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A B S T R A C T

We develop and analyze error estimators and mesh adaptation strategies within a discontinuous Galerkin
formulation. The basic idea of the study is to reduce the computational cost of the simulation by employing
mesh adaptation as a better alternative to the use of uniform grids. The novelty of the study resides in the use
of multiwavelets and how their remarkable properties may shed new light on driving the adaptation process.
This is motivated by the fact that multiwavelets break any input apart into a hierarchy of low resolution data
and subsequently finer details. Our error estimator makes use of multiwavelets’ properties while being local
to the element, thereby maintaining the parallel efficiency of the solver. Early tests on the one-dimensional
viscous Burgers equation have shown convincing results (García Bautista et al. [1]). This work is focused on
the laminar backward-facing step configuration to assess the performance of the method in higher dimensions.
1. Introduction

In the framework of the development of the CFD solver Aghora [2–
4], ONERA is working on the development of hp-adaptive high-order
discontinuous Galerkin methods (DGMs).

Finite volume methods (FVMs) have been extensively studied and
developed by the CFD community [5,6]. FVMs use piecewise constant
basis functions defined within the element. On the other hand, finite
element methods (FEMs) employ polynomial basis functions of differ-
ent orders with continuous global support. DGMs appear as a hybrid
alternative to the aforementioned methods: the basis functions are local
to each element while providing high-order accuracy.

Moreover, DGMs offer the possibility to efficiently adapt the spatial
resolution by either modifying the local mesh size (h-adaptation), the
local polynomial degree (p-adaptation), or both simultaneously (hp-
adaptation). In h-adaptation strategies, selected elements are divided
into smaller elements (h-refinement) or agglomerated into a larger
element (h-coarsening). On the other hand, p-adaptation approaches
increase (p-enrichment) or lower (p-coarsening) the degree 𝑝 of the
polynomial approximation in marked elements. In hp-adaptation meth-
ods, an hp-decision algorithm selects the most appropriate adaptation
strategy (h- and/or p-) to be adopted for each element. Smooth regions
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in the solution promote p-adaptation, whereas regions featuring locally
steep gradients (e.g. shocks and boundary layers) are better captured
using h-adaptation. Overall, the process should maintain at least the
same accuracy than the uniformly refined grid (for the same minimum
mesh size), yet for a lower number of degrees of freedom (DOFs).

With this in mind, Naddei et al. [7,8] show the benefits of p-
adaptation, and how its use can considerably reduce the number of
DOFs for a given level of accuracy, compared to the use of a uni-
form approximation order. They compare the performance of different
refinement indicators on driving p-adaptation under various smooth
problems. In a later study, Naddei [9] presents an early assessment of
their applicability to h-adaptation for smooth flow simulations.

In this work, the focus is on h-adaptation strategies, and in particu-
lar on the formulation and implementation of multiwavelet -based error
estimators. Multiwavelets (MWs) belong to the broader field of mul-
tiresolution analysis (MRA) and they are a generalization of the classical
wavelets [10]. The theory of MRA refers to the possibility of repre-
senting some given finite energy data as fine-scale contributions and
a coarse scale approximation. The aggregation of the coarse scale and
the nested sequence of details yields the original data themselves. This
scale separation represents the main idea behind wavelets (scalar MRA
vailable online 1 March 2023
045-7930/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.compfluid.2023.105844
Received 29 October 2021; Received in revised form 8 August 2022; Accepted 27 F
ebruary 2023

https://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:javier.garcia_bautista@onera.fr
mailto:marta.de_la_llave_plata@onera.fr
mailto:vincent.couaillier@onera.fr
mailto:michel.visonneau@ec-nantes.fr
mailto:kai.schneider@univ-amu.fr
https://doi.org/10.1016/j.compfluid.2023.105844
https://doi.org/10.1016/j.compfluid.2023.105844
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2023.105844&domain=pdf


Computers and Fluids 256 (2023) 105844J. García Bautista et al.
theory) and likewise multiwavelets (vectorial MRA theory), according
to the terminology presented in Strela [11].

In the field of CFD, the natural step forward is for MRA to represent
the numerical solution of conservation laws. On a grid it is easy to
visualize how more and more details of the conserved quantities can
be extracted by refining the mesh until the flow field is fully resolved.
These details (also called wavelet coefficients) become negligibly small
in regions where the underlying solution is locally smooth. This means
that those regions can be captured by using a coarser grid without
significant loss of accuracy. On the other hand, regions with large mag-
nitude of wavelet coefficients (such as those presenting steep gradients
or discontinuities) may require finer grids. Consequently, the behavior
of these coefficients is a suitable measure for adaptivity and allows
error control. This idea emerges from the work of Harten [12], who
designed a cost-effective FVM flux evaluation based on MRA. However,
Harten’s original concept did not consider grid adaptation, and was
only applied to uniform grids.

A fully adaptive FVM approach based on MRA was later developed
in Müller [13,14] by explicitly using biorthogonal wavelets to represent
the numerical solution. In his work, Müller applies data compression
based on the values of the wavelet coefficients, which in return deter-
mine a locally refined grid. Roussel et al. [15],Domingues et al. [16]
and Deiterding et al. [17,18] follow another line of research which
relies in the recursive use of projection and prediction operators to
define the coarse and fine levels of the cell-averaged values of the
solution. These are all examples of the use of scalar MRA theory in
combination with the FVM to perform mesh adaptation.

The preceding MRA-FVM pairing developed by Müller has been
extended to the higher-order DGM framework by Hovhannisyan et al.
[19], Gerhard et al. [20,21], and Gerhard and Müller [22]. In this
case, the vectorial MRA theory arises as the natural choice. Multi-
wavelets can be easily combined with the DGM due to their flexibility
in matching the order of the approximation while keeping compact
support [23]. A similar MRA-DGM which further includes the operators
from the partial differential equation as part of the MRA representa-
tion was also developed independently by Shelton [24] and Archibald
et al. [25]. On a different line of research, the works of Vuik and
Ryan [26,27] and Vuik [28] combines the DGM and MWs for the
detection of shocks. All these studies employ the so called Alpert’s
multiwavelets [29,30], in which the MW bases are associated to scaled
Legendre polynomials. We will likewise employ this form of MWs in
our method, which will be later presented.

As discussed in the previous paragraph, in the MRA-DGM literature
the works of Hovhannisyan et al. [19], Gerhard et al. [20,21], and Ger-
hard and Müller [22] are representative examples of h-adaptation based
on multiwavelets. Their method intends to improve the efficiency of a
prescribed scheme based on a uniform (reference) grid by selecting a
refined adapted subgrid on which the calculations are performed, while
maintaining the accuracy of the reference solution [23]. The subgrid
selection is based on the behavior of the MW coefficients. Namely, a
cascade of scales is built from the DG solution on the reference mesh.
This representation sheds light on the local structure of the solution. In-
deed, the detail coefficients become small with incrementing resolution
level when the analyzed solution is smooth. Consequently, thresholding
may be used to perform local grid adaptation in those elements in
which the MW coefficients still maintain a significant value (refining),
and detect the regions where the regularity of the solution allows us
to decrease the local resolution while maintaining the desired level of
solution accuracy (coarsening). Following this philosophy, we obtain a
final mesh that corresponds to a compression of the DG solution.

