transverse motion 
contributes to the deviation of not only the longitudinal but also the 
transverse moments from the KK theory.

2. The experimental setup

2.1. The fluid setup

The experimental setup is illustrated in Fig.  1. We use a square 
container made of Plexiglas with an inner length of 𝑊 = 16 cm and 
a height equal to 2 cm. Two stainless steel electrodes are mounted 
on two opposing walls and connected to a variable DC power supply. 
Pure water is mixed with potassium hydroxide (KOH) to reach a 
concentration of 26%. This generates positively (K+) and negatively 
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Fig. 2. The Teslameter, positioned at 5 mm from the magnet top surface, yields The 𝑧-component of the magnetic field, 𝐵𝑧, as a function of 𝑦 at five different 
𝑥 locations, with graphs denoted by M1-M5.
Table 1
The main flow parameters for the two heights and two 
currents investigated here. 𝐿 is the distance between the 
magnets.
 I [A] 𝐻 [mm] 𝐻∕𝑊 𝐻∕𝐿 𝑅𝑒 = 𝑈𝐿∕𝜈 
 0.1 3 0.019 0.15 100  
 0.5 3 0.019 0.15 200  
 0.7 5 0.03 0.25 180  

(OH−) charged ions that are attracted and repelled, respectively, at 
the cathode and anode surfaces. The conductivity of this electrolyte 
solution is 55 S/m, which is about 10−6 that of copper. Consequently, 
this solution remains an insulator in terms of electron mobility, and 
the resultant measured current is due to the charge exchange at the 
electrode surface without a net flow of electrons inside the solution. The 
amount of KOH solution poured into the container defines the height 𝐻
of the flow and can be modified. The setup is adequately leveled so that 
all parts of the fluid are subject to the same gravitational force. A set of 
6 × 5 permanent neodymium magnets is installed under the container 
with opposite polarities, leading to a magnetic field gradient of about 
28 T/m as can be deduced from Fig.  2, where the axial magnetic field 
is plotted as a function of 𝑦.

The kinematic viscosity of water is used to assess the Reynolds 
number, defined as 𝑅𝑒 = 𝑈𝐷∕𝜈. Because there is no mean flow, we 
use the root-mean-square value of the velocity, leading to 𝑈 ≃ 2 cm/s. 
The typical macroscopic scale of turbulence in the horizontal plane is 
taken to be the distance between magnets 𝐿 ≃ 2 cm. In Table  1, we 
insert some important parameters of our flow with 𝐼 being the current 
drawn between the electrodes.

2.2. Particle tracking velocimetry

To obtain the velocity field as a function of space and time, we 
scatter fluorescent beads (from Cospheric), with density 0.98 g/cm3 and 
diameter 38-45 μm on the surface of the fluid. They absorb ultraviolet 
(UV) light and emit it in the visible range. To excite them, we install 
two LED spotlights that emit around 395 nm with a total power of 
30 W, at approximately 40 cm from the electrolyte solution. The 
visible camera is a Basler ACA3800-14uc that has a full resolution of 
3840 × 2748 pixels at 14 frames per second. It is equipped with a 
50 mm C-mount lens that allows efficient coverage of the setup and thus 
a spatial resolution of 42 × 58 μm. Consequently, each bead occupies 
about one pixel in the camera image, and this considerably reduces the 
error in determining their position and thus their velocity.
3 
Fig. 3. The velocity vector in a region of about 1 × 1 cm2 using arrows for 
𝐻 = 3 mm and a current of 100 mA.

After pouring the KOH solution into the container, we scatter ap-
proximately 500 beads onto its surface. This quantity represents a 
balance: too many beads would impede the accurate determination of 
their velocity field via particle tracking velocimetry (PTV), while too 
few would decrease the statistical reliability of the results. The motion 
of the beads is recorded at 1000 frames (corresponding to a 1-minute 
movie), generating roughly 500,000 data points per movie. To enhance 
the statistics, ten movies are recorded for each experimental condition. 
The total number of data points used in this paper is 3,219,310 for a 
height 𝐻 = 3  mm and 5,812,925 for 𝐻 = 5 mm.

Fig.  3 shows a zoomed-in view of a 1 cm2 region. The bead veloc-
ities, determined from 100 frames, are overlaid in this image. For a 
current of 100 mA, the figure reveals the coherent rotational motion, 
showing a clear clockwise rotation.

2.3. The determination of the velocity field and its increments

Each image from the visible camera is processed by first subtracting 
the background. Beads positions are identified as local intensity max-
ima. To exclude contributions from agglomerated beads, we filter out 
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Fig. 4. Panels (a) and (b) display the positions of fluorescent beads for a height 𝐻 = 3 mm at currents 𝐼 = 100 and 𝐼 = 500 mA respectively. The beads’ positions 
are overlaid across 100 consecutive frames. The dashed rectangle marks the spatial domain used for statistical analysis.
all sources with a spatial extent larger than 2 × 2 pixels. In the labora-
tory reference frame, each bead 𝑖 in frame 𝑗 has a position (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 )
in the 𝑥̂ and 𝑦̂ directions. The velocity of each bead is computed 
using a central difference scheme, which tracks its motion across three 
consecutive frames. This establishes a smallest resolved spatial scale of 
𝜆min ≈ 100 μm and a smallest velocity of 𝑢𝑚𝑖𝑛 ≃ 0.07 cm/s.

