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ABSTRACT

A wavelet-based machine learning method is proposed for predicting the time evolution of homogeneous isotropic turbulence where vortex
tubes are preserved. Three-dimensional convolutional neural networks and long short-term memory are trained with a time series of direct
numerical simulation (DNS) data of homogeneous isotropic turbulence at the Taylor microscale Reynolds number 92. The predicted results
are assessed by using the flow visualization of vorticity and statistics, e.g., probability density functions of vorticity and enstrophy spectra. It is
found that the predicted results are in good agreement with DNS results. The small-scale flow topology considering the second and the third
invariants of the velocity gradient tensor likewise shows an approximate match. Furthermore, we apply the pre-trained neural networks to
coarse-grained vorticity data using super-resolution. It is shown that the super-resolved flow field well agrees with the reference DNS field,
and thus small-scale information and vortex tubes are well regenerated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0185165

I. INTRODUCTION

Self-organization in small-scale turbulence is ubiquitous for
instance in the form of coherent vortex tubes. The vortices defined as
regions of intense vorticity magnitude are characteristic at scales in the
dissipation range (e.g., Refs. 1 and 2). They are intermittently distrib-
uted in physical space. Moreover, they play key roles for the dynamics
of, e.g., inertial particle clustering,3 mixing in combustion,4 and
extreme acceleration of fluid particles.5 The representative length scale
and timescale are, respectively, the Kolmogorov length scale g and the
Kolmogorov timescale sg. Jim�enez et al.1 found that the typical diame-
ter of the tubes is about 10g. In turbulence modeling, such as large-
eddy simulation, the influence of the vortices is statistically modeled
without resolving the scales in the dissipation rage.

Machine learning in fluid dynamics is an active rapidly evolving
and promising field. For reviews, we refer to Refs. 6–8. The increasing
power and capabilities of machine learning approaches can provide
benefit to, in particular, computational fluid dynamics. Computationally

expensive direct numerical simulation (DNS) computations may
thus be reduced or even avoided in the near future by training neural
networks with the available turbulent flow data.9,10 The application
of machine learning covers, e.g., extraction of flow features, turbu-
lence modeling, super-resolution (SR) of unresolved flows, and time
evolution of flows. Among various applications, we focus in the fol-
lowing on SR and predicting the time evolution of flows.

SR is not limited to improve the resolution of images.11 Dong
et al.12 proposed a deep-learning SR method by using convolutional
neural networks (CNN), which learn the local area of flow structure
via convolution filters. SR using two-dimensional (2D) CNN has been
applied to turbulence: 2D freely-decaying homogeneous turbulence,13

urban turbulence,14 three-dimensional (3D) forced homogeneous iso-
tropic turbulence (e.g., Refs. 15 and 16), and 3D turbulent channel
flows (e.g., Refs. 15 and 16). Liu et al.15 trained velocity fields and
showed that the SR using a time series of the coarse-grained data as an
input is able to reconstruct turbulent statistics better than the SR using
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a single time input data. Generative adversarial networks (GAN) were
introduced by Ledig et al.17 The learning by GAN progresses such that
the probability density function (PDF) of the generated data is well
superimposed on that of the correct data, and therefore, GAN can well
reconstruct the statistics of the correct data. SR based on an unsuper-
vised learning model using a cycle-consistent GAN (CycleGAN)18 has
been proposed in Kim et al.16 and applied in the context of homoge-
neous isotropic turbulence and turbulent channel flow. They trained
2D slices of velocity fields and showed that SR using the CycleGAN
well preserves the statistics of velocity and vorticity. G€uemes et al.19

use a 2D GAN for SR of turbulent velocity fields in channel flows and
proposed a downsampling factor normalized by the wall-unit quanti-
ties in the estimate of the SR of channel turbulent flows. Yousif et al.20

proposed a GAN-based model for reconstructing 3D turbulent velocity
fields from velocity data in 2D planes. Asaka et al.21 developed an SR
method using wavelets and 3D CNN. They showed that the SR of the
coarse-grained vorticity field reproduces the vortex tubes much better
than that of the coarse-grained velocity for homogeneous isotropic tur-
bulence. Applying wavelets to the flow fields yields a sparse multireso-
lution representation and thus well reduces the number of degrees of
freedom of turbulence at all scales, in particular, at the scales in the dis-
sipation range. The wavelet transform well catches the information of
position and scale of the fields and thus reflects spatial locality and
neighboring relationships.

For a review of machine learning-based SR reconstruction for
vortical flows, we refer to Ref. 22. Recently, Refs. 23–25 have developed
SR reconstruction from data observed at sparsely distributed positions
in physical space using computational and experimental fluid dynamic
data. Yousif et al.26 combined a transformer27 with an SR GAN28 for
predicting velocity fields of a spatially developing turbulent boundary
layer.

As expected, the quality of SR becomes worse when the input
data get coarser. We, however, anticipate that the training of time evo-
lution of the vortex tubes can be a key to improvement for the SR of
the vortex tubes. Using DNS of homogeneous isotropic turbulence,
Yoshida et al.29 showed that the time evolution of the DNS data of
small-scale eddies at scales kg� 0:2 is perfectly regenerated from the
DNS data of larger-scale eddies at scales kg� 0:2 after some transient
time, if the latter are assimilated at each time step. Here, k is the modu-
lus of the wavenumber.