This method, while soundly based on wavelet theory and accu-
rate [19], bears important constraints. Firstly, a solution on a uniformly
refined reference grid must be initially foreknown. Gerhard et al. [20]
describe how this solution is obtained. Even though the authors specify
that no computations have to be performed on the reference grid, they
2

do start from a solution based on that grid. Indeed, this is required
so that the adaptive multi-scale structure is defined and the relevant
information correctly captured. In the context of unsteady problems,
we believe that the authors refer to the fact that the reference solution
is used once at the initial time and the adapted subgrid from MRA
undertakes the computations for the following time steps. Secondly,
only grids which support uniform dyadic subdivisions of the elements
are allowed. In this case, the elements are split into sub-elements
of equal size and shape. This also includes construction of MWs on
triangles as presented by Yu et al. [31]. A possible exception is the
wavelet-free approach developed by Gerhard [23], which extends the
MRA to non-uniform grid hierarchies. However, the work of Gerhard
still retains the constraint of using an initial reference grid. Lastly,
parallelization may prove challenging due to the pyramidal structure
of the MRA technique.

To overcome these shortcomings, in the present work the multi-
wavelet analysis is performed locally within each element. By being
local to the element, adaptation can be applied by starting from a coarse
mesh. Besides, more general grids may also be used (not limited by
the strict translation and dilation properties of MWs) and the parallel
efficiency of the original DGM is conserved.

A requirement of this methodology is however to enrich the original
DG element-wise solution, so that the local multiwavelet expansion
may extract significant information. This is done by employing a re-
construction process involving the current element and its immediate
neighbors. Our approach shares similarities with the higher-order re-
construction scheme developed by Dolejší and Solin [32]. The MRA
decomposition is then locally performed on the post-enriched DG so-
lution. The resulting multiwavelet coefficients constitute the backbone
of an error estimator which will drive the adaptation process.

Therefore, the main goal of this work is to present a new error
estimator grounded on a local MW expansion of a DG solution which
is exposed to enrichment by a post-processing reconstruction. The
error estimator is first tested for the one-dimensional viscous Burg-
ers equation and then for a two-dimensional laminar flow over the
backward-facing step.

This work is organized as follows. In Section 2 the DGM is explained
for the general case of the 2-D compressible Navier–Stokes equations.
In Section 3 the theoretical background on multiwavelets in 1-D and 2-
D is presented. Moreover, the connection between the DGM and MWs
is established. Section 4 describes the structure of the h-adaptive DGM
based on multiwavelets. We start from the methodology used to enrich
the original DG solution and continue with the construction of the
local MRA hierarchy. Later, a detailed description of the evaluation of
the error estimators, the element marking, and refining strategies are
provided. We close this section with the description of the h-adaptive
algorithm developed in the study. Section 5 presents and discusses the
numerical results obtained for the 1-D Burgers equation and the 2-D
laminar backward-facing step flow at 𝑅𝑒 = 800 and 𝑀𝑎 = 0.1. Finally,
Section 6 closes the study with conclusions and perspectives for future
work.

2. Modal discontinuous Galerkin

In our work the one-dimensional viscous Burgers equation and the
two-dimensional compressible Navier–Stokes equations will be consid-
ered. This section presents the DGM in the context of the latter, as it is
the general case. The particular formulation of the 1-D viscous Burgers
equation is described in the Appendix.

Let 𝛺 ⊂ R𝑑 be a bounded domain, where 𝑑 is the spatial dimension.
Given appropriate boundary conditions on 𝜕𝛺 and in the absence
of source terms, these equations can be written under the general
expression
𝜕𝐮
𝜕𝑡

+ ∇ ⋅
(

 𝑐 (𝐮) −  𝑣 (𝐮,∇𝐮)
)

= 0 , ∀𝐱 ∈ 𝛺, 𝑡 > 0 , (1)

𝐮(𝐱, 0) = 𝐮0(𝐱), ∀𝐱 ∈ 𝛺 , (2)
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where 𝐮 is the state vector of conservative variables. The vectors 𝑐 ,
and 𝑣 are the convective and viscous fluxes, respectively.

The DGM is based on the discrete weak formulation of the problem
given in Eqs. (1)–(2). We now proceed to partition the domain 𝛺 into

shape-regular grid, 𝛺ℎ, formed by non-overlapping and non-empty
lements 𝐾 of characteristic size ℎ𝐾 . Interior and boundary faces in
𝛺ℎ are defined by 𝑖 and 𝑏, respectively, such that ℎ = 𝑖 ∪ 𝑏. We
search for approximate solutions in the function space of piecewise
polynomials 𝑝ℎ = {𝜙 ∈ 𝐿2(𝛺ℎ) ∶ 𝜙|𝐾 ∈ 𝑝(𝐾), ∀𝐾 ∈ 𝛺ℎ} with degree
at most 𝑝. Let (𝜙1

𝐾 ,… , 𝜙
𝑁𝑝
𝐾 ) ∈ 𝑝(𝐾) be a hierarchical and orthonormal

modal basis of 𝑝ℎ, with dimension 𝑁𝑝 = (𝑝 + 1)𝑑 . The element-wise
solution is then expressed as

𝐮ℎ(𝐱, 𝑡) =
𝑁𝑝
∑

𝓁=1
𝐔𝓁
𝐾 (𝑡)𝜙

𝓁
𝐾 (𝐱), ∀𝐱 ∈ 𝐾,𝐾 ∈ 𝛺ℎ,∀𝑡 > 0 , (3)

where the coefficients (𝐔𝓁
𝐾 )1≤𝓁≤𝑁𝑝 are the degrees of freedom (DOFs)

representing the solution in element 𝐾. In this work we will consider
Cartesian meshes and the basis, (𝜙𝓁

𝐾 )1≤𝓁≤𝑁𝑝 , corresponds to the Legen-
dre polynomials. A mapping is then established between physical and
reference space, 𝛺̂ℎ = [−1, 1]𝑑 . The variational form of Eq. (1) then
follows: find 𝐮ℎ in 𝑝ℎ such that ∀ 𝜙ℎ ∈ 𝑝ℎ, for each element 𝐾, we
have
𝜕
𝜕𝑡 ∫𝐾

𝐮ℎ𝜙ℎ d𝑉 + 𝑐 (𝐮ℎ, 𝜙ℎ) + 𝑣(𝐮ℎ, 𝜙ℎ) = 0 . (4)

The convective and viscous terms, 𝑐 and 𝑣 respectively, will be
described in the following sections. To that end, additional notation
is required: for a given interface in 𝑖, we define the average operator
{{

𝐮
}}

= (𝐮+ + 𝐮−)∕2 and the jump operator [[𝐮]] = (𝐮+ − 𝐮−)⊗ 𝐧, where
+ and 𝐮− are the traces of 𝐮 at the interface between elements 𝐾+ and
−, and 𝐧 represents the outward normal to an element 𝐾+.

.1. Compressible Navier–Stokes equations

We define 𝛺 ⊂ R2 with 𝐮 = (𝜌, 𝜌𝐯, 𝜌𝐸)𝑇 the vector of conservative
ariables. The velocity vector is given by 𝐯 = (𝑣1, 𝑣2)𝑇 , and 𝐸 =
𝑝

(𝛾−1)𝜌 + 𝐯⋅𝐯
2 represents the specific total energy. The static pressure, 𝑝,

is defined by the ideal gas law, 𝑝 = 𝜌𝑅𝑇 , and 𝛾 = 𝐶𝑝
𝐶𝑣
> 1 is the ratio of

pecific heats. The convective and viscous fluxes are then defined by

 𝑐 =
(

𝜌, 𝜌𝐯⊗ 𝐯 + 𝑝̄̄𝐈, (𝜌𝐸 + 𝑝)𝐯
)𝑇

, (5)

 𝑣 =
(

0, ̄̄𝜏𝜏𝜏, ̄̄𝜏𝜏𝜏 ⋅ 𝐯 − 𝐪
)𝑇 , (6)

where ̄̄𝜏𝜏𝜏 = 𝜇
(

∇𝐯 + (∇𝐯)𝑇 − 2
3 (∇ ⋅ 𝐯) ̄̄𝐈

)

represents the shear-stress ten-
or, in which 𝜇 is the dynamic viscosity as defined by Sutherland’s law.
astly, the quantity 𝐪 = −𝑘∇𝑇 is the heat-flux vector, with 𝑘 being the
hermal diffusivity.

