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ARTICLE INFO ABSTRACT

Keywords: We experimentally investigate quasi-two-dimensional (Q2D) forced shallow flows in the presence of solid
Turbulence boundaries and analyze the deviation from the Kolmogorov—Kraichnan (KK) theory. Complex motion is gen-
Boundary layer erated using a thin electrolyte subject to electromagnetic forces, and we employ particle tracking velocimetry
Statistical analysis to resolve the flow properties down to the Kolmogorov scale. Although the velocity probability distribution
Friction function closely resembles a Gaussian, deviations from Gaussianity emerge for velocity increments as scales
decrease. The second-order structure function supports the onset of local anisotropy at small scales. The
sign of the third-order structure function indicates the dominance of the inverse cascade in energy transfer,
and the cross-correlation between longitudinal and transverse directions proves to be significant at large
scales. The breakdown of local isotropy is consistent with the effect of bottom friction, which primarily
affects the longitudinal motion, while leaving the perpendicular direction unaffected. This local anisotropy
propagates to larger scales via the inverse energy cascade, with nonlinear interactions eventually influencing

the perpendicular direction.
1. Introduction Three-dimensional (3D) turbulence exhibits non-predictable rota-
tional motion occurring in three dimensions. The theoretical work of
Quasi-two-dimensional (Q2D) turbulence occurs in flows where the A. N. Kolmogorov thought of this complexity as caused by an energy
dynamics are dominated by motion in two directions. In geophysical cascade. Assuming a large Reynolds number, local isotropy, and self-

fluid dynamics, the Earth’s atmosphere and oceans have thicknesses
much smaller than the Earth’s radius; thus, studying large-scale atmo-
spheric and oceanic circulation patterns often involves two-dimensional
approximations. Q2D turbulence helps us understand the dynamics of
weather patterns, ocean currents, and climate phenomena such as the
formation of jets (the jet stream) and eddies (cyclones, anticyclones,
and turbulent vortices). Another way to reduce the role of the third
dimension is in magnetically confined plasmas, where perturbations

similarity, he obtained his famous 2/3-law prediction [4,5]. Kraichnan
applied similar arguments to 2D turbulence, where not only the turbu-
lent kinetic energy (the average of the velocity square) is conserved but
also the enstrophy (the average of the vorticity square) [6]. This led to
the prediction of the co-existence of two cascades on either side of the
forcing scale. In the direct cascade, enstrophy is transferred towards
smaller scales, while in the inverse cascade, energy moves up to larger

in the direction parallel to the magnetic field are much smaller than scales.

in the perpendicular plane [1]. Rotating or stratified flows such as Two main types of laboratory experiments were elaborated to un-
atmospheric circulation, ocean currents, and galactic rotations also derstand the dynamics of Q2D flows [7-10]. The first type is gravity-
exhibit a reduction in dynamics in one dimension [2,3]. driven soap films, where the thickness is about 100 pm, and turbulence
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Fig. 1. The experimental setup is illustrated, showing the container with two rectangular electrodes connected to a variable DC power supply. Beneath the
container, we insert a set of permanent magnets with opposite polarities. The green dots represent the fluorescent beads deposited on the flow surface. Ultraviolet
light sources illuminate the flow, and a camera detects the visible light emitted by the beads. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

is generated by a grid [11,12]. Electromagnetically driven flows, on the
other hand, use a set of permanent magnets installed underneath the
container, and a current is driven between the electrodes [13-15]. In
this case, the thickness may be modified from one to several millime-
ters, and turbulence is generated by the nonlinear interaction among
the vortices. The statistical properties of Q2D flows obtained by the
different groups do not converge on whether the laboratory flows obey
the Kolmogorov—Kraichnan theory or not. Some have indicated a good
agreement [16,17], but others did not [10,18].

The existence of the condensate, which is one large steady vortex,
may be one of the reasons why the experiment disagrees with the
theory [17]. A strong condensate leaves a footprint on the underlying
turbulence as it reduces the randomness of the flow and reduces the
efficiency of the inverse energy cascade [19]. In a bounded flow at low
bottom dissipation, the inverse energy cascade leads to the generation
of a spectral condensate below the free surface. Such a coherent flow
can destroy 3D eddies in the bulk of the layer and enforce flow planarity
throughout the thickness of the layer [20]. A quantitative study of the
turbulent diffusion shows a significant decrease of the radial transport
during the spectral condensation process [21].

The other major phenomenon is the solid no-slip boundary at the
bottom of the container, which could lead to a profound deviation from
the KK theory developed for 2D turbulence. It was argued that the usual
assumption that a shallow fluid flow is Q2D is wrong and that there
are still some 3D effects. These effects were shown to be not due to the
bottom drag but to the impermeability of the boundaries [22].