𝑢𝑖,𝑗 =
𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗−1

2𝛿𝑡
, 𝑣𝑖,𝑗 =

𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗−1
2𝛿𝑡

.

The maximum tracking distance is constrained to the average inter-
bead distance to minimize erroneous connections to false neighbors. 
This constraint sets the maximum resolvable velocity at 𝑢max ≃ 7 cm/s. 
The velocity increments in the laboratory frame are thus defined as:
𝛿𝑢(𝑟) = 𝑢𝑖,𝑗 − 𝑢𝑖′ ,𝑗 , 𝛿𝑣(𝑟) = 𝑣𝑖,𝑗 − 𝑣𝑖′ ,𝑗 .

where 𝑟 is the vector distance between two beads 𝑖 and 𝑖′ in the same 
frame 𝑗.

Knowing both the positions and the velocity fields of the beads 
allows us to calculate the longitudinal 𝛿𝑢𝐿 and the transverse 𝛿𝑢𝑇
velocity increments in the beads’ moving frame according to
𝛿𝑢𝐿 = (𝑢𝑖,𝑗 − 𝑢𝑖′ ,𝑗 ) ⋅ 𝑟̂, 𝛿𝑢𝑇 = (𝑢𝑖,𝑗 − 𝑢𝑖′ ,𝑗 ) ⋅ 𝑡.

where ⋅ is the scalar product, 𝑟̂ = 𝑟∕𝑟 and 𝑡 ⋅ 𝑟̂ = 0.

2.4. The characteristic scales

Scales in two-dimensional turbulence are important since they dic-
tate the statistical properties of the velocity fluctuations. The Kol-
mogorov scale is the smallest length scale associated with the smallest 
eddies in a turbulent flow. It is defined as 𝜆𝐾 = (𝜈3∕𝜀)1∕4 where 𝜀 is the 
turbulent dissipation rate per unit mass. In our flow, it is 𝜆𝐾 ∼ 63 μm, 
which is about the spatial resolution of our particle tracking method. 
We define the ‘Q2D range’ to represent the scales that are greater than 
𝜆𝐾 and smaller than 𝐻 , thus ranging from 0.06 to 3 − 5 mm. In this 
limited range, turbulent 3D motion may be present, thus affecting the 
properties of the flow.

Vortices are generated at a characteristic scale of 𝐿 ≃ 2 cm, as 
evident in Fig.  4(a) under low current conditions. According to the 
Kolmogorov–Kraichnan (KK) theory [6,23], the scales between 𝐻 and 
𝐿 should fall within the direct cascade range where energy flows from 
𝐿 toward smaller scales down to 𝜆𝐾 . In our experiment, we have one 
decade in this range from 0.3 to 3 cm. For scales greater than 𝐿, their 
maximum is the size of the container (𝑊 = 16 cm). We thus have 
half a decade in this range identified to be the inverse cascade range 
according to the KK theory.
4 
3. Spatial structures at low and high currents

Before analyzing the statistical properties of turbulence, we examine 
the spatial properties of the flow. Fig.  4 displays the superposition of 
the bead positions in 100 consecutive frames for two different currents: 
(a) 100 mA, and (b) 500 mA, at a fixed height 𝐻 = 3 mm.

At 𝐼 = 100 mA (Fig.  4(a)), we observe well-defined coherent 
vortices formed by the forcing from magnetic field gradients around 
each magnet, which produces rotational acceleration [24]. The forcing 
is isotropic in the (𝑥, 𝑦)-plane, showing no directional preference. Here, 
isotropy implies that the statistical properties remain unchanged under 
rotation of the reference frame. This differs from the local isotropy 
definition in the Kolmogorov theory [4], which requires invariance 
under both translation and rotation in the moving reference frame.

At the current equals 500 mA (Fig.  4(b)), the bead distribution 
reveals a random fluid motion, with the complete disappearance of the 
coherent structures. Moreover, we do not observe vortex condensation 
into one or several large-scale structures, consistent with the findings 
of Paret and Tabeling [25]. With increasing current, we thus record 
a transition from a flow dominated by coherent vortices to a flow 
without, which is described as turbulent.

4. Probability distribution functions of velocity and its increments

The probability distribution functions (PDFs) of the velocity field 
and its increments allow us to quantify the randomness of the motion 
presented above. Gaussian random fields have skewness and flatness 
factors that are equal to 0 and 3, respectively. The deviation of the 
PDFs from a Gaussian distribution is caused by non-random events that 
reflect a deviation from the Kolmogorov theory.