Hasegawa et al.30,31 developed a method for predicting flow time
evolution, using reduced order modeling together with 2D CNN, long
short-term memory (LSTM), and autoencoder for 2D flows past a cyl-
inder. LSTM is a neural network that learns stored information over
extended time intervals by recurrent backpropagation.32 In autoen-
coders, the encoder reduces the data size, while the decoder recon-
structs the data.33 The method was extended to 3D turbulent channel
flows.34 The use of convolutional autoencoders, 3D CNN with LSTM
was proposed by Mohan et al.35 for different turbulent flows including
3D homogeneous isotropic turbulence. Shanker et al.36 developed a
method for predicting the time evolution of 3D homogeneous isotro-
pic turbulent flows, utilizing continuous neural ordinary differential
equations, which was proposed by Chen et al.37 instead of LSTM.
Guastoni et al.38 developed proper orthogonal decomposition (POD)
based machine learning for the 3D turbulent channel flow and well
predicted the coefficients of POD modes near the wall region. Lucor
et al.39 proposed physics-informed neural networks for modeling

turbulent convection. These studies train representative quantities at
the scales in the energy containing range, such as velocity and temper-
ature fluctuation. The degree of freedoms in small scales are much
reduced in the learning. Mohan et al.40 proposed a deep-learning
model of large and inertial scale dynamics in turbulence by using
wavelet thresholding instead of the autoencoder. Peng et al.41 intro-
duced a linear attention based model, which is coupled with Fourier
neural operators42 for 3D homogeneous isotropic turbulence. The
model is trained with vorticity fields at a relatively low Taylor micro-
scale Reynolds number of 30 and showed reasonable agreement
between their predicted results and the correct data for several large-
eddy turnover times. This method is further developed for turbulence
modeling in Li et al.43

In this paper, we propose a machine learning method using
orthogonal wavelets to predict the time evolution of vorticity fields in
3D homogeneous isotropic turbulence, which is one of the most
canonical turbulent flows while preserving vortex tubes. To this end,
we combine 3D CNN and LSTM techniques in a concise way to design
our machine learning approach, and we train coarse-grained vorticity
fields. We here use linear wavelet projection, not wavelet thresholding,
such that we can track the time evolution of turbulence in wavelet
space without the use of an adaptive wavelet basis for data compres-
sion. Orthogonal wavelets are suitable for representing turbulent flow
fields, which are multi-scale and intermittent. Coherent vortex tubes
can thus be efficiently retained in wavelet space.44,45 The training and
test data are obtained by the DNS of homogeneous isotropic turbu-
lence. The wavenumber where its enstrophy spectrum hits the maxi-
mum is sufficiently larger than the maximum wavenumber in the
large-scale external forcing range. We assess the proposed wavelet-
based method of flow prediction by using, e.g., visualization, PDFs of
vorticity, and enstrophy spectra. Furthermore, we apply the pre-
trained machine learning model to SR in order to predict small-scale
vorticity from a coarse-grained vorticity at a given time instant and
assess the results.

The remainder of the manuscript is organized as follows. In Sec.
II, we describe the DNS of homogeneous isotropic turbulence. We
summarize the orthogonal wavelet representation in Sec. III. In Sec.
IV, we show a machine learning method for the time evolution of vor-
ticity in homogeneous isotropic turbulence. The method is based on
wavelet projection of the vorticity. The prediction by the machine
learning is then assessed in Sec. V. An application of the pre-trained
model to SR is given in Sec. VI. Finally, conclusions are drawn in Sec.
VII.

II. DIRECT NUMERICAL SIMULATION

For our machine learning, we use the data of 3D incompressible
homogeneous isotropic turbulence obtained by DNS in a periodic
domain X ¼ ½0; 2p�3. The turbulent dynamics is governed by the
Navier–Stokes equations

@u
@t

þ ðu � rÞu ¼ � 1
q
rpþ �r2uþ f ; (1)

where the velocity field is divergence free, r � u ¼ 0. Here, uðx; tÞ
denotes velocity, pðx; tÞ denotes pressure, f ðx; tÞ is the external forc-
ing, q is the constant density, � is the constant kinematic viscosity, t is
time, x ¼ ðx; y; zÞ, and r ¼ ð@=@x; @=@y; @=@zÞ. To simplify
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notation, the arguments x and t are omitted when useful. The spatial
mean velocity of u is set to zero.

DNS has been carried out using a Fourier spectral method and a
fourth-order Runge–Kutta scheme for time integration. Aliasing errors
are removed by a phase shift method and a spherical cutoff filter. Only
Fourier modes satisfying k <

ffiffiffi
2

p
ng=3 are retained, where k ¼ jkj, k is

the wave vector, and ng denotes the number of grid points in each
Cartesian direction. The kinematic viscosity is set to � ¼ 2:3� 10�3.
The initial field of the DNS at t¼ 0 is a divergence-free random veloc-
ity field whose energy spectrum / k2 expð�k2=4Þ, and the spatial
average of energy per unit mass, denoted by E, is set to 0.5:
E ¼ ð1=2Þhjuj2i, where h�i ¼ ð2pÞ�3Ð

X � dx. For the forcing f , nega-
tive viscosity1 was used only for k< 2.5 such that the spatial average of
energy per unit mass, denoted by E, remains constant and equals 0.5.
The number of grid points n3g is 1283, and the time increment is
2:0� 10�3. The data size and the resulting Reynolds number of the
DNS are limited due to the memory requirement imposed by our
machine learning model (see Sec. IV).