This paper is dedicated to the experimental investigation of a Q2D
flow that is electromagnetically driven by two electrodes and a set of
permanent magnets. We wish to investigate the effects of the no-slip
solid boundary on the statistics of the velocity fluctuations. Thus, no
intermediate fluid layer is employed between the solid bottom and
the electrolyte. We characterize the flow motion using particle track-
ing velocimetry (PTV), where 50 pm fluorescent particles are initially
puffed on the surface and followed by visible imaging. We continue
with the description of our experimental setup and the diagnostic

used in Section 2. In Section 3, we present the effect of increasing
the current and achieving a turbulent regime. We emphasize that,
throughout this paper, a clear distinction is made between a ‘turbulent
regime’ and a ‘fully developed turbulent regime’. In the former, our
case, the flow exhibits complex and irregular dynamics with strong non-
linear interactions, yet some degree of spatial or temporal coherence
may persist, as is often observed in transitional or partially turbulent
flows. In contrast, a fully developed turbulent regime corresponds to
conditions at sufficiently high Reynolds numbers, where turbulence
becomes statistically homogeneous and the flow is characterized by a
broad and well-separated range of interacting scales, from the largest
energy-containing eddies down to the smallest dissipative structures.
The probability distribution function of the velocity and its increments
are discussed in Section 4, showing a deviation from a Gaussian dis-
tribution at small scales. The second-order structure functions in the
laboratory and moving frames of reference are presented in Section 5,
which is followed by Section 6 discussing the third-order structure
function. Conclusions are drawn in Section 7, where we discuss the
role of the bottom no-slip boundary, which allows friction to break the
local isotropy of the flow at small scales. Larger scales are affected by
the inverse cascade, which is shown to dominate energy transfer. The
strong cross-correlation between longitudinal and transverse motion
contributes to the deviation of not only the longitudinal but also the
transverse moments from the KK theory.

2. The experimental setup
2.1. The fluid setup

The experimental setup is illustrated in Fig. 1. We use a square
container made of Plexiglas with an inner length of W = 16 cm and
a height equal to 2 cm. Two stainless steel electrodes are mounted
on two opposing walls and connected to a variable DC power supply.
Pure water is mixed with potassium hydroxide (KOH) to reach a
concentration of 26%. This generates positively (K*) and negatively
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Fig. 2. The Teslameter, positioned at 5 mm from the magnet top surface, yields The z-component of the magnetic field, B, as a function of y at five different

x locations, with graphs denoted by M1-M5.

Table 1
The main flow parameters for the two heights and two
currents investigated here. L is the distance between the

magnets.
I [A] H [mm] H/W H/L Re=UL/v
0.1 3 0.019 0.15 100
0.5 3 0.019 0.15 200
0.7 5 0.03 0.25 180

(OH™) charged ions that are attracted and repelled, respectively, at
the cathode and anode surfaces. The conductivity of this electrolyte
solution is 55 S/m, which is about 10~° that of copper. Consequently,
this solution remains an insulator in terms of electron mobility, and
the resultant measured current is due to the charge exchange at the
electrode surface without a net flow of electrons inside the solution. The
amount of KOH solution poured into the container defines the height H
of the flow and can be modified. The setup is adequately leveled so that
all parts of the fluid are subject to the same gravitational force. A set of
6 x 5 permanent neodymium magnets is installed under the container
with opposite polarities, leading to a magnetic field gradient of about
28 T/m as can be deduced from Fig. 2, where the axial magnetic field
is plotted as a function of y.

The kinematic viscosity of water is used to assess the Reynolds
number, defined as Re = UD/v. Because there is no mean flow, we
use the root-mean-square value of the velocity, leading to U ~ 2 cm/s.
The typical macroscopic scale of turbulence in the horizontal plane is
taken to be the distance between magnets L ~ 2 cm. In Table 1, we
insert some important parameters of our flow with I being the current
drawn between the electrodes.

2.2. Particle tracking velocimetry

To obtain the velocity field as a function of space and time, we
scatter fluorescent beads (from Cospheric), with density 0.98 g/cm? and
diameter 38-45 pm on the surface of the fluid. They absorb ultraviolet
(UV) light and emit it in the visible range. To excite them, we install
two LED spotlights that emit around 395 nm with a total power of
30 W, at approximately 40 cm from the electrolyte solution. The
visible camera is a Basler ACA3800-14uc that has a full resolution of
3840 x 2748 pixels at 14 frames per second. It is equipped with a
50 mm C-mount lens that allows efficient coverage of the setup and thus
a spatial resolution of 42 x 58 um. Consequently, each bead occupies
about one pixel in the camera image, and this considerably reduces the
error in determining their position and thus their velocity.
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Fig. 3. The velocity vector in a region of about 1 x 1 cm? using arrows for
H =3 mm and a current of 100 mA.