The discrete variational form of the convective terms in Eq. (4) reads

𝑐 (𝐮ℎ, 𝜙ℎ) = ∫𝐾
 𝑐 (𝐮ℎ) ⋅ ∇𝜙ℎ d𝑉 + ∫𝜕𝐾∩𝑖

[[𝜙ℎ]] 𝐡𝑐 (𝐮+ℎ ,𝐮
−
ℎ ,𝐧) d𝑆

+ ∫𝜕𝐾∩𝑏
𝜙+
ℎ 𝑐

(

𝐮𝑏
)

⋅ 𝐧 d𝑆 , (7)

where the boundary values 𝐮𝑏 = 𝐮𝑏
(

𝐮+ℎ ,𝐮ext ,𝐧
)

, with 𝐮ext a reference ex-
ternal state, are computed so that the boundary conditions are satisfied
on 𝑏. The convective flux on an element face is approximated by the
numerical flux 𝐡𝑐 and it must satisfy the conditions of consistency and
conservativity [33]. The approximation of the numerical flux is fully
defined by the local Lax–Friedrichs flux (LLF), i.e. :

𝐡𝑐
(

𝐮+ℎ ,𝐮
−
ℎ ,𝐧

)

=
{{

 𝑐
(

𝐮ℎ
)

}}

⋅ 𝐧 + 1
2
𝛼LLF

(

𝐮+ℎ − 𝐮−ℎ
)

, (8)

𝛼LLF = max
{

𝜌𝑠( (𝒖)) ∶ 𝒖 = 𝒖±ℎ
}

, (9)

where  (𝒖) = ∇𝒖
(

 𝑐 (𝒖) ⋅ 𝒏
)

indicates the Jacobian matrix of the
onvective fluxes in the direction 𝒏 and 𝜌 its spectral radius.
3

𝑠

Finally, for the discrete variational form of the viscous terms, the
Bassi–Rebay-2 scheme (BR2) presented by Bassi and Rebay [34] is
employed:

𝑣(𝐮ℎ, 𝜙ℎ) = ∫𝐾
 𝑣(𝐮ℎ,∇𝐮ℎ + 𝐋ℎ) ⋅ ∇𝜙ℎ d𝑉

− ∫𝜕𝐾∩𝑖
[[𝜙ℎ]]

{{

 𝑣
(

𝐮ℎ,∇𝐮ℎ + 𝜂BR2𝐥𝑒ℎ
)

}}

⋅ 𝐧 d𝑆

+ ∫𝜕𝐾∩𝑏
𝜙+
ℎ  𝑣

(

𝐮𝑏,∇𝐮𝑏 + 𝜂BR2𝐥𝑒ℎ
)

⋅ 𝐧 d𝑆 , (10)

here the boundary values 𝐮𝑏,∇𝐮𝑏 are consistent with the boundary
onditions imposed on 𝑏 and 𝜂BR2 is a user-defined parameter for the
tabilization of the method. The local lifting operator, 𝐥𝑒ℎ, extends its
upport on the current element 𝐾 and its neighbors, that is supp(𝐥𝑒ℎ) =
𝐾+ ∪ 𝐾−}. It is defined for each internal face 𝑒 = 𝑖,𝐾 = 𝜕𝐾+ ∩ 𝜕𝐾−,

as follows:

∫𝐾+∪𝐾−
𝜙ℎ𝐥𝑒ℎ d𝑉 = −∫𝑒

[[𝜙ℎ]][[𝐮ℎ]] d𝑆 . (11)

n analogous equation consistent with the boundary conditions can be
btained for the boundary faces 𝑏. The global lifting operator 𝐋ℎ is
efined for the element 𝐾 as the sum of the local lifting operators,
ℎ =

∑

𝑒∈𝜕𝐾 𝐥𝑒ℎ.
Lastly, once every term has been defined, Eq. (4) results in a non-

linear system of ordinary differential equations in which the polynomial
coefficients, 𝐔𝓁

𝐾 (𝑡), are the unknowns to be determined. In this paper
he work is focused on steady problems. To evolve the solution in
ime we use the implicit Euler method. The subsequent linear system
f equations is solved by means of the GMRES method with ILU(0)
reconditioning [4].

. Multiwavelets

In this section the basics of multiwavelet theory will be presented.
irst the concepts will be described in a one-dimensional framework
nd then we will move to higher spatial dimensions. For further details
e refer to the work of Alpert et al. [30] and Strela [11].

.1. MRA and multiwavelets

Multiresolution analysis allow us to decompose a given input signal
nto a hierarchy of approximations of that signal at different levels of
esolution, as shown by the work of Harten [12]. The level number
ill be denoted by 𝑚, with the highest level of resolution given by
= . How much detail is captured by a particular resolution level

epends on how many subdivisions or elements, 𝑁𝐾 , this level owns.
ach element 𝐾(𝑚,𝑗) in a given level 𝑚 is identified by the index 𝑗. If we
uppose that the relation between level and number of subdivisions is
yadic (i.e. given a power of two, 𝑁𝐾 = 2𝑚) and we work in 𝐿2(𝛺̂ℎ),
ith 𝛺̂ℎ = [−1, 1], then the support of the elements is determined by

(𝑚,𝑗) =
[

−1 + 2−𝑚+1𝑗,−1 + 2−𝑚+1(𝑗 + 1)
]

, (12)

ith 𝑚 = 0,… , and 𝑗 = 0,… , 𝑁𝐾 − 1. Now we define two subspaces
onnected to each 𝐾(𝑚,𝑗), denoted by 𝑉 𝑝

𝑚 ,𝑊
𝑝
𝑚 . The orthonormal bases

for each subspace are called scaling functions, V𝑝𝑚 = span
{

𝜙𝓁
(𝑚,𝑗)

}

, and
ultiwavelets, W𝑝

𝑚 = span
{

𝜓𝓁
(𝑚,𝑗)

}

, where 𝓁 = 1,… , 𝑁𝑝 with 𝑁𝑝 =
𝑝 + 1 in the current 1-D context. This is the premise behind Alpert’s
multiwavelets [29,30]. The following development is based on this
family of multiwavelets.