Figure 1 shows the time development of the enstrophy Z, defined
as Z ¼ ð1=2Þhjxj2i, where x is vorticity. We can see that Z becomes
statistically quasi-stationary for t� 5. Time-averaged statistics of the
DNS are summarized in Table I. The average is obtained by using 250
snapshots at every 0.08 in the interval 10:00 � t � 29:92. The time-
averaged energy dissipation rate per unit density, denoted by ��, is the
time-average of 2�Z. The integral length scale L is defined as
L ¼ p=ð2u02Þ Ð kmax

0 ð1=kÞ�EðkÞdk, and u0 ¼ ffiffiffiffiffiffiffiffiffiffi
2E=3p

. Here, �EðkÞ is the
time-averaged energy spectrum in which the energy spectrum E(k) at
each time instant is obtained by EðkÞ ¼ ð1=2ÞP 0

kjûðqÞj2, where ûðkÞ
is the Fourier transform of uðxÞ, andP 0

k denotes the summation over
the spherical shell, k� 1=2 � jqj < kþ 1=2. The Kolmogorov micro-
scale g is defined as g ¼ ð�3=��Þ1=4. Thus, kmaxg � 1:16, where kmax is
the maximum wavenumber retained by the DNS. The Taylor micro-
scale Reynolds number Rk is defined by u0k=�, where
k ¼ ð15�u02=��Þ1=2.
III. WAVELET REPRESENTATION

We introduce the wavelet decomposition of a 3D vector field and
represent each component, vðxÞ 2 L2ðXÞ, as an orthogonal wavelet
series, where X ¼ ½0; 2p�3. The field is sampled on 2J grid points in
each Cartesian direction, where J corresponds to the number of octaves
in each space direction in the domain (e.g., J¼ 7 for 128 grid points).

The wavelet functions wl;j;iðxÞ yield an orthogonal basis at scale 2�j,
where lð¼ 1;…; 7Þ denotes directions and i ¼ ðix; iy; izÞ position.
The scaling function at scale 2�j is denoted by /j;iðxÞ. The fast wavelet
transform (FWT) is used to compute the wavelet coefficients from the
field and the inverse fast wavelet transform (IFWT) to reconstruct the
field from the wavelet coefficients, which in some cases, e.g., for
coarse-graining, are filtered. The computational complexity of FWT
and IFWT is Oð23JÞ. Similar to previous work by Refs. 44 and 45, we
use Coiflet 12 wavelets that have a filter length of 12, four vanishing
moments, and compact support. We use here PyWavelets46 in which
the Coiflet 12 wavelets are denoted by “coif2.”

The field vðxÞ can then be decomposed into an orthogonal wave-
let series, applying either a periodization or a folding technique,47 the
latter in the case of subcubes

vjðxÞ ¼ vj�1ðxÞ þ wj�1ðxÞ; (2)

where

vjðxÞ ¼
X2j�1�1

i1 ;i2;i3¼0

hv;/j;ii/j;iðxÞ; (3)

and

wjðxÞ ¼
X7

l¼1

X2j�1�1

i1;i2 ;i3¼0

hv;wl;j;iiwl;j;iðxÞ; (4)

where h�; �i denotes the L2-inner product, defined as
hg1; g2i ¼ ð2pÞ�3Ð

Xg1ðxÞ g2ðxÞdx. Note that vJ ¼ v; v0 ¼ hvi and
j ¼ 1;…; J . As the wavelets have vanishing moments, including their
mean value, we have hwji ¼ 0. The wavelet and the scaling coefficients
are given, respectively, by hv;wl;j;ii and hv;/j;ii. At scale 2�j, we have
23j scaling and 7� 23j wavelet coefficients. We recall that the flow
fields satisfy periodic boundary conditions.

IV. MACHINE LEARNING APPROACH

We develop a methodology for predicting the time evolution of
the vorticity of 3D homogeneous isotropic turbulence, combining 3D
CNN, LSTM, and orthogonal wavelet analysis, denoted by WCNN-
LSTM here. In the following, we describe the training data and its
preprocessing in Sec. IVA and then present the procedure of WCNN-
LSTM in Sec. IVB. In Sec. IVC, we describe the test data and the out-
put data.

A. Training data

We use 205 snapshots of the DNS data at every time interval Ds
in 10:00 � t � 26:32 in our machine learning, where Ds ¼ 40Dt. The
time step of the DNS is Dt ¼ 2:0� 10�3, and here, Ds is about half ofFIG. 1. Time development of the enstrophy Z of the DNS.

TABLE I. Time-averaged statistics of the 250 snapshots of the DNS data at
t ¼ 10þ 0:08n ðn ¼ 0;…; 249Þ. The interval 0.08 is about 0:5sg and 0:17T . Here,
T is a large-eddy turnover time defined by L=u0, and sg is the Kolmogorov timescale
defined by ð�=��Þ1=2.

�� L g T sg Rk

8:57� 10�2 1.21 1:94� 10�2 0.476 0.164 91.9
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the Kolmogorov time sg, i.e., Ds � 0:5sg. The spatial resolution of the
DNS data is 1283 grid points, as mentioned in Sec. II. The time correla-
tion of vorticity is defined as hxðx; tÞ � xðx; t þ DsÞi=½hjxðx;
tÞj2ihjxðx; t þ DsÞj2i�1=2 � 0:81, and the correlation is obtained by
the time-average of the snapshots. Sequential six vorticity fields at
every time interval Ds at t ¼ tðiÞ0 þ nDs ðn ¼ �4;�3;…; 0; 1Þ are
randomly chosen. Here, our batch size is 4, and tðiÞ0 ði ¼ 1; 2; 3; 4Þ is an
initial time of each set labeled by ðiÞ. The five fields for n � 0 are used
as input data, while one field for n¼ 1, i.e., at t ¼ tðiÞ0 þ Ds, is used as
its correct data. We here use wavelet projection for the compression of
the DNS data. Each snapshot is decomposed into a 3D orthogonal
wavelet series applying the FWT with periodic boundary conditions,
decomposing only one level. We then obtain wavelet coefficients in
seven directions and the scaling coefficients at the coarser scale 2�Jþ1.
Here, we have J¼ 7. The sampled values of vðxÞ are well approximated
by the scaling coefficients weighted by 23J=2 at scale 2�J .47 Our
machine learning model trains the weighted coefficients. In the case of
Haar wavelets, the projection corresponds to the application of a box
filter, while for Coiflet 12, the projection corresponds to a more sophis-
ticated low pass filter.