After pouring the KOH solution into the container, we scatter ap-
proximately 500 beads onto its surface. This quantity represents a
balance: too many beads would impede the accurate determination of
their velocity field via particle tracking velocimetry (PTV), while too
few would decrease the statistical reliability of the results. The motion
of the beads is recorded at 1000 frames (corresponding to a 1-minute
movie), generating roughly 500,000 data points per movie. To enhance
the statistics, ten movies are recorded for each experimental condition.
The total number of data points used in this paper is 3,219,310 for a
height H =3 mm and 5,812,925 for H =5 mm.

Fig. 3 shows a zoomed-in view of a 1 cm? region. The bead veloc-
ities, determined from 100 frames, are overlaid in this image. For a
current of 100 mA, the figure reveals the coherent rotational motion,
showing a clear clockwise rotation.

2.3. The determination of the velocity field and its increments
Each image from the visible camera is processed by first subtracting

the background. Beads positions are identified as local intensity max-
ima. To exclude contributions from agglomerated beads, we filter out
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Fig. 4. Panels (a) and (b) display the positions of fluorescent beads for a height H

=3 mm at currents I = 100 and I = 500 mA respectively. The beads’ positions

are overlaid across 100 consecutive frames. The dashed rectangle marks the spatial domain used for statistical analysis.

all sources with a spatial extent larger than 2 x 2 pixels. In the labora-
tory reference frame, each bead i in frame j has a position (x; ;,y; ;)
in the % and j directions. The velocity of each bead is computed
using a central difference scheme, which tracks its motion across three
consecutive frames. This establishes a smallest resolved spatial scale of
Amin & 100 pm and a smallest velocity of u,,;,, ~ 0.07 cm/s.
w = Xij+1 — Xij-1 b = Yij+1 = Vij—1

b 26t T 26t '
The maximum tracking distance is constrained to the average inter-
bead distance to minimize erroneous connections to false neighbors.
This constraint sets the maximum resolvable velocity at uy,, ~ 7 cm/s.
The velocity increments in the laboratory frame are thus defined as:

ou(f) = u; ; —uy j, 6v(F) = v;; — vy ;.

where 7 is the vector distance between two beads i and i’ in the same
frame ;.

Knowing both the positions and the velocity fields of the beads
allows us to calculate the longitudinal éu; and the transverse up
velocity increments in the beads’ moving frame according to

5ML = (ﬁi,j _ﬁi’,j) 'f, 5MT = (17’-’/- _ﬁi’,j -1

where - is the scalar product, # =7/r and - # = 0.
2.4. The characteristic scales

Scales in two-dimensional turbulence are important since they dic-
tate the statistical properties of the velocity fluctuations. The Kol-
mogorov scale is the smallest length scale associated with the smallest
eddies in a turbulent flow. It is defined as Ay = (v?/¢)!/* where ¢ is the
turbulent dissipation rate per unit mass. In our flow, it is g ~ 63 pm,
which is about the spatial resolution of our particle tracking method.
We define the ‘Q2D range’ to represent the scales that are greater than
Ak and smaller than H, thus ranging from 0.06 to 3 — 5 mm. In this
limited range, turbulent 3D motion may be present, thus affecting the
properties of the flow.

Vortices are generated at a characteristic scale of L ~ 2 cm, as
evident in Fig. 4(a) under low current conditions. According to the
Kolmogorov—Kraichnan (KK) theory [6,23], the scales between H and
L should fall within the direct cascade range where energy flows from
L toward smaller scales down to Agx. In our experiment, we have one
decade in this range from 0.3 to 3 cm. For scales greater than L, their
maximum is the size of the container (W = 16 cm). We thus have
half a decade in this range identified to be the inverse cascade range
according to the KK theory.

3. Spatial structures at low and high currents

Before analyzing the statistical properties of turbulence, we examine
the spatial properties of the flow. Fig. 4 displays the superposition of
the bead positions in 100 consecutive frames for two different currents:
(a) 100 mA, and (b) 500 mA, at a fixed height H =3 mm.

At I = 100 mA (Fig. 4(a)), we observe well-defined coherent
vortices formed by the forcing from magnetic field gradients around
each magnet, which produces rotational acceleration [24]. The forcing
is isotropic in the (x, y)-plane, showing no directional preference. Here,
isotropy implies that the statistical properties remain unchanged under
rotation of the reference frame. This differs from the local isotropy
definition in the Kolmogorov theory [4], which requires invariance
under both translation and rotation in the moving reference frame.

At the current equals 500 mA (Fig. 4(b)), the bead distribution
reveals a random fluid motion, with the complete disappearance of the
coherent structures. Moreover, we do not observe vortex condensation
into one or several large-scale structures, consistent with the findings
of Paret and Tabeling [25]. With increasing current, we thus record
a transition from a flow dominated by coherent vortices to a flow
without, which is described as turbulent.