We start from the coarse level 𝑚 = 0 and build up from there. In this
case the subspace of scaling functions results in V𝑝0(𝛺̂ℎ) and its basis are
given by [30]. Namely:

𝜙𝓁
(0,0)(𝜉) = 𝜙𝓁(𝜉) =

⎧

⎪

⎨

⎪

√

2(𝓁−1)+1
2 𝑃 𝓁(𝜉), 𝜉 ∈ 𝛺̂ℎ

0, otherwise
(13)
⎩
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Fig. 1. Scaling functions and multiwavelets.

where 𝑃 𝓁(𝜉) indicates the Legendre polynomial of degree 𝓁 − 1. Scaling
unctions in Eq. (13) up to 𝑝 = 2 are plotted in Fig. 1(a). On the other
and, multiwavelets undergo a more complex building process. The
lgorithm starts with a piecewise monomial of degree (𝓁 − 1) defined

in 𝛺̂ℎ = [−1, 1]. A Gram–Schmidt orthonormalization is followed by an
peration to increase the number of vanishing moments of the resulting
unction. This is enforced by ensuring orthogonality with respect to a
igher degree monomial. The complete algorithm can be found in [29].
he multiwavelets that span the subspace W𝑝

0(𝛺̂ℎ) are thus formed by
these orthonormal functions 𝑓 (𝓁,𝑝)(𝑥) as follows:

𝜓𝓁
(0,0)(𝜉) = 𝜓𝓁(𝜉) =

⎧

⎪

⎨

⎪

⎩

(−1)(𝓁−1)+𝑝+1𝑓 (𝓁,𝑝)(−𝜉), 𝜉 ∈ [−1, 0]
𝑓 (𝓁,𝑝)(𝜉), 𝜉 ∈ [0, 1]
0, otherwise

(14)

Multiwavelets in Eq. (14) with 𝑝 = 0, 1, 2 are plotted in Fig. 1(b) to
1(d), respectively. At this point, the basis of V𝑝0,W

𝑝
0 have been defined.

To describe successive subspaces for 𝑚 > 0 we require the mapping
𝜉 ↦ 2(𝑥−𝑥𝑐 )

ℎ𝐾
, with 𝑥 ∈ 𝐾(𝑚,𝑗). Also, 𝑥𝑐 and ℎ𝐾 represent the center and the

ize of element 𝐾(𝑚,𝑗), respectively. The basis 𝜙𝓁
(𝑚,𝑗), 𝜓

𝓁
(𝑚,𝑗) ∈ V𝑝𝑚,W

𝑝
𝑚 are

generated by dilation and translation of 𝜙𝓁
(0,0), 𝜓

𝓁
(0,0) ∈ V𝑝0,W

𝑝
0, namely,

𝜙𝓁
(𝑚,𝑗)(𝑥) =

√

2
ℎ𝐾

𝜙𝓁
(

2(𝑥 − 𝑥𝑐 )
ℎ𝐾

)

, 𝓁 = 1,… , 𝑁𝑝, (15)

𝜓𝓁
(𝑚,𝑗)(𝑥) =

√

2
ℎ𝐾

𝜓𝓁
(

2(𝑥 − 𝑥𝑐 )
ℎ𝐾

)

, 𝑗 = 0,… , 𝑁𝐾 − 1, (16)

ith 𝑚 = 0,… ,. Both scaling functions and multiwavelets support
xtends to the current element defined by 𝐾(𝑚,𝑗). That is supp

(

𝜙𝓁
(𝑚,𝑗)

)

=
upp

(

𝜓𝓁
(𝑚,𝑗)

)

= 𝐾(𝑚,𝑗). Moreover, they are 𝐿2-normalized, ‖‖
‖

𝜙𝓁
(𝑚,𝑗)

‖

‖

‖𝐿2 =

𝜓𝓁
(𝑚,𝑗)

‖

‖

‖𝐿2 = 1, and share the following orthonormality relations:
⟨

𝜙𝓁
(𝑚,𝑗), 𝜙

𝓁′

(𝑚,𝑗′)

⟩

𝐾(𝑚,𝑗)
= 𝛿𝓁,𝓁′𝛿𝑗,𝑗′ , (17a)

⟨

𝜙𝓁
(𝑚,𝑗), 𝜓

𝓁′

(𝑚,𝑗′)

⟩

𝐾(𝑚,𝑗)
= 0, (17b)

𝜓𝓁
(𝑚,𝑗), 𝜓

𝓁′

(𝑚′ ,𝑗′)

⟩

𝐾(𝑚,𝑗)
= 𝛿𝓁,𝓁′ 𝛿𝑗,𝑗′ 𝛿𝑚,𝑚′ , (17c)

ith
⟨ ⟩

representing the inner product. Additionally, inherited by
lpert’s algorithm, multiwavelets have 𝑀 = 𝓁 + 𝑝 vanishing moments,
hich means that the multiwavelets are orthogonal to polynomials of
4

T

egree 𝑀 . Therefore,

𝑃 , 𝜓𝓁
(𝑚,𝑗)

⟩

𝐾(𝑚,𝑗)
= 0, ∀𝑃 ∈ 𝑀(

𝐾(𝑚,𝑗)
)

. (18)

urther details can be found in [19]. A strong relation exists between
he subspaces defined in the MRA. The multiwavelet subspace W𝑝

𝑚 is the
rthogonal complement of the scaling function space V𝑝𝑚 in V𝑝𝑚+1 [30],
amely,
𝑝
𝑚+1 = V𝑝𝑚 ⊕W𝑝

𝑚; W𝑝
𝑚 ⟂ V𝑝𝑚 . (19)

y successive application of Eq. (19), a hierarchy of multiwavelet
ubspaces can be derived:
𝑝
𝑚 = V𝑝0 ⊕W𝑝

0 ⊕W𝑝
1 ⊕⋯⊕W𝑝

𝑚−1 . (20)

.2. Coupling of DGM and multiwavelets

If we remember the DGM described in Section 2, the basis employed
or the element-wise solution are built upon Legendre polynomials.
s mentioned above, the same occurs with the basis of the scaling

unction subspace in the multiwavelet formulation. Therefore a direct
elation can be established between both approaches. We consider a
yadic mesh composed of 𝑁𝐾 = 2 elements and 𝛺ℎ = 𝛺̂ℎ, so that
he multiwavelet formulation holds. By extending the approximate DG
olution in element 𝐾 = 𝐾(,𝑗) in Eq. (3) over the entire domain 𝛺ℎ,
e have:

ℎ(𝑥, 𝑡) =
∑

𝐾

𝑁𝑝
∑

𝓁=1
𝑈𝓁
𝐾 (𝑡)𝜙

𝓁
𝐾 (𝑥) , ∀𝑥 ∈ 𝐾(,𝑗), 𝐾(,𝑗) ∈ 𝛺ℎ.

=
𝑁𝐾−1
∑

𝑗=0

𝑁𝑝
∑

𝓁=1
𝑈𝓁
(,𝑗)(𝑡)𝜙

𝓁
(,𝑗) (𝑥)

=
𝑁𝐾−1
∑

𝑗=0

𝑁𝑝
∑

𝓁=1
𝑈𝓁
(,𝑗)(𝑡)𝜙

𝓁
(0,0)

(

2(𝑥 − 𝑥𝑐 )
ℎ𝐾

)

. (21)

e can now express the approximate solution in terms of the single-
cale decomposition on level  [20], which is a combination of the
caling functions defined in Eq. (15). Namely,

ℎ(𝑥, 𝑡) =
𝑁𝐾−1
∑

𝑗=0

𝑁𝑝
∑

𝓁=1
𝑠𝓁(,𝑗)(𝑡)𝜙

𝓁
(,𝑗) (𝑥)

=

√

2
ℎ𝐾

𝑁𝐾−1
∑

𝑗=0

𝑁𝑝
∑

𝓁=1
𝑠𝓁(,𝑗)(𝑡)𝜙

𝓁
(0,0)

(

2(𝑥 − 𝑥𝑐 )
ℎ𝐾

)

, (22)

with ℎ𝐾 = 2−+1. The single-scale decomposition differs from the DG
representation only by a scaling term. Hence, by comparing Eq. (21)
to (22), the relation between the DG coefficients and the single-scale
coefficients is given by