B. Machine learning model

We illustrate the procedure of our machine learning model
WCNN-LSTM in Fig. 2. The training scheme is implemented using
the TensorFlow open-source library48 together with the Python 3.6.8
interaction interface. We use ConvLSTM3D layer, LayerNormalization
(LN), and Conv3D layer (keras.io) for 3D CNN and LSTM. Our
machine learning model has seven layers: one input layer, five middle
layers, and one output layer. The first layer is the input layer, while the
seventh layer is the output layer. In the middle layers, we use filters that
are 3D kernels with their sizes being 3� 3� 3 in order to catch local

features of the turbulence data. The second layer is the ConvLSTM3D
layer having 128 filters. The third and the fifth layers are LN layers, i.e.,
for layer normalization. The fourth and the sixth layers are Conv3D
layers having 48 and 3 filters, respectively. Zero-padding is employed at
each layer to keep the size of the output data being the same as those of
the input data. As the activation functions for the Conv3D layer, we
use the linear function. For LSTM, we use tanh as the activation func-
tion and sigmoid as the recurrent activation function. The adaptive
moment estimation optimizer, called Adam optimizer,49 is used. The
number of epochs is set to 200. The error is measured by the use of a
loss function, where the mean-absolute is the difference between the
output data and the correct data. Figure 3 shows a plot of the loss and
the validation loss as a function of the epochs. The optimal parameters
in the model are determined by using modelcheck such that the valida-
tion loss is the smallest in epoch considered here. Our learning follows
this procedure 15 times, and then, we get 15 possible models. Each
model predicts its output data, using the remaining training data that
are not used in the learning of the 15 possible models. In the following,
we select the model where the absolute value of the mean of the output
data is the lowest. Note that for the DNS data, the spatial average, i.e.,
the mean of vorticity x vanishes, hxi ¼ 0. The output of TensorFlow
and the code of this machine learning is open access and can be found
on GitHub https://github.com/KYoshimatsu/WCNNLSTM.git.

C. Test data and output data

The flow prediction procedure is detailed in the following.
First, we use five vorticity fields obtained by the DNS at time instants,
t ¼ t̂ þ nDsðn ¼ �4;�3;�2;�1; 0Þ as input data, and predict the
field at t ¼ t̂ þ nDs with n being positive. Our test data are five DNS
snapshots in the interval 29:60 � t � 29:92 for each Ds. Here, t̂ is a
starting time, and we set t̂ to 29.92.

FIG. 2. Illustration of the structure of the machine learning model, WCNN-LSTM.
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Our model predicts the scaling coefficients at scale 2�Jþ1 (J¼ 7)
and at time t ¼ t̂ þ Ds. We then apply IFWT to the coefficients to get
the output vorticity data at t ¼ t̂ þ Dsð¼ 30:0Þ in physical space,
while the wavelet coefficients at scale 2�Jþ1 are set to zero. The output
data in physical space satisfy periodic boundary conditions. The input
data in the next step are four vorticity fields of DNS at t ¼ t̂
þnDs ðn ¼ �3;…; 0Þ and the field predicted by WCNN-LSTM at
t ¼ t̂ þ Ds. Then, we predict the vorticity field at t ¼ t̂ þ 2Ds, using
the same procedure as what we have used in getting the output data at
t ¼ t̂ þ Ds. We apply this procedure step by step. The input data in
the ‘-th step with ‘ 2 N are the data at t ¼ t̂ þ nDsðn ¼ �5
þ‘;…; ‘Þ. The data for positive n are the predicted data obtained by
WCNN-LSTM at the previous steps, while the data for n � 0 are the
test data. We took another set of DNS data with different t̂ and con-
firmed that we got results that are qualitatively similar to those shown
in Sec. V.

V. MACHINE LEARNING RESULTS OF VORTICITY
EVOLUTION

In this section, we verify and estimate our WCNN-LSTM flow
prediction, using visualization of vorticity and turbulence statistics.
Figure 4 presents the visualization of the modulus of vorticity jxj for
the DNS data and the predicted data by WCNN-LSTM at
t ¼ t̂ þ nDs ðn ¼ 1; 4; 6, and 8Þ. Here, we denote the predicted data
for simplicity by ML. Isosurfaces satisfying jxj ¼ xm þ 2:5xr with
1283 grid points are shown, where xm and xr are, respectively, the
mean and standard deviation of jxj of the DNS data at each time
instant. We find that the pronounced vortex tubes are well preserved
by ML, though we can see some discrepancy between the tubes
obtained by DNS and by ML. The tubes predicted by ML are less
intense compared to those obtained by DNS. To look at the vorticity
obtained by the DNS and ML in detail, we visualize one vorticity com-
ponent, xx, in an x – y plane at different time instants in Fig. 5. We
can see that the ML vorticity excellently agrees with the DNS vorticity
at n¼ 1. However, the discrepancy between the vorticity fields
obtained by DNS and by ML seems to become larger with increasing

time, as is expected. It is to be noted that owing to the flow sensitivity
of turbulence, small discrepancy between two statistically identical tur-
bulent flows at a given time instant grows in time.

Table II presents the enstrophy Z at five time instants for the ML
data in comparison with Z for the DNS data and for the coarse-
grained data at scale 2�Jþ1. The latter is hereafter denoted by CG1. We
can see that the enstrophy Z for the ML data well agrees with Z for
the DNS at each time instant within the difference ranging from about
10% to 14%. The difference increases with time t̂ þ nDs. The reason is
mainly attributed to the wavelet projection at scale 2�Jþ1 necessary for
getting CG1 data. We recall that before applying the IFWT, the wavelet
coefficients at scale 2�Jþ1 are set to zero inWCNN-LSTM. The enstro-
phy Z of the ML data agrees with Z of the CG1 data much better than

FIG. 4. Visualization of the isosurfaces of jxj at jxj ¼ xm þ 2:5xr at each time
instant. Here, xm and xr are the mean value and the standard deviation of the cor-
responding vorticity modulus jxj for the DNS data, respectively: (left) DNS data
and (right) ML data, which are our predicted data, at t ¼ t̂ þ ns ðn ¼ 1; 4; 6,
and 8Þ.