4. Probability distribution functions of velocity and its increments

The probability distribution functions (PDFs) of the velocity field
and its increments allow us to quantify the randomness of the motion
presented above. Gaussian random fields have skewness and flatness
factors that are equal to O and 3, respectively. The deviation of the
PDFs from a Gaussian distribution is caused by non-random events that
reflect a deviation from the Kolmogorov theory.

4.1. PDFs of velocity

The PDF of the x-component of the velocity field is plotted in Fig.
5 for H =3 and 5 mm. The two distributions are fitted with Gaussian
functions by applying the least-squares minimization. The PDF slightly
deviates from a Gaussian distribution at small scales, most probably
caused by using a centered difference to determine the velocity field.
To quantify the deviation of the PDFs from Gaussian statistics, we
compute the normalized third and fourth-order moments of the velocity
fluctuations, known as the skewness and flatness factors. The skewness,
defined as S, = (u?)/(u?)>/?, yields S, = 0 for both heights, confirming
the symmetry of the distribution about u = 0. The flatness factor
F, = (u*)/(u*)* measures 2.7 (H = 3 mm) and 2.8 (H = 5 mm), slightly
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Fig. 5. The PDF of the x-component of the velocity for H = 3 mm and
H =5 mm are shown with circles and stars markers respectively. The solid
lines represent the corresponding Gaussian distributions obtained through
least-squares fitting. The measured distributions exhibit near-zero skewness
(~ 0) with flatness factors of 2.7 (H =3 mm) and 2.8 (H =5 mm), indicating
slight deviations from Gaussian statistics.

below the Gaussian value of 3. This discrepancy arises from a deficit of
high-intensity velocity fluctuations compared to Gaussian predictions,
as visible in Fig. 5 where the tail probabilities fall below the theoretical
distributions. However, these deviations remain small and affect only
rare events (occurring with probabilities three orders of magnitude
below the bulk). We therefore conclude that the velocity field follows
approximately Gaussian statistics, consistent with the random motion
observed in Fig. 4.

4.2. The PDFs of the velocity increments

Paret and Tabeling [25] generated turbulence in electromagneti-
cally driven flows, using thin, but stably-stratified layers to minimize
the bottom friction. The PDFs of the longitudinal increments were
overlaid for separations in the inverse cascade range, and they were
found to remain Gaussian. The authors deduced that this indicates
a lack of intermittent events in the inverse cascade range. On the
other hand, PDFs were also discussed by Belmonte et al. [12] for two-
dimensional flows in soap films. They found that the PDF of éu, (r)
becomes non-Gaussian with decreasing r, similar to the 3D-turbulence
case, indicating a deviation from the random perturbation assumption
of Kolmogorov at small scales.

In this section, we investigate the PDFs of the velocity increments
Suy (r) and Sup(r). The basic idea behind this analysis is to test the
randomness of the fluctuations on the scale defined by r. If the motion
of particles is random, then this should also yield a Gaussian random
distribution for the velocity increments.

In Fig. 6, we plot the PDFs of the velocity increments for three
values of r that lie in the Q2D range (r = 0.15 cm), in the direct cascade
range (r = 0.8 cm), and in the inverse cascade range (r = 4 cm). The
results are shown for H = 3 mm, but similar results are obtained with
H =5 mm.

Fig. 6(a) displays the PDFs of both longitudinal (6u;) and transverse
(6uy) velocity increments for separation distances r = 4 cm within
the inverse cascade range. The two distributions are almost identical,
reflecting local isotropy or isotropy in the beads’ frame of reference.
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Fig. 6. For H = 3, we plot the PDF of éu; and éu, using three separation
distances r = 0.1, 0.8, and 4 cm in (a), (b) and (c). The corresponding flatness
factors are given in each subplot.

Both PDFs closely follow Gaussian distributions, as confirmed by their
flatness factors, F; = (5u})/(6u%)* for the longitudinal direction (idem
in the transverse direction). The recorded values, F; =2.9 and F; = 2.8,
are close to 3, the Gaussian value. The skewness factors of the velocity
increments in the two directions are equal to 0.

In the direct cascade range, where r equals 0.8 cm, the results
are shown in (b). We observe a net deviation from a parabolic shape
towards an exponential one for the longitudinal direction, while the
transverse one remains close to parabolic. The local isotropy reported
in the inverse cascade is thus broken in the direct cascade range. The
flatness factors are equal to 2.8 for éu; and 3.6 for 6u;, which indi-
cates a net deviation from a Gaussian distribution in the longitudinal
direction but not in the transverse one. The difference in the behavior
in the two directions reflects the lack of local isotropy at this scale.

For r = 0.15 cm, which lies in the Q2D range, the anisotropy
between the two directions is even more pronounced as shown in Fig.
6(c). At these scales, both the longitudinal and transverse directions are
far from Gaussian with clear exponential tails. This is quantified by the
flatness factor reaching F; = 4.7 and F; = 18.8, indicating an even
bigger difference in the two directions. The origin of the two peaks at
low velocities in the longitudinal direction is unknown.