𝑠𝓁(,𝑗)(𝑡) = 2−∕2𝑈𝓁
(,𝑗)(𝑡). (23)

y using Eq. (20), a scaling function subspace can be hierarchically
ivided into a cascade of multiwavelet subspaces plus a baseline scaling
unction subspace corresponding to the lowest resolution level. If we
pply this to Eq. (22), we obtain the multiscale decomposition of the
pproximate solution. Namely:

ℎ =
𝑁𝑝
∑

𝓁=1

(

𝑠𝓁(0,0) 𝜙
𝓁
(0,0) +

−1
∑

𝑚=0

𝑁𝐾−1
∑

𝑗=0
𝑑𝓁(𝑚,𝑗) 𝜓

𝓁
(𝑚,𝑗)

)

, (24)

here

𝑠𝓁(0,0) =
⟨

𝑢ℎ, 𝜙
𝓁
(0,0)

⟩

𝐾(0,0)
, (25a)

𝓁
(𝑚,𝑗) =

⟨

𝑢ℎ, 𝜓
𝓁
(𝑚,𝑗)

⟩

𝐾(𝑚,𝑗)
, (25b)

re the scaling function and multiwavelet coefficients, respectively.
hese coefficients can be computed efficiently using the so-called
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Fig. 2. Four-level multiscale representation by multiwavelets of second order DG solution. We use the nomenclature (𝑚,𝑗) =
∑

𝓁 𝑠
𝓁
(𝑚,𝑗)𝜙

𝓁
(𝑚,𝑗) (single-scale) and (𝑚,𝑗) =

∑

𝓁 𝑑
𝓁
(𝑚,𝑗)𝜓

𝓁
(𝑚,𝑗)

(multiscale). The highest resolution level is  = 3 and 𝛺ℎ =
⋃

𝑗 𝐾(,𝑗).
quadrature mirror filter (QMF) coefficients, 𝐻 (0)
𝓁𝑘 ,𝐻

(1)
𝓁𝑘 , 𝐺(0)

𝓁𝑘 , 𝐺
(1)
𝓁𝑘 , as de-

cribed by Geronimo et al. [35]. The relations between the coefficients
n two consecutive levels are given by:

𝑠𝓁(𝑚−1,𝑗) =
𝑁𝑝
∑

𝑘=1

(

𝐻 (0)
𝓁𝑘 𝑠

𝑘
(𝑚,2𝑗) +𝐻

(1)
𝓁𝑘 𝑠

𝑘
(𝑚,2𝑗+1)

)

, 𝓁 = 1,… , 𝑁𝑝, (26a)

𝑑𝓁(𝑚−1,𝑗) =
𝑁𝑝
∑

𝑘=1

(

𝐺(0)
𝓁𝑘𝑠

𝑘
(𝑚,2𝑗) + 𝐺

(1)
𝓁𝑘𝑠

𝑘
(𝑚,2𝑗+1)

)

, 𝑚 = 1,… , (26b)

with 𝑗 = 0,… , 2(𝑚−1) − 1. Coarser scales of the solution can be ob-
tained by the successive application of Eq. (26a). Furthermore, the
multiwavelet coefficients between scales are given by Eq. (26b). Fig. 2
shows the multiscale representation for a second order DG solution.
Effectively, the multiscale decomposition divides the single-scale co-
efficients 𝑠𝓁(,𝑗) into a smaller group of coefficients 𝑠𝓁(0,0) and ( − 1)
blocks of multiwavelet or detail coefficients 𝑑𝓁(𝑚,𝑗). The former is a
coarse approximation of the original solution and the latter carries the
information between scales. This multiscale information represent the
individual characteristics of the solution in a hierarchy of ascending
resolution.

3.3. Two-dimensional multiwavelets

In the 2-D case the domain in which the scaling functions and
multiwavelets operate is 𝛺 = [−1, 1]2 which is discretized into an equal
number of 𝑁𝐾 = 2𝑚 elements along each of the 𝑥- and 𝑦-direction,
resulting in a total of 𝑁2

𝐾 elements per level 𝑚. The 1-D development
of the previous section can be extended to higher dimensions in a
straightforward manner by using tensor products of the basis. We use
the nomenclature 𝑁1D

𝑝 = 𝑝+1 and 𝑁2D
𝑝 = (𝑝+1)2. Therefore, the tensor

product results in

𝜱𝓁
(𝑚,𝑗)(𝐱) = 𝜙𝓁𝑥

(𝑚,𝑗𝑥)
(𝑥)𝜙

𝓁𝑦
(𝑚,𝑗𝑦)

(𝑦), 𝑚 = 0,… ,, (27a)

𝜳𝓁,𝛼
(𝑚,𝑗)(𝐱) = 𝜓𝓁𝑥

(𝑚,𝑗𝑥)
(𝑥)𝜙

𝓁𝑦
(𝑚,𝑗𝑦)

(𝑦), 𝓁 = 𝑁1D
𝑝 (𝓁𝑥 − 1) + 𝓁𝑦, (27b)

𝜳𝓁,𝛽
(𝑚,𝑗)(𝐱) = 𝜙𝓁𝑥

(𝑚,𝑗𝑥)
(𝑥)𝜓

𝓁𝑦
(𝑚,𝑗𝑦)

(𝑦), 𝑗 = 𝑁𝐾 𝑗𝑥 + 𝑗𝑦, (27c)

𝜳𝓁,𝛾
(𝑚,𝑗)(𝐱) = 𝜓𝓁𝑥

(𝑚,𝑗𝑥)
(𝑥)𝜓

𝓁𝑦
(𝑚,𝑗𝑦)

(𝑦), (27d)

with 𝓁𝑥,𝓁𝑦 = 1,… , 𝑁1D
𝑝 and 𝑗𝑥, 𝑗𝑦 = 0,… , 𝑁𝐾 −1. The expression 𝜱𝓁

(𝑚,𝑗)
constitutes the basis of the scaling function subspace, given by 𝐕𝑝𝑚 =
span

{

𝜱𝓁
(𝑚,𝑗)

}

; and 𝜳𝓁
(𝑚,𝑗) represents the basis of the multiwavelet sub-

space. The superscripts 𝛼, 𝛽 and 𝛾 denote the 𝑥-, 𝑦-, and 𝑥𝑦-directions,
respectively. Namely:

𝑝,𝛼 { 𝓁,𝛼 }
5

𝐖𝑚 = span 𝜳 (𝑚,𝑗) , (28a)
𝐖𝑝,𝛽
𝑚 = span

{

𝜳𝓁,𝛽
(𝑚,𝑗)

}

, (28b)

𝐖𝑝,𝛾
𝑚 = span

{

𝜳𝓁,𝛾
(𝑚,𝑗)

}

. (28c)

Further details can be found in the work of Vuik and Ryan [26]. The
relation between the DG coefficients and the single-scale coefficients is
equivalent to Eq. (23) from the previous section, and is now given by

𝐬𝓁(,𝑗) = 2−𝐔𝓁
(,𝑗). (29)

Applying the QMF coefficients presented in Geronimo et al. [35] the
lower-lever single-scale and multiwavelet coefficients for each compo-
nent can be calculated efficiently as follows:

𝐬𝓁(𝑚−1,𝑗) =
1
∑

𝑗𝑥 ,𝑗𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐻 (𝑗𝑥)
𝓁𝑥 ,𝑘𝑥

𝐻
(𝑗𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬𝑘(𝑚,2𝑗+𝑗)
]

, (30a)