FIG. 3. Epoch-dependence of the loss and validation loss in WCNN-LSTM.
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FIG. 5. Visualization of the vorticity components xx on an x – y plane: (left) DNS data and (right) ML data at t ¼ t̂ þ ns ðn ¼ 1; 4; 6, and 8Þ.
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Z of DNS. Table III gives the energy E for the ML data. We can see
that E of the DNS is well reproduced by the ML at each time. The dif-
ference of E between the ML data and DNS data ranges between 4%
and 12%. The velocity fields of the data are obtained from the pre-
dicted vorticity x by using the Biot–Savart law: u ¼ �r�2ðr � xÞ.

We show the PDFs of the x-components of vorticity xx and veloc-
ity ux at different time instants in Fig. 6. In Fig. 6(a), we can see that the
PDFs of xx for ML well overlap with those of xx for DNS at each time
instant. We observe some departure between the PDFs for ML and
DNS, especially in the stretched tails of the PDFs. The departure
becomes larger as time progresses. The PDFs for ML are narrower than
those for DNS, which implies that the vorticity predicted by ML is less
intermittent than that of DNS. In Fig. 6(b), we can see that at n¼ 1, the
PDF of ux for ML well overlaps with that for DNS. The PDFs are close to
a Gaussian distribution. At n¼ 6 and 8, we see that the PDFs for ML
depart from those of DNS. We omit the PDFs of the y and z-components
of vorticity and velocity because the observations are the same as in
the case of the PDFs of the x-components due to statistical isotropy.

In order to get deeper information of the ML data, we examine
small-scale flow topology. The topology can be characterized by the
second and the third invariants of the velocity gradient tensor.50,51

These invariants are, respectively, defined as Q ¼ �ð1=2ÞAijAji and
R ¼ �detðAijÞ, where Aij ¼ @ui=@xj and the Einstein summation
convention is used for the repeated subscripts. Here, we use the nota-
tion ðx1; x2; x3Þ ¼ ðx; y; zÞ. It is to be noted that Aii¼ 0 for DNS,
owing to the divergence-free condition. In our ML, Aii¼ 0 likewise
vanishes because we have used the Biot–Savart law for computing the
velocity fields for ML. Figure 7 shows isolines of the joint PDFs of Q
and R. The PDFs for DNS are tear-drop like, as reported in, e.g., Refs.
51 and 52. Figure 7(a) shows that the joint PDF of Q and R well agrees
with that of DNS at n¼ 1. We can see in Figs. 7(b) and 7(c) for n¼ 6,
8 that the isolines of the highest value 5� 10�3 in the joint PDFs for
ML are in fairly good agreement with those for DNS, though we can
also see some discrepancy between ML and DNS PDFs for the other
smaller isoline values. We omit the PDFs of Q and R for CG1 for brev-
ity because the PDFs for CG1 excellently agree with those for DNS.

Next, we analyze our ML data considering the enstrophy spec-
trum Z(k), which is defined as ZðkÞ ¼ ð1=2ÞP 0

kjx̂ðqÞj2 and we have
ZðkÞ ¼ k2EðkÞ, where E(k) denotes the energy spectrum. The reason

for selecting Z(k) is to catch the statistics in the dissipation range well.
Here, x̂ðkÞ is the Fourier transform of xðxÞ. We see in Fig. 8(a) that
the peak of Z(k) where the enstrophy spectra hit the maximum is
about 0.2, while the external force is imposed in kg� 0:05 (see Sec. II
and Table I). Hence, the peak departs from the forcing range. As Rk

increases implying that g becomes smaller, a forcing range departs fur-
ther from the peak (e.g., Ref. 2). Figure 8(a) shows that the enstrophy
spectra for ML are in almost perfect agreement with those of DNS. For
wavenumbers kg� 0:5, we observe some small discrepancy of Z(k)
between ML and DNS. We can see that the spectrum for CG1, the
coarse-grained data at scale 2�Jþ1, well overlaps with Z(k) for ML at
n¼ 1. This discrepancy can thus be attributed to the wavelet projection
where the wavelet coefficients at scale 2�Jþ1 are set to zero, as men-
tioned in Sec. IVB. We therefore conclude that the discrepancy is not
crucial. Figure 8(b) plots the energy spectra E(k) for ML and DNS. We
see that the spectra of ML excellently agree with those of DNS. The
observed differences for the enstrophy spectra Z(k) in kg� 0:5 are
much reduced for E(k). Therefore, the enstrophy spectra yield better
indicators for the verification of the machine learning prediction of
vorticity than the energy spectra.

In the LSTM flow prediction using an autoencoder and CNN,
Nakamura et al.34 show their predicted energy spectra in the high
wavenumber range near by the maximum wavenumber. These are

TABLE II. Time evolution of enstrophy Z for DNS data, CG1 data, and ML data at
time t̂ þ nDs (n ¼ 1; 4; 6; 8; and 10).

Z t¼ t1 t¼ t4 t ¼ t6 t ¼ t8 t ¼ t10

DNS 20.0 20.0 20.0 19.9 19.8
CG1 18.3 18.4 18.3 18.2 18.1
ML 17.9 17.9 17.5 17.2 17.1

TABLE III. Time evolution of energy E for ML data. The energy of the DNS is kept
constant at 0.5, as mentioned in Sec. II. In the CG1 data, E � 0:5 and therefore, we
omit them for brevity from TABLE III.

E t¼ t1 t¼ t4 t ¼ t6 t ¼ t8 t ¼ t10

ML 0.48 0.45 0.44 0.45 0.46

FIG. 6. PDFs of (a) the x-component of vorticity xx and (b) the x-component of
velocity ux. We here omit the PDF of xx for CG1 data at n¼ 1 because the PDF
well agrees with the counterpart of the DNS data.
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enhanced in comparison with the correct spectra for the turbulent
channel flow, i.e., they overpredict energy. This overprediction can
also be observed in Refs. 35 and 36 for the machine learning time evo-
lution prediction using an autoencoder of isotropic turbulence.