4.1. PDFs of velocity

The PDF of the 𝑥-component of the velocity field is plotted in Fig. 
5 for 𝐻 = 3 and 5 mm. The two distributions are fitted with Gaussian 
functions by applying the least-squares minimization. The PDF slightly 
deviates from a Gaussian distribution at small scales, most probably 
caused by using a centered difference to determine the velocity field. 
To quantify the deviation of the PDFs from Gaussian statistics, we 
compute the normalized third and fourth-order moments of the velocity 
fluctuations, known as the skewness and flatness factors. The skewness, 
defined as 𝑆𝑥 = ⟨𝑢3⟩∕⟨𝑢2⟩3∕2, yields 𝑆𝑥 = 0 for both heights, confirming 
the symmetry of the distribution about 𝑢 = 0. The flatness factor 
𝐹 = ⟨𝑢4⟩∕⟨𝑢2⟩2 measures 2.7 (𝐻 = 3 mm) and 2.8 (𝐻 = 5 mm), slightly 
𝑥
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Fig. 5. The PDF of the 𝑥-component of the velocity for 𝐻 = 3 mm and 
𝐻 = 5 mm are shown with circles and stars markers respectively. The solid 
lines represent the corresponding Gaussian distributions obtained through 
least-squares fitting. The measured distributions exhibit near-zero skewness 
(≈ 0) with flatness factors of 2.7 (𝐻 = 3 mm) and 2.8 (𝐻 = 5 mm), indicating 
slight deviations from Gaussian statistics.

below the Gaussian value of 3. This discrepancy arises from a deficit of 
high-intensity velocity fluctuations compared to Gaussian predictions, 
as visible in Fig.  5 where the tail probabilities fall below the theoretical 
distributions. However, these deviations remain small and affect only 
rare events (occurring with probabilities three orders of magnitude 
below the bulk). We therefore conclude that the velocity field follows 
approximately Gaussian statistics, consistent with the random motion 
observed in Fig.  4.

4.2. The PDFs of the velocity increments

Paret and Tabeling [25] generated turbulence in electromagneti-
cally driven flows, using thin, but stably-stratified layers to minimize 
the bottom friction. The PDFs of the longitudinal increments were 
overlaid for separations in the inverse cascade range, and they were 
found to remain Gaussian. The authors deduced that this indicates 
a lack of intermittent events in the inverse cascade range. On the 
other hand, PDFs were also discussed by Belmonte et al. [12] for two-
dimensional flows in soap films. They found that the PDF of 𝛿𝑢𝐿(𝑟)
becomes non-Gaussian with decreasing 𝑟, similar to the 3D-turbulence 
case, indicating a deviation from the random perturbation assumption 
of Kolmogorov at small scales.

In this section, we investigate the PDFs of the velocity increments 
𝛿𝑢𝐿(𝑟) and 𝛿𝑢𝑇 (𝑟). The basic idea behind this analysis is to test the 
randomness of the fluctuations on the scale defined by 𝑟. If the motion 
of particles is random, then this should also yield a Gaussian random 
distribution for the velocity increments.

In Fig.  6, we plot the PDFs of the velocity increments for three 
values of 𝑟 that lie in the Q2D range (𝑟 = 0.15 cm), in the direct cascade 
range (𝑟 = 0.8 cm), and in the inverse cascade range (𝑟 = 4 cm). The 
results are shown for 𝐻 = 3 mm, but similar results are obtained with 
𝐻 = 5 mm.

Fig.  6(a) displays the PDFs of both longitudinal (𝛿𝑢𝐿) and transverse 
(𝛿𝑢𝑇 ) velocity increments for separation distances 𝑟 = 4 cm within 
the inverse cascade range. The two distributions are almost identical, 
reflecting local isotropy or isotropy in the beads’ frame of reference. 
5 
Fig. 6. For 𝐻 = 3, we plot the PDF of 𝛿𝑢𝐿 and 𝛿𝑢𝑇  using three separation 
distances 𝑟 = 0.1, 0.8, and 4 cm in (a), (b) and (c). The corresponding flatness 
factors are given in each subplot.

Both PDFs closely follow Gaussian distributions, as confirmed by their 
flatness factors, 𝐹𝐿 = ⟨𝛿𝑢4𝐿⟩∕⟨𝛿𝑢

2
𝐿⟩

2 for the longitudinal direction (idem
in the transverse direction). The recorded values, 𝐹𝐿 = 2.9 and 𝐹𝑇 = 2.8, 
are close to 3, the Gaussian value. The skewness factors of the velocity 
increments in the two directions are equal to 0.

In the direct cascade range, where 𝑟 equals 0.8 cm, the results 
are shown in (b). We observe a net deviation from a parabolic shape 
towards an exponential one for the longitudinal direction, while the 
transverse one remains close to parabolic. The local isotropy reported 
in the inverse cascade is thus broken in the direct cascade range. The 
flatness factors are equal to 2.8 for 𝛿𝑢𝑇  and 3.6 for 𝛿𝑢𝐿, which indi-
cates a net deviation from a Gaussian distribution in the longitudinal 
direction but not in the transverse one. The difference in the behavior 
in the two directions reflects the lack of local isotropy at this scale.