We conclude this section by highlighting the facts: (1), the PDFs
of the velocity fields are close to a Gaussian distribution, reflecting
the randomness visually inspected in Section 3. (2), at large scales,
the PDFs of the velocity increments remain close to a Gaussian shape,
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but with decreasing scales, they present exponential tails. (3), the local
isotropy is broken at small increments with the PDFs for éu; being
different from that of du;.

5. Second-order structure functions

The pioneering theory of Kolmogorov [4] provided the first predic-
tions for fully developed three-dimensional turbulence through struc-
ture functions, building upon the foundational work of von Karmén
and Howarth [26]; One can see also Djenidi and Antonia [27] for a
more recent work. By invoking self-similarity and local isotropy in the
inertial range, Kolmogorov derived the characteristic r2/? energy scal-
ing. In contrast, fully developed two-dimensional turbulence conserves
both energy and enstrophy, yielding distinct scaling laws: r? for scales
larger than the forcing scale (inverse cascade) and r2/3 for smaller
scales (direct cascade) [6]. Crucially, the local isotropy hypothesis
implies identical r-dependence for both transverse and longitudinal
components in both cascade ranges of 2D turbulence.

We define the second-order structure functions in the laboratory
frame as

Syx = (6u()?), Syy = (v(r)?), (@)

where X and Y denote the corresponding coordinate directions. The
brackets (-) denote an average over space and time for the 10 movies.
We define the total energy structure function as S, = Syy + Syy.

In the bead’s frame of reference, we define the second-order struc-
ture functions as

Spp = Bup(r?), Spr = (Sup(r)?), (2

where T and L denote, respectively, the transverse and longitudinal
directions of the bead’s motion.

5.1. Previous results

The correlation properties of turbulence as a function of r can be
determined using the structure function, as will be done here, or the
energy spectra E(k) obtained from the correlation of the velocity field.

Spp() = (lupx+1) —u (O = 2(u7 ) — 2up (X + r)ug (%)) 3

= 4/00 E(k) <1 - Si“(k’)> dk @
0 kr

If S;; ~ r% then E(k) ~ k~@*D_ For measurements taken as
a function of time, the link to the spatial dependence is done using
Taylor’s frozen turbulence hypothesis, where the angular frequency is
w = Uk, leading to E(w) ~ E(k) [28,29].

Gage and Nastrom [30] used data taken from airplanes to obtain
the energy spectra of atmospheric turbulence and found the k=3 and
k=373 scaling for respectively the large and small scales, reflecting
the enstrophy and the energy cascades. Using a soap film driven by
gravity, Gharib and Derango [11] showed that the energy spectra,
determined in the frequency domain, follow f~%, where a can take
several values depending on the position of the measurement with
respect to the downstream distance to the grid where turbulence is
generated.

Kellay et al. [31,32] use the same setup and found two ranges
in the frequency domain with two scaling exponents: In the high-
frequency range, the slope is about —3.6, whereas at low-frequency it
is approximately —2. However, the authors indicate that because only
one-third of a decade was investigated, these measurements cannot be
regarded as conclusive. This scaling of the energy was later confirmed
by Belmonte et al. where the slope was found to be equal to —3.3 [12].
The difference with the value —5/3 was argued to be caused by large,
long-lived coherent structures and finite-size effects.

Tabeling et al. [16] performed experiments in thin, stably stratified
layers with an electromagnetic force, and showed that the energy
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spectrum displays a k~5/3 dependence, which is consistent with the
prediction in the inverse cascade range [13]. The velocity was mea-
sured using particle imaging velocimetry on a grid of 64 x 64 in a
15 x 15 cm container [33]. Boffetta et al. [14], the energy spectra
displayed a power law that is steeper than the Kraichnan prediction
k=3, which was interpreted to be caused by the bottom friction.

In 2006 Chen et al. [18] published a paper that contains experi-
mental results using an electromagnetically forced layer of salt water
3 mm thick and 18 x 18 cm in lateral extents. A heavier 3 mm-
thick buffer layer of Fluorine was used to minimize the bottom friction
of the forced layer. The velocity fields were obtained using particle
tracking velocimetry, resolving velocities on a 100 x 100 spatial grid.
The energy spectrum did not show an agreement with the theory,
the authors suggested that this may be caused by the limited range
of scales that was investigated. On the other hand, using a similar
setup, Xia et al. [17,19] obtained power laws that are consistent with
the KK prediction. They emphasized that the presence of a “condensate
strongly modifies both turbulence level and its statistics; different
velocity moments are affected at different scales”. In [20,34,35], the
authors show that the power spectra obtained depend on where they
are determined; the closer to the bottom, the farther they are from the
theoretical prediction, highlighting the effects of the bottom layer.