Finally, we examine the influence of the divergence of the vorticity
x for the ML data in which r � x 6¼ 0 in general, while for DNS, we
haver � x ¼ 0. The divergent part is given by nðkÞ ¼ fk � x̂ðkÞgk=k2
in k space. Figure 9 shows the spectra of this part NðkÞ given as
NðkÞ ¼ ð1=2ÞP 0

kjnðqÞj2. We can see that the influence of the diver-
gence is not crucial, in particular, at small scales. The values of NðkÞ at
large scale, kg� 0:05 for later times, are somewhat comparable to the
value of Z(k), about 25% of the magnitude of Z(k). However, this issue
can be overcome by using divergence-free biorthogonal wavelets.53,54

VI. APPLICATION OF WCNN-LSTM
TO SUPER-RESOLUTION

We now apply the pre-trainedWCNN-LSTM to regenerate vorti-
ces at an instant tsð¼ 30:0Þ from a given coarse-grained vorticity field
at ts. This can be regarded as a type of SR applied for recovering the
fine-scale flow evolution from coarse-scale predicted flow data. A key
quantity for the degree of the coarse-graining is the normalized wave-
number kcg, where the larger scale data are almost or completely kept
for k� kc, while the smaller scale data are almost or completely lost
for k� kc. One can expect that SR becomes more difficult for decreas-
ing kcg.

FIG. 7. Joint PDFs of Q and R for DNS and ML at (a) n¼ 1, (b) n¼ 6, and (c)
n¼ 8. The contour lines for DNS and ML are denoted by the red dashed lines and
the blue solid lines, respectively. The contour lines for all cases are set to
10�4; 10�3, and 5� 10�3, starting near the origin. The green dotted lines repre-
sent 27R2=4þ Q3 ¼ 0.

FIG. 8. (a) Enstrophy spectra Z(k) and (b) the energy spectra E(k) at different time
instants (t ¼ t0 þ ns; n ¼ 1; 6; 8) for the ML data (symbols) and the DNS data
(lines).
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A. Coarse-grained input data

We first obtain a coarse-grained vorticity field from the DNS
data. We apply an FWT, remove the wavelet coefficients at scales
2�Jþ2 and 2�Jþ1, and then reconstruct the flow field from the scaling
coefficients at scale 2�Jþ2 using an IFWT at scale 2�J . We call the
obtained coarse-grained vorticity CG2. We confine ourselves to the
same DNS data as those used in our machine learning in Sec. IV, tak-
ing the same periodic boundary conditions imposed on the DNS, as
well as the memory limitation into account. The DNS has been com-
puted at resolution 1283 and kmaxg � 1:16, as described in Sec. II.
Thus, we have J¼ 7, and the CG2 field lost the data for kg� 0:3. It is
to be noted that the regeneration of vorticity from this type of fields is
not learned by our machine learning. We then use the SR method
developed by Asaka et al.21 using wavelets, subcube division, and 3D
CNN. We call the method WCNNSR here. WCNNSR learns the five
snapshots of the DNS data of vorticity at 1283 grid points from the
training data, which are described in Sec. II. The data at each time
instant are divided into 64 subcubes with 323 grid points in physical
space. The subcube data are then transformed in wavelet space using
Coiflet 12 wavelets at one level by imposing symmetric boundary con-
ditions on the subcubes, the so-called folding technique. In
PyWavelets,46 the boundary condition requires five extra elements of
the array in each direction, and thus, the size of each subcube becomes
finally 8� 213 in the wavelet space. Figure 10 shows the losses in the
WCNNSR as a function of epoch.

We now apply the WCNNSR to the CG2 data at t ¼ ts ¼ 30:0,
and then we use the resulting data as an input data. The CG2 data are
much coarse-grained for WCNNSR, and therefore, WCNNSR does
not recover the small-scale flow contributions at least visually well. It is
to be noted that the DNS data at t¼ ts are not our training data in the
WCNNSR and the WCNN-LSTM. Figure 12 shows the isosurfaces of
jxj for DNS, the coarse-grained data CG2, the predicted data using
WCNN-LSTM including SR (ML), and SR applied to CG2 only
(WCNNSR). The visualization for the DNS data is the same as the
DNS at n¼ 1 shown in Fig. 4. The vorticity tubes observed in the DNS
are not well retained in CG2 due to the coarse-graining. We can see
some fragmentation of the tubes in CG2. In contrast, applying SR to

CG2 using WCNNSR, which is denoted by WCNNSR for simplicity,
we can observe that some tubes regenerated, however, much fewer
than in DNS. Moreover, the degree of coarse-graining of the
WCNNSR data is almost the same as the CG2 data, as shown in
Sec. VIC. Therefore, the WCNNSR data are expected to be likewise
suitable as input data for WCNN-LSTM. Asaka et al.21 reported that
the WCNNSR method works well for less coarse-grained input data at
higher Rk. A result of WCNN-LSTM of the CG2 data without
WCNNSR is presented in Appendix.