For 𝑟 = 0.15 cm, which lies in the Q2D range, the anisotropy 
between the two directions is even more pronounced as shown in Fig. 
6(c). At these scales, both the longitudinal and transverse directions are 
far from Gaussian with clear exponential tails. This is quantified by the 
flatness factor reaching 𝐹𝐿 = 4.7 and 𝐹𝑇 = 18.8, indicating an even 
bigger difference in the two directions. The origin of the two peaks at 
low velocities in the longitudinal direction is unknown.

We conclude this section by highlighting the facts: (1), the PDFs 
of the velocity fields are close to a Gaussian distribution, reflecting 
the randomness visually inspected in Section 3. (2), at large scales, 
the PDFs of the velocity increments remain close to a Gaussian shape, 
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but with decreasing scales, they present exponential tails. (3), the local 
isotropy is broken at small increments with the PDFs for 𝛿𝑢𝐿 being 
different from that of 𝛿𝑢𝑇 .

5. Second-order structure functions

The pioneering theory of Kolmogorov [4] provided the first predic-
tions for fully developed three-dimensional turbulence through struc-
ture functions, building upon the foundational work of von Kármán 
and Howarth [26]; One can see also Djenidi and Antonia [27] for a 
more recent work. By invoking self-similarity and local isotropy in the 
inertial range, Kolmogorov derived the characteristic 𝑟2∕3 energy scal-
ing. In contrast, fully developed two-dimensional turbulence conserves 
both energy and enstrophy, yielding distinct scaling laws: 𝑟2 for scales 
larger than the forcing scale (inverse cascade) and 𝑟2∕3 for smaller 
scales (direct cascade) [6]. Crucially, the local isotropy hypothesis 
implies identical 𝑟-dependence for both transverse and longitudinal 
components in both cascade ranges of 2D turbulence.

We define the second-order structure functions in the laboratory 
frame as 
𝑆𝑋𝑋 = ⟨𝛿𝑢(𝑟)2⟩, 𝑆𝑌 𝑌 = ⟨𝛿𝑣(𝑟)2⟩, (1)

where 𝑋 and 𝑌  denote the corresponding coordinate directions. The 
brackets ⟨⋅⟩ denote an average over space and time for the 10 movies. 
We define the total energy structure function as 𝑆2 = 𝑆𝑋𝑋 + 𝑆𝑌 𝑌 .

In the bead’s frame of reference, we define the second-order struc-
ture functions as 
𝑆𝐿𝐿 = ⟨𝛿𝑢𝐿(𝑟)2⟩, 𝑆𝑇𝑇 = ⟨𝛿𝑢𝑇 (𝑟)2⟩, (2)

where 𝑇  and 𝐿 denote, respectively, the transverse and longitudinal 
directions of the bead’s motion.

5.1. Previous results

The correlation properties of turbulence as a function of 𝑟 can be 
determined using the structure function, as will be done here, or the 
energy spectra 𝐸(𝑘) obtained from the correlation of the velocity field.
𝑆𝐿𝐿(𝑟) = ⟨[𝑢𝐿(𝐱 + 𝐫) − 𝑢𝐿(𝐱)]2⟩ = 2⟨𝑢2𝐿⟩ − 2⟨𝑢𝐿(𝐱 + 𝐫)𝑢𝐿(𝐱)⟩ (3)

= 4∫

∞

0
𝐸(𝑘)

(

1 −
sin(𝑘𝑟)
𝑘𝑟

)

𝑑𝑘 (4)

If 𝑆𝐿𝐿 ∼ 𝑟𝛼 , then 𝐸(𝑘) ∼ 𝑘−(𝛼+1). For measurements taken as 
a function of time, the link to the spatial dependence is done using 
Taylor’s frozen turbulence hypothesis, where the angular frequency is 
𝜔 = 𝑈𝑘, leading to 𝐸(𝜔) ∼ 𝐸(𝑘) [28,29].

Gage and Nastrom [30] used data taken from airplanes to obtain 
the energy spectra of atmospheric turbulence and found the 𝑘−3 and 
𝑘−5∕3 scaling for respectively the large and small scales, reflecting 
the enstrophy and the energy cascades. Using a soap film driven by 
gravity, Gharib and Derango [11] showed that the energy spectra, 
determined in the frequency domain, follow 𝑓−𝛼 , where 𝛼 can take 
several values depending on the position of the measurement with 
respect to the downstream distance to the grid where turbulence is 
generated.

Kellay et al. [31,32] use the same setup and found two ranges 
in the frequency domain with two scaling exponents: In the high-
frequency range, the slope is about −3.6, whereas at low-frequency it 
is approximately −2. However, the authors indicate that because only 
one-third of a decade was investigated, these measurements cannot be 
regarded as conclusive. This scaling of the energy was later confirmed 
by Belmonte et al. where the slope was found to be equal to −3.3 [12]. 
The difference with the value −5∕3 was argued to be caused by large, 
long-lived coherent structures and finite-size effects.