von Kameke et al. [36] measured the horizontal surface flow in-
duced by Faraday waves in a thin fluid layer (2 mm). They obtained
an inverse energy cascade with negative mean spectral energy flux and
a Kolmogorov-type scaling range. Moreover, the data suggested the
existence of a direct enstrophy cascade with a positive mean spectral
enstrophy flux. Later, the team presented experimental results that
support the existence of the inverse energy cascade fueled by Faraday
waves [35,37,38]. On the other hand, Bardéczi et al. [21] performed
experiments using a NaCl solution with different heights ranging from
2—8 mm. They reported the existence of a condensate with scales about
that of the container size that dominates the turbulence dynamics in
steady state.

5.2. The second-order structure function in the laboratory frame

In this section, we present results about the correlation properties
in our turbulent flow using the second-order structure functions in the
laboratory frame.

In Fig. 7(a), we plot Syy and Syy as a function of r. The same
behavior is recorded, reflecting the isotropy of the flow. This confirms
that the statistics of the measured velocity field are sound, and no
dependence on the coordinate direction is found as expected.

For r < H, the dynamics are in the Q2D range scale like ! for the
two directions. Between 0.1 and 0.5 cm, we record a saturation that
could be caused by viscous dissipation as we approach the Kolmogorov
scale.

For L > r > H, according to the KK theory, fluctuations should
result from a direct cascade with a dependence according to the power
law 2. In this range, however, we have a net increase with r with a
best fit 04 (in the wavenumber space k~!#), which is far from the r?
expected from the theory.

For W > r > L, velocity perturbations are caused by an inverse
cascade of energy, and the power law expected is r2/3. We recall that
in the statistically steady-state regime, no condensate is observed. Our
experimental results show that in the inverse cascade range, the best fit
01 (k=11) is recorded, which is marginally greater than 0, indicating
almost no dependence on r.

Fig. 7(b) displays the total second-order structure function .S, mea-
sured at both fluid heights. In the inverse and direct cascade ranges,
the same scaling is obtained within the experimental error. This is not
the case in the Q2D range, where the scaling changes from r!7 for
H =3 mm to r!3* for H = 5 mm. Note that the current for H = 5 mm
is 700 mA, yet the level of velocity fluctuations remains smaller than
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Fig. 7. (a), the second-order structure function in the laboratory frame in the x (Sy) and y directions (Sy,) as a function of r for H = 3 mm. The vertical
dashed lines indicate the position of r = L and r = H. The scaling exponent for the best fit by a power law leads to an exponent equal to 1.7 and 1.34, for
H =3 and 5 mm, respectively. In the direct range, we report the power law r*4, whereas in the direct cascade range, almost no variation is detected with a
best fit according to r*!. Note that there is no difference between the two directions reflecting =that turbulence is isotropic. In (b), The total energy spectra,

S, = Syx + Syy, is plotted as a function of r for H =3, and H =5 mm.

for H = 3 mm. In practice, for H = 5 mm, a higher current is needed to
reach a turbulent state reflected in the absence of coherent structures.

The behavior of the structure functions in the laboratory frame of
reference shows that (1), turbulence is isotropic, (2) the scalings with
respect to r deviate from the KK theory at all scales, and (3), the scaling
laws depend on H, which indicates a lack of universality.

5.3. The second-order structure functions in the moving reference frame

We recall that the longitudinal and transverse second-order struc-
ture functions are denoted by S;; and Sy, respectively, in the di-
rections parallel and perpendicular to 7, which is the vector distance
between two beads that belong to the same frame. The two directions
are related by

Srr = %(rSLL)~ %)

Consequently, when S; ; ~ r?, the same scaling will be obtained for
Srr.

For H = 3 mm, the structure functions in the two directions are
plotted in Fig. 8(a) for the 10 movies. This gives an idea about the
error bars as a function of r.

For the range of scales corresponding to the inverse cascade range
(W > r > L), the two directions agree, and the best fit indicates r*!.
The oscillations detected in the x and y directions appear to be caused
by motion in the transverse direction, while they are absent in the
longitudinal direction.

In the range L > r > H, the best fit indicates a power law r*4,
which is in agreement with the power law observed in this range in
the laboratory frame. One major difference between the two reference
frames is the increase of the structure function around r ~ H in
the longitudinal direction, forming a ‘bump’ in the energy spectrum
around H. We thus record a non-monotonous decrease of the second-
order structure function with respect to r. This suggests the presence
of another source of turbulence at the small scales that generates
fluctuations that lead to an accumulation of energy around H.

The power laws in the Q2D range, 1y < r < H, in the longitudinal
and transverse directions present a scaling exponent of about 1.7,
similar to the laboratory frame. The scaling extends in the longitudinal
direction over a wider range than in the transverse direction, where
Spr remains constant for r < 0.4 cm.