𝐝𝓁,𝛼(𝑚−1,𝑗) =
1
∑

𝑗𝑥 ,𝑗𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐺(𝑗𝑥)
𝓁𝑥 ,𝑘𝑥

𝐻
(𝑗𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬𝑘(𝑚,2𝑗+𝑗)
]

, (30b)

𝐝𝓁,𝛽(𝑚−1,𝑗) =
1
∑

𝑗𝑥 ,𝑗𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐻 (𝑗𝑥)
𝓁𝑥 ,𝑘𝑥

𝐺
(𝑗𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬𝑘(𝑚,2𝑗+𝑗)
]

, (30c)

𝐝𝓁,𝛾(𝑚−1,𝑗) =
1
∑

𝑗𝑥 ,𝑗𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐺(𝑗𝑥)
𝓁𝑥 ,𝑘𝑥

𝐺
(𝑗𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬𝑘(𝑚,2𝑗+𝑗)
]

, (30d)

where

𝑚 = 1,… ,,

𝑗 = 𝑗𝑥 + 𝑗𝑦 , 𝑘 = 𝑁1D
𝑝 (𝑘𝑥 − 1) + 𝑘𝑦 ,

𝑗 = 𝑁 ′
𝐾 𝑗𝑥 + 𝑗𝑦 , 𝑗𝑥, 𝑗𝑦 = 0,… , 𝑁 ′

𝐾 − 1 ,

with 𝑁 ′
𝐾 = 2(𝑚−1). The index 𝑗 accounts for the fact that one coefficient

at level 𝑚 − 1 results from the contribution of four coefficients at level
𝑚. Finally, the multiscale decomposition presented in Eq. (24) can be
expressed as:

𝐮ℎ =
𝑁2D
𝑝

∑

𝓁=1
𝐬𝓁(0,0) 𝜱

𝓁
(0,0) (31)

+
𝑁2D
𝑝

∑

𝓁=1

−1
∑

𝑚=0

𝑁2
𝐾

∑

𝑗=0

[

𝐝𝓁,𝛼(𝑚,𝑗) 𝜳
𝓁,𝛼
(𝑚,𝑗) + 𝐝𝓁,𝛽(𝑚,𝑗) 𝜳

𝓁,𝛽
(𝑚,𝑗) + 𝐝𝓁,𝛾(𝑚,𝑗) 𝜳

𝓁,𝛾
(𝑚,𝑗)

]

.

4. h-adaptive DGM based on multiwavelets

In the introduction to this work (Section 1), we have presented the

historical evolution of the multiresolution-based grid adaptation in CFD.
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In particular, we have highlighted the relevance of multiwavelets in
combination with the discontinuous Galerkin method (e.g., see Hovhan-
nisyan et al. [19] or Gerhard et al. [20]). This approach is accurate and
solidly built on wavelet theory Gerhard and Müller [22]. However, we
have also observed that it is subjected to a series of limitations. These
range from the requirement of an initial reference solution through the
restriction to nested dyadic grids to the challenge in parallelizing the
multiresolution analysis.

As opposed to the approach discussed above, in this research we aim
at developing a mesh adaptation algorithm that starts from a coarse
solution and proceed with the refinement where required, with no
initial reference grid involved. Traditionally, to deal with this problem,
a posteriori error estimators have been used to drive the adaptation,
which are computed from the discrete solution and try to measure
the error of the adaptive solution. Examples of these indicators can be
found in the work of Mavriplis [36], Mitchell and McClain [37], Bey
and Tinsley Oden [38], and Adjerid et al. [39].

Here we propose a method which locally confines the MRA decom-
position to the element. More specifically, an independent multiwavelet
decomposition is performed locally for every element of the physical
domain. We call our approach local multiresolution. This is a departure
from the preceding work of Hovhannisyan et al. [19] and Gerhard and
Müller [22], in which the MRA decomposition encompasses the entire
domain. Their approach can be classified as global multiresolution.

Fig. 3 shows the two approaches. The global MRA, Fig. 3(a),
produces multiple levels of information thanks to the highly detailed
approximate solution at level . On the other hand, the local MRA,
Fig. 3(b), do not require such a solution. Instead, our target is to suffi-
ciently resemble its behavior by providing extra information (enriching).
To achieve this, we manufacture a more accurate approximation for
each element 𝐾 separately. Then a subsequent MRA is applied locally,
roducing a two-level multiscale representation within the element. In
articular, we are interested in the multiwavelet part of the multiscale
epresentation. Indeed, multiwavelet coefficients can be interpreted
s messengers of individual features of the approximation. Thanks to
his property multiwavelets become an excellent candidate to mea-
ure the discretization error. In turn, the estimation provided by the
ultiwavelets can be used later to drive adaptation.

In the following sections we describe in detail each of the afore-
entioned steps, starting with the procedure to manufacture a new

pproximation from the existing DG solution.

.1. Reconstruction of new enriched approximation from DG solution

We intend to reach an analogue to the highly detailed approximate
olution 𝑢∗ℎ from which Hovhannisyan et al. [19] and Gerhard and
üller [22] start their global MRA, as illustrated in Fig. 3(a). The idea

eing that we can use later that analogue as a launchpad to start our
ocal MRA, as represented in Fig. 3(b).

To build the analogue we turn to the work of Dolejší and Solin [32].
n their research, the authors assemble a higher-order reconstruction
𝑢̃ℎ which they later measure against the original solution 𝑢ℎ to guide
he hp-adaptation process. By observing that the discretization error,
ℎ = 𝑢 − 𝑢ℎ, and its approximation by the higher-order reconstruc-
ion, ℎ = 𝑢̃ℎ − 𝑢ℎ, have similar element-wise distribution, 𝑒ℎ ≈ ℎ,

they verify numerically that the reconstruction approximates better
the exact solution than the original. Inspired by this idea, we build a
more accurate approximation 𝑢̃ℎ by considering the contribution of the
current element 𝐾 and its neighbors. This procedure will be presented
first in the 1-D setup. The extension to higher dimensions will be
described later.

We define the support of 𝑢̃ℎ according to the two-level multiscale
representation of element 𝐾, as shown in Fig. 3(b). In this context, we
have

supp
(

𝑢̃ℎ
)

=
𝑁art−1
⋃

𝜅𝑖, with 𝑁art = 2, (32)
6

𝑖=0
Fig. 3. Different multiscale representations.

where the artificial sub-elements 𝜅𝑖 would originate from the twofold
isotropic subdivision of element 𝐾. The new approximation 𝑢̃ℎ is then
described by 𝑁art piecewise polynomial functions. Namely:

𝑢̃ℎ =
∑

𝑖
𝑢̃ℎ,𝑖, 𝑢̃ℎ,𝑖 ∈ 𝑝(𝜅𝑖), 𝑖 = 0,… , 𝑁art − 1. (33)

Note that the term artificial is employed to indicate 𝜅𝑖 despite the fact
that no actual mesh subdivision actually occurs at this stage. In fact, our
implementation associates 𝑢̃ℎ to the element 𝐾. However we believe
that the definition of 𝜅𝑖 may help the reader to better understand the
procedure.

In order to assemble 𝑢̃ℎ we propose three different approaches
depending on how data from neighboring elements are accounted for:

1. 𝜅-reconstruction: 𝑢̃ℎ is built from the immediate neighbors of
sub-elements 𝜅𝑖.

2. 𝐾-reconstruction: 𝑢̃ℎ is constructed from the immediate neighbors
of element 𝐾.