Tabeling et al. [16] performed experiments in thin, stably stratified 
layers with an electromagnetic force, and showed that the energy 
6 
spectrum displays a 𝑘−5∕3 dependence, which is consistent with the 
prediction in the inverse cascade range [13]. The velocity was mea-
sured using particle imaging velocimetry on a grid of 64 × 64 in a 
15 × 15 cm container [33]. Boffetta et al. [14], the energy spectra 
displayed a power law that is steeper than the Kraichnan prediction 
𝑘−3, which was interpreted to be caused by the bottom friction.

In 2006 Chen et al. [18] published a paper that contains experi-
mental results using an electromagnetically forced layer of salt water 
3 mm thick and 18 × 18 cm in lateral extents. A heavier 3 mm-
thick buffer layer of Fluorine was used to minimize the bottom friction 
of the forced layer. The velocity fields were obtained using particle 
tracking velocimetry, resolving velocities on a 100 × 100 spatial grid. 
The energy spectrum did not show an agreement with the theory, 
the authors suggested that this may be caused by the limited range 
of scales that was investigated. On the other hand, using a similar 
setup, Xia et al. [17,19] obtained power laws that are consistent with 
the KK prediction. They emphasized that the presence of a ‘‘condensate 
strongly modifies both turbulence level and its statistics; different 
velocity moments are affected at different scales’’. In [20,34,35], the 
authors show that the power spectra obtained depend on where they 
are determined; the closer to the bottom, the farther they are from the 
theoretical prediction, highlighting the effects of the bottom layer.

von Kameke et al. [36] measured the horizontal surface flow in-
duced by Faraday waves in a thin fluid layer (2 mm). They obtained 
an inverse energy cascade with negative mean spectral energy flux and 
a Kolmogorov-type scaling range. Moreover, the data suggested the 
existence of a direct enstrophy cascade with a positive mean spectral 
enstrophy flux. Later, the team presented experimental results that 
support the existence of the inverse energy cascade fueled by Faraday 
waves [35,37,38]. On the other hand, Bardóczi et al. [21] performed 
experiments using a NaCl solution with different heights ranging from 
2−8 mm. They reported the existence of a condensate with scales about 
that of the container size that dominates the turbulence dynamics in 
steady state.

5.2. The second-order structure function in the laboratory frame

In this section, we present results about the correlation properties 
in our turbulent flow using the second-order structure functions in the 
laboratory frame.

In Fig.  7(a), we plot 𝑆𝑋𝑋 and 𝑆𝑌 𝑌  as a function of 𝑟. The same 
behavior is recorded, reflecting the isotropy of the flow. This confirms 
that the statistics of the measured velocity field are sound, and no 
dependence on the coordinate direction is found as expected.

For 𝑟 < 𝐻 , the dynamics are in the Q2D range scale like 𝑟1.7 for the 
two directions. Between 0.1 and 0.5 cm, we record a saturation that 
could be caused by viscous dissipation as we approach the Kolmogorov 
scale.

For 𝐿 > 𝑟 > 𝐻 , according to the KK theory, fluctuations should 
result from a direct cascade with a dependence according to the power 
law 𝑟2. In this range, however, we have a net increase with 𝑟 with a 
best fit 𝑟0.4 (in the wavenumber space 𝑘−1.4), which is far from the 𝑟2
expected from the theory.

For 𝑊 > 𝑟 > 𝐿, velocity perturbations are caused by an inverse 
cascade of energy, and the power law expected is 𝑟2∕3. We recall that 
in the statistically steady-state regime, no condensate is observed. Our 
experimental results show that in the inverse cascade range, the best fit 
𝑟0.1 (𝑘−1.1) is recorded, which is marginally greater than 0, indicating 
almost no dependence on 𝑟.

Fig.  7(b) displays the total second-order structure function 𝑆2 mea-
sured at both fluid heights. In the inverse and direct cascade ranges, 
the same scaling is obtained within the experimental error. This is not 
the case in the Q2D range, where the scaling changes from 𝑟1.7 for 
𝐻 = 3 mm to 𝑟1.34 for 𝐻 = 5 mm. Note that the current for 𝐻 = 5 mm
is 700 mA, yet the level of velocity fluctuations remains smaller than 
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Fig. 7. (a), the second-order structure function in the laboratory frame in the 𝑥 (𝑆𝑋𝑋) and 𝑦 directions (𝑆𝑌 𝑌 ) as a function of 𝑟 for 𝐻 = 3 mm. The vertical 
dashed lines indicate the position of 𝑟 = 𝐿 and 𝑟 = 𝐻 . The scaling exponent for the best fit by a power law leads to an exponent equal to 1.7 and 1.34, for 
𝐻 = 3 and 5 mm, respectively. In the direct range, we report the power law 𝑟0.4, whereas in the direct cascade range, almost no variation is detected with a 
best fit according to 𝑟0.1. Note that there is no difference between the two directions reflecting =that turbulence is isotropic. In (b), The total energy spectra, 
𝑆2 = 𝑆𝑋𝑋 + 𝑆𝑌 𝑌 , is plotted as a function of 𝑟 for 𝐻 = 3, and 𝐻 = 5 mm.
for 𝐻 = 3 mm. In practice, for 𝐻 = 5 mm, a higher current is needed to 
reach a turbulent state reflected in the absence of coherent structures.