B. Procedures of super-resolution using WCNN-LSTM

Figure 11 illustrates our SR procedure using the pre-trained
WCNN-LSTM, introduced in Sec. IVB. Our input data are four empty
data sets whose values are zero for pseudo-time instants ts þmDs
(m ¼ �4;�3;�2;�1) together with the predicted vorticity data
obtained by WCNNSR at time ts, where Ds � 0:5sg. We have chosen
the four empty data sets such that the influence of the input data at the
instants given by negative indices m on the SR at ts can be reduced.
WCNN-LSTM predicts the scaling coefficients of vorticity at scale
2�Jþ1 and at time ts þ Ds. Using the FWT with periodic boundary
conditions, we decompose them into the scaling coefficients at scale
2�Jþ2 and the wavelet coefficients at scale 2�Jþ2. Then, we copy the
scaling coefficients at scale 2�Jþ2 of the input WCNNSR data at ts to
the scaling coefficients at scale 2�Jþ2, which have been obtained in the
above decomposition. Therefore, the information corresponding to the
wavelet coefficients at scale 2�Jþ2 evolves in our SR results. Afterward,
using the IFWT, we obtain the output data in physical space at
ts þ Ds. They are then used as input data in the next step, in addition
to three empty data sets at ts þmDs (m ¼ �3;�2;�1) and one
WCNNSR data at ts. We obtain the output data at ts þ 2Ds. The input
data in the ‘-th step are the data ts þmDs (m ¼ �4þ ‘;�3þ ‘;
�2þ ‘;�1þ ‘), where ‘ 2 N. The data at negative indices m are
empty, the data at m¼ 0 are the WCNNSR data, and the data at posi-
tive indices m are predicted by the WCNN-LSTM, with the above-
mentioned copy of the scaling coefficients at scale 2�Jþ2 of the
WCNNSR data. The data at ts þ ‘Ds are obtained by the same

FIG. 10. Epoch-dependence of loss and validation loss in WCNNSR.

FIG. 9. The divergence spectra NðkÞ of the vorticity for the ML data. The enstrophy
spectrum Z(k) for the DNS data at n¼ 1 is plotted as a reference.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 025120 (2024); doi: 10.1063/5.0185165 36, 025120-9

Published under an exclusive license by AIP Publishing

 09 February 2024 18:13:36

pubs.aip.org/aip/phf


procedure described above. Eventually, we get the output data in phys-
ical space using IFWT with the periodic boundary conditions at each
pseudo-time instant.

C. Results of the super-resolution

Now, we verify the SR using the WCNN-LSTM to recover fine-
scale information of the flow. Figure 12 shows the isosurfaces of vortic-
ity magnitude jxj. ML denotes the visualization for the SR of the
WCNNSR result, by using the WCNN-LSTM. The ML results seem to
well preserve most of the positions of the tubes in DNS, though we can
observe some differences between the visualizations of DNS and ML:
the isosurfaces of DNS are smoother than those of ML. Figure 13 visu-
alizes xx on an x – y plane. We can see that ML reproduces the vortic-
ity distribution of DNS well, though there are again some differences
between ML and DNS looking at details. Table IV shows the enstrophy
Z for DNS, CG2, WCNNSR, and ML. The enstrophy Z for ML is
comparable to Z for DNS, while the other values for CG2 and
WCNNSR data are much reduced.

We move on to the statistics of small-scale quantities. Figure 14
gives a plot of PDFs of xx for the different fields. We observe that the
PDFs for WCNNSR and CG2 are much narrower than the PDF for
DNS. We can also see that the PDF of ML becomes wider as the
pseudo-time progresses. We find that the PDF of ML atm¼ 4 (orange
line) is in good agreement with that of DNS, though the former is
somewhat narrower than the latter. In Fig. 15, we compare the joint
PDFs of the second and the third invariants of the velocity gradient
tensor, Q and R, for WCNNSR and ML (m¼ 4), with those of DNS.
We can see that the PDFs of WCNNSR and ML well agree with the
joint PDF of DNS. The departure from the DNS results can be seen
only at the smallest isoline value, 10�4.

FIG. 11. SR method based on the pre-trained WCNN-LSTM.

FIG. 12. Visualization of isosurfaces of jxj at jxj ¼ xm þ 2:5xr for the DNS
data at t¼ ts, the CG2 data at t¼ ts, the SR data obtained by WCNN-LSTM, which
is denoted by ML, at m¼ 4, and the WCNNSR data at t¼ ts. Here, xm and xr are
the mean value and the standard deviation of jxj for the DNS data, respectively.
The grid resolution is 1283.
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To get deeper insight into the small scales, we examine the ens-
trophy spectra Z(k). In Fig. 16, we can see that for CG2 and
WCNNSR, the enstrophy spectra are much reduced for kg� 0:2. We
find that the degree of coarse-graining of the WCNNSR data is almost
the same as that of the CG2 data in terms of Z(k). The values of Z(k)
for ML for kg� 0:2 grow in the pseudo-time and almost saturate at
m¼ 3 and m¼ 4. We can see that Z(k) for ML at m¼ 4 excellently
agrees with that for DNS. We recall that we copy the scaling coeffi-
cients at scale 2�Jþ2 (J¼ 7) of the WCNN data to the output data every
pseudo-time instant in the SR method using the WCNN-LSTM pre-
diction. Therefore, the enstrophy spectra of ML are almost the same as

FIG. 13. Visualization of the vorticity components xx on an x – y plane for the DNS data at t¼ ts, the CG2 data at t¼ ts, the ML data at m¼ 4, and the WCNNSR data at
t¼ ts.

TABLE IV. Enstrophy of the DNS data at t¼ ts, the CG2 data at t¼ ts, the ML data
at m¼ 4, and the WCNNSR data at t¼ ts.

DNS CG2 WCNNSR ML

Z 20.0 13.1 14.4 19.4
FIG. 14. PDFs of xx for DNS, ML (m¼ 1, 3, 4), WCNNSR, and CG2.
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Z(k) for WCNNSR for kg� 0:2. Figure 17 shows the divergence spec-
tra of the vorticity for ML. This confirms that the influence of diver-
gence is not crucial.