3. 𝛤 -reconstruction: 𝑢̃ℎ is set up from the solution jumps at the faces
of sub-elements 𝜅𝑖.

Fig. 4 illustrates the different methods. The following
Sections 4.1.1 to 4.1.3 will describe them in detail.

4.1.1. 𝜅-Reconstruction
The construction of 𝑢̃ℎ is performed by a least-square function approx-

imation from the block 𝑖, defined as follows:

𝑖 = 𝜅(𝐾+𝑖−1)
1−𝑖 ∪ 𝜅(𝐾)

𝑖 ∪ 𝜅(𝐾+𝑖)
1−𝑖 , 𝑖 = 0,… , 𝑁art − 1, (34)

where 𝑁art = 2 and the superscript indicates from which 𝐾 ∈ 𝛺ℎ
the artificial sub-element 𝜅 originates. Then we define the polynomial
function ̃ℎ,𝑖 ∈ 𝑝(𝑖

)

by

̃ℎ,𝑖(𝑥, 𝑡) =
𝑁𝑝
∑

𝓁=1
𝑋̃𝓁

𝑖
(𝑡)𝜙𝓁

𝑖
(𝑥), ∀𝑥 ∈ 𝑖. (35)

where 𝑋̃𝓁
𝑖

are the unknown coefficients. They are calculated by min-

imizing the error in the least-square sense with respect to the original
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pproximation 𝑢ℎ. Namely:

̃ 𝓁
𝑖

= arg min ‖

‖

‖

𝑢ℎ − ̃ℎ,𝑖
‖

‖

‖

2

𝐿2(𝑖)
. (36)

olving the optimization problem in Eq. (36), we obtain the linear
lgebraic system

𝑘,𝓁 𝑋̃
𝓁
𝑖

= 𝑏𝑘, (37)

here:

𝑘,𝓁 =
∑

𝜅∈𝑖

⟨

𝜙𝑘𝜅 , 𝜙
𝓁
𝜅

⟩

𝜅
, (38a)

𝑏𝑘 =
∑

𝜅∈𝑖

⟨

𝜙𝑘𝜅 , 𝑢ℎ
⟩

𝜅
, 𝑘,𝓁 = 1,… , 𝑁𝑝 . (38b)

ow the polynomial function ̃ℎ,𝑖 is fully characterized within the
block 𝑖. Lastly, we restrict ̃ℎ,𝑖 just to sub-element 𝜅(𝐾)

𝑖 and arrive
o the piecewise polynomial function 𝑢̃ℎ,𝑖. Namely:

𝑢̃ℎ,𝑖 = ̃ℎ,𝑖
|

|

|𝜅(𝐾)
𝑖
, 𝑖 = 0,… , 𝑁art − 1. (39)

.1.2. 𝐾-Reconstruction
The first steps in the assembly of 𝑢̃ℎ follow the same instructions

escribed by Dolejší and Solin [32]. That is, we build a high-order
olynomial reconstruction by a least-square function approximation from
block 𝐾 defined as follows:

𝐾 = 𝐾 ∪
{

𝐾 ′ ∈ 𝛺ℎ ∣ 𝐾 ′ share at least a face with 𝐾
}

. (40)

e then establish the higher-order polynomial ̃ℎ ∈ 𝑝+1(𝐾
)

by

̃ℎ(𝑥, 𝑡) =
𝑁 ′
𝑝

∑

𝓁=1
𝑋̃𝓁

𝐾
(𝑡)𝜙𝓁

𝐾
(𝑥), ∀𝑥 ∈ 𝐾 , (41)

ith 𝑁 ′
𝑝 = (𝑝 + 2). Their unknown coefficients 𝑋̃𝓁

𝐾
are determined by

olving the optimization problem presented in Eq. (36) and the follow-
ng linear system on the new block 𝐾 . It is worth mentioning that the
ptimization problem is solved by using the 𝐿2-norm, whereas Dolejší
nd Solin [32] employ the 𝐻1-norm. We have tested both norms and
ound very little difference in the final reconstruction. This justifies the
se of the simpler 𝐿2-norm in our work. Next we define the higher-

̃ 𝑝+1 ̃
7

rder piecewise polynomial 𝑤ℎ ∈  (𝐾) as the restriction of ℎ on
. Namely:

̃ℎ = ̃ℎ
|

|

|𝐾
. (42)

nce the higher-order approximation 𝑤̃ℎ is restricted to 𝐾, we move to
et up 𝑢̃ℎ by using the information provided by this new approximation.
f we recall the definition of 𝑢̃ℎ, that is, Eq. (33):

𝑢̃ℎ =
∑

𝑖
𝑢̃ℎ,𝑖 =

∑

𝑖

𝑁𝑝
∑

𝓁=1
𝑈̃𝓁
𝜅𝑖
𝜙𝓁
𝜅𝑖
, 𝑖 = 0,… , 𝑁art − 1. (43)

In order to build 𝑢̃ℎ we use a 𝑝-degree spline interpolation on the artificial
sub-elements 𝜅𝑖. Therefore, we have 𝑁art𝑁𝑝 unknown coefficients 𝑈̃𝓁

𝜅𝑖
to evaluate. The same numbers of conditions are required to evaluate
the unknowns. We meet the conditions by projecting 𝑤̃ℎ on a set of
𝑁𝑝 Gauss–Lobatto integration points for each 𝜅𝑖. Thus reaching 𝑁art𝑁𝑝
conditions for the same number of unknowns. This results on a linear
system that solves for 𝑈̃𝓁

𝜅𝑖
.

4.1.3. 𝛤 -Reconstruction
In the final method, 𝑢̃ℎ is built from a simpler least-square function

approximation from the block 𝑖. The block is defined as

𝑖 = 𝜅(𝐾)
𝑖 ∪ 𝛤𝑖, 𝛤𝑖 =

{

𝜕𝜅(𝐾−1+2𝑖)
1−𝑖 ∩ 𝜕𝜅(𝐾)

𝑖

}

, (44)

ith 𝑖 = 0,… , 𝑁art − 1. The block 𝑖 is simply 𝜅𝑖 plus the shared face
f the nearest neighboring element, denoted by 𝛤𝑖. This means that

this method integrates the solution jump between element 𝐾 and their
eighbors 𝐾−1 and 𝐾+1 into 𝑢̃ℎ. Similarly to the two earlier methods,
e define the polynomial function ̃ℎ,𝑖 ∈ 𝑝(𝑖

)

by

̃ℎ,𝑖(𝑥, 𝑡) =
𝑁𝑝
∑

𝓁=1
𝑋̃𝓁

𝑖
(𝑡)𝜙𝓁

𝑖
(𝑥), ∀𝑥 ∈ 𝑖, (45)

here the coefficients 𝑋̃𝓁
𝑖

are calculated by solving Eq. (36) on the
ew block 𝑖. The resulting linear system can be expressed as

𝑘,𝓁 𝑋̃
𝓁
𝑖

= 𝑏𝑘, (46)

here

𝑘,𝓁 =
[

𝜙𝑘𝜙𝓁]

𝛤𝑖
+
⟨

𝜙𝑘𝜅𝑖 , 𝜙
𝓁
𝜅𝑖

⟩

𝜅𝑖
, (47a)

𝑏𝑘 =
[

𝜙𝑘𝑢ℎ
]

𝛤𝑖
+
⟨

𝜙𝑘𝜅𝑖 , 𝑢ℎ
⟩

𝜅𝑖
, 𝑘,𝓁 = 1,… , 𝑁𝑝 . (47b)
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Finally, we define 𝑢̃ℎ,𝑖 by restricting ̃ℎ,𝑖 just to sub-element 𝜅(𝐾)
𝑖 , in the

same way as Eq. (39).