The behavior of the structure functions in the laboratory frame of 
reference shows that (1), turbulence is isotropic, (2) the scalings with 
respect to 𝑟 deviate from the KK theory at all scales, and (3), the scaling 
laws depend on 𝐻 , which indicates a lack of universality.

5.3. The second-order structure functions in the moving reference frame

We recall that the longitudinal and transverse second-order struc-
ture functions are denoted by 𝑆𝐿𝐿 and 𝑆𝑇𝑇 , respectively, in the di-
rections parallel and perpendicular to 𝑟, which is the vector distance 
between two beads that belong to the same frame. The two directions 
are related by 

𝑆𝑇𝑇 = 𝑑
𝑑𝑟

(𝑟𝑆𝐿𝐿). (5)

Consequently, when 𝑆𝐿𝐿 ∼ 𝑟𝛼 , the same scaling will be obtained for 
𝑆𝑇𝑇 .

For 𝐻 = 3 mm, the structure functions in the two directions are 
plotted in Fig.  8(a) for the 10 movies. This gives an idea about the 
error bars as a function of 𝑟.

For the range of scales corresponding to the inverse cascade range 
(𝑊 > 𝑟 > 𝐿), the two directions agree, and the best fit indicates 𝑟0.1. 
The oscillations detected in the 𝑥 and 𝑦 directions appear to be caused 
by motion in the transverse direction, while they are absent in the 
longitudinal direction.

In the range 𝐿 > 𝑟 > 𝐻 , the best fit indicates a power law 𝑟0.4, 
which is in agreement with the power law observed in this range in 
the laboratory frame. One major difference between the two reference 
frames is the increase of the structure function around 𝑟 ≈ 𝐻 in 
the longitudinal direction, forming a ‘bump’ in the energy spectrum 
around 𝐻 . We thus record a non-monotonous decrease of the second-
order structure function with respect to 𝑟. This suggests the presence 
of another source of turbulence at the small scales that generates 
fluctuations that lead to an accumulation of energy around 𝐻 .
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The power laws in the Q2D range, 𝜆𝐾 < 𝑟 < 𝐻 , in the longitudinal 
and transverse directions present a scaling exponent of about 1.7, 
similar to the laboratory frame. The scaling extends in the longitudinal 
direction over a wider range than in the transverse direction, where 
𝑆𝑇𝑇  remains constant for 𝑟 < 0.4 cm.

The difference in the structure functions’ dependence on 𝑟 in the 
two directions at small scales is clear, mainly in the Q2D range, where 
𝑆𝐿𝐿 < 𝑆𝑇𝑇  for 𝑟 < 𝐻 . This difference appears even at the smallest 
scales detected by our experiment, which are close to the Kolmogorov 
scale. This is better represented in Fig.  8(b), where we plot for the two 
heights, the anisotropy factor defined as 

 =
𝑆𝐿𝐿 − 𝑆𝑇𝑇
𝑆𝐿𝐿 + 𝑆𝑇𝑇

. (6)

The behavior of  is non-monotonous and depends on 𝑟, which indi-
cates the breaking of the local isotropy hypothesis. Its value increases 
from −0.3, at 0.01 cm, to −0.6 at 0.1 cm. Then, it decreases toward 0 
and overshoots to a maximum of +0.17 for scales around 1 cm where 
fluctuations in the transverse direction exceed those in the longitudinal 
one. This plot shows that anisotropy, reflected in the 𝑟-dependence of 
, is strongest at the small scales, reaching a maximum at 𝑟 ≈ 𝐻∕2.

We interpret the difference in the small-scale dynamics between 
longitudinal and transverse as caused by the bottom no-slip boundary, 
which allows friction to act in the parallel direction to the motion 
while being absent in the transverse direction. The longitudinal velocity 
gradient in the 𝑧-direction would thus generate 3D motion that could 
explain why 𝑆𝐿𝐿 < 𝑆𝑇𝑇  for 𝑟 < 𝐻 . The presence of another source 
of turbulence in the Q2D range can also explain the non-monotonous 
decrease of the longitudinal structure function with 𝑟 around 𝑟 =
𝐻 , while this effect is absent in the transverse direction. The results 
of the second-order structure function show a clear deviation from 
local isotropy, one of the major assumptions in the KK theory, in 
agreement with the results of the previous section about the probability 
distribution function.
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Fig. 8. (a), the second-order structure function in the longitudinal (𝑆𝐿𝐿) and transverse (𝑆𝑇𝑇 ) directions for 𝐻 = 3 mm. In (b), we plot the anisotropy factor 
as a function of 𝑟 for the two heights.
Fig. 9. 𝑆𝐿𝐿𝐿 and 𝑆𝑇𝑇𝑇  as a function of 𝑟 for the two studied heights. The error bars are estimated using the 10 different movies recorded with the same 
experimental conditions.
6. Third-order structure functions