VII. CONCLUSIONS

We have developed a wavelet-based machine learning method
(WCNN-LSTM) for predicting the time evolution of vorticity for
homogeneous isotropic turbulence where vortex tubes are preserved.
To this end, we combined two neural network architectures, 3D CNN
and LSTM. The latter permits learning the time evolution, while the
former trains the network to reproduce not only the turbulent flow but
also the pronounced and well-localized vortex tubes. We have used
compactly supported orthogonal wavelets. By construction, wavelets
well catch the information of position and scale of the fields. The wave-
lets efficiently represent multi-scale and intermittent fields, here turbu-
lent vorticity fields exhibiting vortex tubes.44,45 The fast wavelet
transform and its inverse allow switching rapidly between physical
space and wavelet coefficient space. Wavelet projection is then used to
reduce the size of the input data. Therefore, the projection reduces the
memory required for learning. We applied the developed WCNN-
LSTM to DNS data of homogeneous isotropic turbulence in a ð2pÞ3
periodic box at the Taylor microscale Reynolds number 92 computed
at resolution 1283 and kmaxg � 1:16. The dimensionless wavenumber
kg where the enstrophy spectra hit the maximum is about 0.2, while
the external force is imposed in kg� 0:05. The results predicted by
WCNN-LSTM have been assessed in comparison with the DNS data.
The predicted fields satisfy periodic boundary conditions by using the
IFWT. Visualization of isosurfaces of vorticity magnitude showed that
vortex tubes are well retained in the WCNN-LSTM flow prediction.
The PDFs of vorticity and velocity, which are predicted by WCNN-
LSTM, well agree with those of the DNS data at time instants larger
than 3sg, where sg is the Kolmogorov timescale, The flow topology
characterized by second and third invariants of the velocity gradients
is likewise well retained by WCNN-LSTM. We employed the enstro-
phy spectra to get deeper information into the dissipation range. We
observed that the predicted enstrophy spectra well agree with those for
the DNS. The influence of the divergence of the predicted vorticity was
shown to be negligible. As expected, we found that the enstrophy

FIG. 15. Joint PDFs of Q and R for (a) DNS and WCNNSR and for (b) DNS and
ML (m¼ 4). The contour lines for DNS, WCNNSR, and ML are denoted by the red
dashed lines, the black solid lines, and the blue solid lines, respectively. The con-
tour lines for all cases are set to 10�4; 10�3, and 5� 10�3, starting near the ori-
gin. The green dotted lines represent 27R2=4þ Q3 ¼ 0.

FIG. 16. Enstrophy spectra Z(k) vs kg for DNS, ML (m¼ 1, 3, 4), WCNNSR, and
CG2.

FIG. 17. The divergence spectra NðkÞ vs kg for ML (m¼ 1, 3, 4). The enstrophy
spectrum Z(k) of the DNS data at ts is plotted as a reference.
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spectra are more suitable than the energy spectra for the verification of
machine learning prediction of vorticity.

Then, we applied our pre-trained WCNN-LSTMmodel to the SR
of a coarse-grained vorticity of the DNS data at a time instant ts. The
information at kg� 0:2 is much reduced in the coarse-grained data,
and the vortex tubes of the DNS data at t¼ ts are lost in the coarse-
grained vorticity. We showed that the vortex tubes are well regenerated
from the coarse-grained vorticity by the SR, though the previously
developed wavelet-based SR model at a time instant21 failed in the SR
of the coarse-grained vorticity. It is to be noted that the WCNN-LSTM
model was not trained to learn the regeneration. The vortex tubes are
visualized by using isosurfaces of the modulus of the vorticity. We can
see that the isosurfaces for the predicted vorticity well agree with those
of the DNS data, though the latter are smoother than the former.
Further improvement of the quality of SR using machine learning of
the time evolution of vorticity remains an interesting issue for future
studies.

Predicting the dynamics in the fully developed turbulent flow
with DNS is a costly endeavor because the number of degrees of
freedom increases approximately with R9=2

k . Machine learning of
turbulent flows thus requires much more memory and computa-
tional cost, as the Reynolds number increases. The memory and
cost could be reduced by the multi-level wavelet decomposition
with or without nonlinear wavelet filtering. In machine learning
based on the multi-level wavelet decomposition, the wavelet coeffi-
cients at each scale are learned, which means scale-by-scale machine
learning. In Farge et al.,55 coherent vortex simulation was proposed
to compute the time evolution of the coherent vorticity while
neglecting the influence of the incoherent flow to model turbulence
dissipation. The coherent vorticity consists of few intense wavelet
coefficients of vorticity, and the intense coefficients are extracted by
using wavelet nonlinear filtering.44,45 Tracking the time evolution of
the coherent vorticity in wavelet space while reducing the required
memory needs adaptive computation based on wavelets. The appli-
cation of the adaptive computation to the machine learning remains
an open issue. Moreover, the concept of time parallelization (e.g.,
Ref. 56) could be useful for the efficient learning longer time evolu-
tion of turbulence. We look forward to the parallelization of
machine learning that will resolve the present limitation of the GPU
memory and the computational time. It could also be interesting to
examine whether machine learning can reconstruct the time evolu-
tion of 3D turbulent flows from 2D slices of the flow. The prediction
of the time evolution of turbulence with different dynamics, e.g.,
inertial particles, can be interesting on the basis of Oujia et al.57,58

for synthesizing the preferential concentration of particles in isotro-
pic turbulence.
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APPENDIX: WCNN-LSTM WITHOUTWCNNSR

We shortly describe the SR of the CG2 data by using the
WCNN-LSTM without WCNNSR. This SR is here denoted by
SRCG2. We select the enstrophy spectra Z(k) here. The spectra pro-
vide good verification of the results in the dissipation range, as dis-
cussed in Sec. VI C. Figure 18 shows that Z(k) for SRCG2 at m¼ 4
takes somewhat larger values than the Z(k) of DNS at m¼ 4 for
kg � 0:4.

FIG. 18. Enstrophy spectrum Z(k) vs kg for SRCG2 at m¼ 4 together with the ens-
trophy spectra for DNS, ML at m¼ 4, and CG2.
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