The difference in the structure functions’ dependence on r in the
two directions at small scales is clear, mainly in the Q2D range, where
Sp. < Spr for r < H. This difference appears even at the smallest
scales detected by our experiment, which are close to the Kolmogorov
scale. This is better represented in Fig. 8(b), where we plot for the two
heights, the anisotropy factor defined as

_ Spr = Srr . ©)
Spe+Srr

The behavior of A is non-monotonous and depends on r, which indi-
cates the breaking of the local isotropy hypothesis. Its value increases
from —0.3, at 0.01 cm, to —0.6 at 0.1 cm. Then, it decreases toward 0
and overshoots to a maximum of +0.17 for scales around 1 cm where
fluctuations in the transverse direction exceed those in the longitudinal
one. This plot shows that anisotropy, reflected in the r-dependence of
A, is strongest at the small scales, reaching a maximum at r ~ H /2.

We interpret the difference in the small-scale dynamics between
longitudinal and transverse as caused by the bottom no-slip boundary,
which allows friction to act in the parallel direction to the motion
while being absent in the transverse direction. The longitudinal velocity
gradient in the z-direction would thus generate 3D motion that could
explain why S;; < Spp for r < H. The presence of another source
of turbulence in the Q2D range can also explain the non-monotonous
decrease of the longitudinal structure function with r around r =
H, while this effect is absent in the transverse direction. The results
of the second-order structure function show a clear deviation from
local isotropy, one of the major assumptions in the KK theory, in
agreement with the results of the previous section about the probability
distribution function.
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Fig. 8. (a), the second-order structure function in the longitudinal (S, ;) and transverse (S;;) directions for H = 3 mm. In (b), we plot the anisotropy factor A

as a function of r for the two heights.
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Fig. 9. S;;, and S;;r as a function of r for the two studied heights. The error bars are estimated using the 10 different movies recorded with the same

experimental conditions.
6. Third-order structure functions

The third-order structure function is associated with the rate of
transfer of energy and enstrophy among the different scales through
non-linear interactions of velocity fluctuations [29,39-41]. The energy
transfer rate can be broken down into four parts: S;;;, Srrr> Spirs
and S, rr. This section presents the experimental results of the longitu-
dinal and transverse third-order structure functions, and we leave S; ;
and S;;r to the next section.

Kolmogorov derived the ‘4/5-law’ for the three-dimensional turbu-
lent flows

Spue=(Gu)) = -Zer, %)

where ¢ is the average energy dissipation rate per unit mass. The minus
sign indicates the energy flux from large to small scales, which is the
reason it is called a direct cascade.

In 2D flows [40,42], two cascades could co-exist leading to

Sy ~r’, in the direct cascade range, and 8
Sy .1 ~ r,in the inverse cascade range 9

In the inverse cascade range, the KK theory predicts that the same type
of scaling properties in the longitudinal and transverse directions as a
function of r.

Belmonte et al. [12] investigated grid turbulence in a soap film and
observed that the third moment is slightly negative at small scales but
turns positive over most of the measured range. This is the signature
of an energy transfer dominated by the inverse cascade. In a separate
study, Gledzer et al. [43,44] employed a 40 x 30 cm? container filled
with an electrolyte solution up to 7 mm height subject to the Lorentz
force. Their measurements revealed a negative third-order longitudinal
structure function, consistent with a direct energy cascade akin to 3D
turbulence.

Fig. 9 presents the third-order moments in both longitudinal (S ;)
and transverse (Sy;r) directions for the heights of 3 and 5 mm, plot-
ted on a semi-logarithmic scale. The second-order structure function
indicates strong correlations at all scales. The third-order moment in
the longitudinal direction remains close to O up r ~ L = 2 cm,
after which it is slightly negative, suggesting a direct energy cascade.
The fact that S;;; is close to 0 for r < L could indicate that in
this range, energy transfer is dominated by the enstrophy cascade. In
the transverse direction, we note that the amplitude of S is much
greater than S;;;, and it takes positive values starting from r ~ H.
One could deduce that the inverse enstrophy cascade dominates the
transfer, with this process starting to be important from r = H and not
from the distance among the magnets.

Our analysis reveals three distinct regimes:

+ For separations r < H, the third-order structure function tends to-
ward zero in both directions, despite the presence of pronounced
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Fig. 10. The off-diagonal third-order structure functions S, and S, as a function of r for H = 3 in (a) and 5 mm in (b). The dots are the results obtained
for each movie, and the solid lines are the average over all the data. The cross-direction coupling is found to be above the experimental error at large scales.

fluctuations at these scales. Given the simultaneous presence of
energy and enstrophy cascades in two-dimensional turbulence,
this behavior may suggest that the interscale energy transfer is
mediated predominantly through the enstrophy cascade.