The third-order structure function is associated with the rate of 
transfer of energy and enstrophy among the different scales through 
non-linear interactions of velocity fluctuations [29,39–41]. The energy 
transfer rate can be broken down into four parts: 𝑆𝐿𝐿𝐿, 𝑆𝑇𝑇𝑇 , 𝑆𝐿𝐿𝑇 , 
and 𝑆𝐿𝑇𝑇 . This section presents the experimental results of the longitu-
dinal and transverse third-order structure functions, and we leave 𝑆𝐿𝐿𝑇
and 𝑆𝐿𝑇𝑇  to the next section.

Kolmogorov derived the ‘4/5-law’ for the three-dimensional turbu-
lent flows 

𝑆𝐿𝐿𝐿 = ⟨(𝛿𝑢𝐿)3⟩ = −4
5
𝜀 𝑟, (7)

where 𝜀 is the average energy dissipation rate per unit mass. The minus 
sign indicates the energy flux from large to small scales, which is the 
reason it is called a direct cascade.

In 2D flows [40,42], two cascades could co-exist leading to

𝑆𝐿𝐿𝐿 ∼ 𝑟3, in the direct cascade range, and (8)

𝑆𝐿𝐿𝐿 ∼ 𝑟, in the inverse cascade range (9)

In the inverse cascade range, the KK theory predicts that the same type 
of scaling properties in the longitudinal and transverse directions as a 
function of 𝑟.
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Belmonte et al. [12] investigated grid turbulence in a soap film and 
observed that the third moment is slightly negative at small scales but 
turns positive over most of the measured range. This is the signature 
of an energy transfer dominated by the inverse cascade. In a separate 
study, Gledzer et al. [43,44] employed a 40 × 30 cm2 container filled 
with an electrolyte solution up to 7 mm height subject to the Lorentz 
force. Their measurements revealed a negative third-order longitudinal 
structure function, consistent with a direct energy cascade akin to 3D 
turbulence.

Fig.  9 presents the third-order moments in both longitudinal (𝑆𝐿𝐿𝐿) 
and transverse (𝑆𝑇𝑇𝑇 ) directions for the heights of 3 and 5 mm, plot-
ted on a semi-logarithmic scale. The second-order structure function 
indicates strong correlations at all scales. The third-order moment in 
the longitudinal direction remains close to 0 up 𝑟 ≈ 𝐿 ≈ 2 cm, 
after which it is slightly negative, suggesting a direct energy cascade. 
The fact that 𝑆𝐿𝐿𝐿 is close to 0 for 𝑟 < 𝐿 could indicate that in 
this range, energy transfer is dominated by the enstrophy cascade. In 
the transverse direction, we note that the amplitude of 𝑆𝑇𝑇𝑇  is much 
greater than 𝑆𝐿𝐿𝐿, and it takes positive values starting from 𝑟 ≈ 𝐻 . 
One could deduce that the inverse enstrophy cascade dominates the 
transfer, with this process starting to be important from 𝑟 = 𝐻 and not 
from the distance among the magnets.

Our analysis reveals three distinct regimes:

• For separations 𝑟 < 𝐻 , the third-order structure function tends to-
ward zero in both directions, despite the presence of pronounced 



G. Antar et al. European Journal of Mechanics / B Fluids 118 (2026) 204453 
Fig. 10. The off-diagonal third-order structure functions 𝑆𝐿𝐿𝑇  and 𝑆𝐿𝑇𝑇  as a function of 𝑟 for 𝐻 = 3 in (a) and 5 mm in (b). The dots are the results obtained 
for each movie, and the solid lines are the average over all the data. The cross-direction coupling is found to be above the experimental error at large scales.
fluctuations at these scales. Given the simultaneous presence of 
energy and enstrophy cascades in two-dimensional turbulence, 
this behavior may suggest that the interscale energy transfer is 
mediated predominantly through the enstrophy cascade.

• In the range 𝐻 > 𝑟 > 𝐿, the sign of 𝑆𝑇𝑇𝑇  is positive, while 𝑆𝐿𝐿𝐿
remains close to 0. Thus, one may deduce that the energy transfer 
starts to be important in the transverse direction, while in the 
longitudinal direction, the enstrophy continues to dominate.

• For 𝑟 > 𝐿, the amplitude 𝑆𝑇𝑇𝑇  continues to increase with positive 
values according to 𝑟1 that indicate an inverse energy cascade, 
while 𝑆𝐿𝐿𝐿 remains close to zero.

6.1. Cross third-order structure functions

Local anisotropy is detected at small scales, with different behaviors 
of the second-order structure function reported in the longitudinal 
and transverse directions. To investigate the correlation between the 
transverse and longitudinal directions, we use the cross third-order 
structure functions, 
𝑆𝐿𝑇𝑇 = ⟨𝛿𝑢2𝑇 𝛿𝑢𝐿⟩ and 𝑆𝐿𝐿𝑇 = ⟨𝛿𝑢2𝐿𝛿𝑢𝑇 ⟩. (10)

These functions are cross-third-order moments, which reflect the energy 
transfer among the scales in different directions. They enable us to 
assess the coupling between the two directions, i.e., longitudinal and 
transverse.

In Fig.  10, we plot 𝑆𝐿𝑇𝑇  and 𝑆𝐿𝐿𝑇  for the two heights as a function 
of 𝑟. The cross-correlation between the two directions is close to zero for 
the small scales and becomes important at large scales. For 𝑆𝐿𝐿𝑇 , one 
can verify that it exhibits positive values for 𝑟 > 𝐻 while remaining 
around 0 for 𝑟 < 𝐻 . The longitudinal and transverse directions are 
thus coupled mainly at large scales. The fact that for 𝑟 < 𝐻 , the cross-
correlation is close to 0 is also obtained for 𝑆𝐿𝑇𝑇 , which is found to be 
slightly negative with values above the experimental error for 𝑟 > 𝐻 in 
agreement with the behavior of 𝑆𝐿𝐿𝐿.

We deduce that a net coupling among the two directions in the 
moving frame of reference is detected at 𝑟 > 𝐻 . Consequently, one 
could hypothesize the effects of bottom friction, which mainly affect 
the longitudinal direction, may be responsible for the deviation of the 
scaling in the transverse direction due to this nonlinear coupling at 
large scales between the two directions.
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7. Conclusion

We report an experimental investigation of the dynamics obtained 
in a forced quasi-two-dimensional flow in a square container with a 
no-slip bottom boundary. The working fluid is a potassium hydroxide 
(KOH) electrolyte solution, with fluid layer heights of 3 mm or 5 mm. 
Complex motion is driven by an electric current imposed via electrodes 
on two sidewalls, coupled with a magnetic field generated by an 
array of permanent magnets (alternating polarities) placed beneath the 
container. Flow visualization is achieved using 50 μm fluorescent tracer 
particles seeded on the free surface. These particles absorb UV light 
(356 nm wavelength, provided by UV lamps) and emit in the visible 
spectrum. A high-resolution camera (50 μm/pixel, matching the particle 
diameter) captures the full domain, with careful attention to temporal 
analysis being restricted to periods of statistical stationarity.

We show that for the currents used, which are 500 and 700 mA, 
respectively for the 3 mm and 5 mm heights, the velocity field becomes 
random and chaotic in space with the absence of the coherent vortices 
that are visible at low currents. However, at the Reynolds numbers 
investigated here, we cannot rule out the existence of coherent tran-
sitional structures. The randomness is also reflected in the PDF of the 
velocity, which is close to a Gaussian with skewness and flatness factors 
equal to 0 and 2.8, respectively.

We compare the statistical properties obtained here with the KK 
theory. The deviation from the KK theory is observed through the PDFs 
of velocity increments, which not only exhibit non-Gaussian behavior 
but also differ between longitudinal and transverse motions relative 
to the moving frame of reference. Although the second-order structure 
function appears isotropic in the laboratory frame, this isotropy breaks 
down in the moving frame. By introducing a local anisotropy factor, 
we found that it peaks within the Q2D range, situated between the 
Kolmogorov scale and the flow height. Analysis of the third-order struc-
ture function highlights the prevalence of an inverse energy cascade, 
suggesting that small-scale local anisotropy is driven to larger scales. 
As a result, the observed scaling laws deviate from the predictions of 
KK theory in this direction. Furthermore, cross third-order structure 
functions reveal significant mixing between longitudinal and transverse 
motions, indicating strong correlations at large scales and an associated 
‘‘pollution’’ effect spreading to the transverse direction.

One possible interpretation of our experimental results is as follows: 
The bottom no-slip boundary allows friction to act on the longitudinal 
direction of motion. This inherently breaks down the local isotropy of 
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the flow. Larger scales are affected by the inverse enstrophy cascade. 
The transverse properties of turbulence are also affected because of 
their nonlinear coupling with the longitudinal direction. Consequently, 
the effects of the solid boundary would propagate in the two direc-
tions and make, at all scales, the statistical properties of turbulence 
in disagreement with the KK theory. In addition, because all of this 
study takes place at moderate Reynolds numbers, the possible existence 
of transitional coherent structures can also play a major role in the 
disagreement between the experimental data and the KK theory.

For future work, it would be important to understand the theoretical 
reasons behind the dominant inverse cascade in these flows. Finally, 
let us mention that a comparison with direct numerical simulations 
yields another interesting perspective of this experimental work and 
will certainly lead to further detailed insight into the flow structure 
and the role of the solid boundary in modifying the flow’s dynamics, 
especially when compared to theory.
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