In the range H > r > L, the sign of Sy is positive, while .S, ; ;
remains close to 0. Thus, one may deduce that the energy transfer
starts to be important in the transverse direction, while in the
longitudinal direction, the enstrophy continues to dominate.

For r > L, the amplitude S, continues to increase with positive
values according to r!' that indicate an inverse energy cascade,
while .S, ; ; remains close to zero.

6.1. Cross third-order structure functions

Local anisotropy is detected at small scales, with different behaviors
of the second-order structure function reported in the longitudinal
and transverse directions. To investigate the correlation between the
transverse and longitudinal directions, we use the cross third-order
structure functions,

Sprr = (8ukéuy) and S 1 = (6u? Sur). 10)

These functions are cross-third-order moments, which reflect the energy
transfer among the scales in different directions. They enable us to
assess the coupling between the two directions, ie., longitudinal and
transverse.

In Fig. 10, we plot S, and S} ; for the two heights as a function
of r. The cross-correlation between the two directions is close to zero for
the small scales and becomes important at large scales. For S; ;r, one
can verify that it exhibits positive values for r > H while remaining
around O for r < H. The longitudinal and transverse directions are
thus coupled mainly at large scales. The fact that for r < H, the cross-
correlation is close to O is also obtained for S; 1, which is found to be
slightly negative with values above the experimental error for r > H in
agreement with the behavior of S; ;.

We deduce that a net coupling among the two directions in the
moving frame of reference is detected at r > H. Consequently, one
could hypothesize the effects of bottom friction, which mainly affect
the longitudinal direction, may be responsible for the deviation of the
scaling in the transverse direction due to this nonlinear coupling at
large scales between the two directions.

7. Conclusion

We report an experimental investigation of the dynamics obtained
in a forced quasi-two-dimensional flow in a square container with a
no-slip bottom boundary. The working fluid is a potassium hydroxide
(KOH) electrolyte solution, with fluid layer heights of 3 mm or 5 mm.
Complex motion is driven by an electric current imposed via electrodes
on two sidewalls, coupled with a magnetic field generated by an
array of permanent magnets (alternating polarities) placed beneath the
container. Flow visualization is achieved using 50 pm fluorescent tracer
particles seeded on the free surface. These particles absorb UV light
(356 nm wavelength, provided by UV lamps) and emit in the visible
spectrum. A high-resolution camera (50 pm/pixel, matching the particle
diameter) captures the full domain, with careful attention to temporal
analysis being restricted to periods of statistical stationarity.

We show that for the currents used, which are 500 and 700 mA,
respectively for the 3 mm and 5 mm heights, the velocity field becomes
random and chaotic in space with the absence of the coherent vortices
that are visible at low currents. However, at the Reynolds numbers
investigated here, we cannot rule out the existence of coherent tran-
sitional structures. The randomness is also reflected in the PDF of the
velocity, which is close to a Gaussian with skewness and flatness factors
equal to 0 and 2.8, respectively.

We compare the statistical properties obtained here with the KK
theory. The deviation from the KK theory is observed through the PDFs
of velocity increments, which not only exhibit non-Gaussian behavior
but also differ between longitudinal and transverse motions relative
to the moving frame of reference. Although the second-order structure
function appears isotropic in the laboratory frame, this isotropy breaks
down in the moving frame. By introducing a local anisotropy factor,
we found that it peaks within the Q2D range, situated between the
Kolmogorov scale and the flow height. Analysis of the third-order struc-
ture function highlights the prevalence of an inverse energy cascade,
suggesting that small-scale local anisotropy is driven to larger scales.
As a result, the observed scaling laws deviate from the predictions of
KK theory in this direction. Furthermore, cross third-order structure
functions reveal significant mixing between longitudinal and transverse
motions, indicating strong correlations at large scales and an associated
“pollution” effect spreading to the transverse direction.

One possible interpretation of our experimental results is as follows:
The bottom no-slip boundary allows friction to act on the longitudinal
direction of motion. This inherently breaks down the local isotropy of
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the flow. Larger scales are affected by the inverse enstrophy cascade.
The transverse properties of turbulence are also affected because of
their nonlinear coupling with the longitudinal direction. Consequently,
the effects of the solid boundary would propagate in the two direc-
tions and make, at all scales, the statistical properties of turbulence
in disagreement with the KK theory. In addition, because all of this
study takes place at moderate Reynolds numbers, the possible existence
of transitional coherent structures can also play a major role in the
disagreement between the experimental data and the KK theory.

For future work, it would be important to understand the theoretical
reasons behind the dominant inverse cascade in these flows. Finally,
let us mention that a comparison with direct numerical simulations
yields another interesting perspective of this experimental work and
will certainly lead to further detailed insight into the flow structure
and the role of the solid boundary in modifying the flow’s dynamics,
especially when compared to theory.
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