4.1.4. Two-dimensional reconstruction
In the case of a 2-D reconstruction we define the support of the new

enriched approximation 𝐮̃ℎ as follows:

supp
(

𝐮̃ℎ
)

=
𝑁art−1
⋃

𝑖=0
𝜅𝑖, with 𝑁art = 4, (48)

where 𝜅𝑖 represent the artificial sub-elements from the fourfold
isotropic subdivision of element 𝐾. The term artificial retains the
same meaning as described in the 1-D reconstruction. Similarly, 𝐮̃ℎ is
omposed of 𝑁art piecewise polynomial functions. That is:

̃ ℎ =
∑

𝑖
𝐮̃ℎ,𝑖, 𝐮̃ℎ,𝑖 ∈ 𝑝(𝜅𝑖), 𝑖 = 0,… , 𝑁art − 1. (49)

Of the three reconstructions approaches proposed in the previous
-D setting, only the 𝜅−reconstruction method (see Section 4.1.1) will
xtended to the 2-D context. If we recall this method, the new approx-
mation 𝐮̃ℎ is set up by considering the immediate neighbors of sub-
lements 𝜅𝑖. This is performed by a least-square function approximation
pplied to the block 𝑖, which is characterized by

𝑖 =
⋃

𝑒∈ 𝜕𝜅𝑖

{

𝜅+ ∪ 𝜅−
}𝑒, 𝑖 = 0,… , 𝑁art − 1, (50)

here 𝑒 ∈ 𝜕𝜅𝑖 represent the individual faces of 𝜅𝑖. The next step is to
efine the polynomial function ̃ ℎ,𝑖 ∈ 𝑝(𝑖

)

by

̃
ℎ,𝑖(𝐱, 𝑡) =

𝑁𝑝
∑

𝓁=1
𝐗̃𝓁
𝑖
(𝑡)𝜙𝓁

𝑖
(𝐱), ∀𝐱 ∈ 𝑖, (51)

here 𝐗̃𝓁
𝑖

are the coefficients to be calculated. Similarly to 1-D, the
dea is to find which value of the coefficients minimize the difference
etween the original 𝐮ℎ and the new approximation ̃ ℎ,𝑖. That is:

̃ 𝓁
𝑖

= arg min ‖

‖

‖

𝐮ℎ − ̃ ℎ,𝑖
‖

‖

‖

2

𝐿2(𝑖)
, (52)

hich leads to the linear system

𝑘,𝓁 𝐗̃𝓁
𝑖

= 𝐛𝑘, (53)

here

𝑘,𝓁 =
∑

𝜅∈𝑖

⟨

𝜙𝑘𝜅 , 𝜙
𝓁
𝜅

⟩

𝜅
, (54a)

𝐛𝑘 =
∑

𝜅∈𝑖

⟨

𝜙𝑘𝜅 ,𝐮ℎ
⟩

𝜅
, 𝑘,𝓁 = 1,… , 𝑁𝑝. (54b)

y solving the above system for 𝐗̃𝓁
𝑖

we have completely defined ̃ ℎ,𝑖

ithin the block 𝑖. Finally, 𝐮̃ℎ,𝑖 is evaluated by restricting ̃ ℎ,𝑖 just to
ub-element 𝜅𝑖. Namely:

̃ ℎ,𝑖 = ̃ ℎ,𝑖
|

|

|𝜅𝑖
, 𝑖 = 0,… , 𝑁art − 1. (55)

.2. Local multiscale representation of new enriched approximation

The reconstruction methods presented in Section 4.1 allow us to
ssemble a new more accurate approximation 𝑢̃ℎ to the exact solution
han the original approximation 𝑢ℎ. This new approximation becomes
he starting point of the local multiresolution method, as shown in
ig. 3(b). By means of the local MRA we are able to perform an in-
ependent two-level multiscale decomposition of 𝑢̃ℎ for every element
∈ 𝛺ℎ.
To proceed with the local MRA we remind the reader of the proce-

ure to link the DGM and multiwavelets, as expressed by Eq. (23) and
29) in the one- and two-dimensional context, respectively. Certainly,
he 1-D coupling has been illustrated in detail in Fig. 2. However,
his previous development is associated to the global multiresolution
8

pproach proposed by Hovhannisyan et al. [19] and Gerhard and
üller [22], as the entire domain of the solution undergoes one unique
ultiscale decomposition. This can be visualized in Fig. 3(a). To adapt

he development to our new local MRA we must consider every 𝐾 ∈ 𝛺ℎ
s harboring one independent multiscale decomposition of 𝑢̃ℎ. Conse-
uently, for the 1-D local MRA we have the element-wise coupling
xpressed as

𝑠̃𝓁(,𝑗) = 2−∕2 𝑈̃𝓁
(,𝑗), 𝓁 = 1,… , 𝑁𝑝, 𝑗 = 0,… , 2 − 1, (56)

here 𝑈̃𝓁
(,𝑗) are the coefficients of 𝑢̃ℎ as calculated by one of the recon-

truction methods discussed in the previous section, and  represents
he highest level of resolution within element 𝐾. By nature of the
wo-level multiscale decomposition of 𝑢̃ℎ,  = 1 and we can further
implify Eq. (56) to

𝑠̃𝓁(1,𝑗) =
1
√

2
𝑈̃𝓁
(1,𝑗), 𝓁 = 1,… , 𝑁𝑝; 𝑗 = 0, 1; (57)

where the indices 𝑖 = 𝑗 = 0, 1 coincide with the numbering of
the artificial sub-elements 𝜅𝑖 defined in Eq. (32). Therefore, we can
establish a relation between the multiwavelet nomenclature of Eq. (57)
and the reconstruction terminology of Eqs. (32) and (33). Namely:

𝑠̃𝓁𝜅𝑖 =
1
√

2
𝑈̃𝓁
𝜅𝑖
, 𝓁 = 1,… , 𝑁𝑝; 𝑖 = 0,… , 𝑁art − 1; (58)

with 𝑁art = 2 in the current 1-D setting. We have linked the coefficients
of the new enriched approximation, 𝑈̃𝓁

𝜅𝑖
, to the single-scale coefficients,

𝑠̃𝓁𝜅𝑖 . The remaining lower-level single-scale and multiwavelet coeffi-
cients can be obtained by applying the QMF coefficients [35] developed
in Eq. (26). They are given by

𝑠̃𝓁𝐾 =
𝑁𝑝
∑

𝑘=1

𝑁art−1
∑

𝑖=0
𝐻 (𝑖)

𝓁𝑘𝑠̃
𝑘
𝜅𝑖
, 𝓁 = 1,… , 𝑁𝑝; (59a)

𝑑𝓁𝐾 =
𝑁𝑝
∑

𝑘=1

𝑁art−1
∑

𝑖=0
𝐺(𝑖)
𝓁𝑘𝑠̃

𝑘
𝜅𝑖
. (59b)

We can observe how the multiscale representation naturally connects
the coefficients of the artificial sub-elements 𝜅𝑖 to the coefficients of
element 𝐾. Finally, the multiscale representation of 𝑢̃ℎ can be now
expressed by Eq. (24) as a combination of single-scale functions and
multiwavelets:

𝑢̃ℎ = ̃𝐾 + ̃𝐾 =
𝑁𝑝
∑

𝓁=1

(

𝑠̃𝓁𝐾𝜙
𝓁
𝐾 + 𝑑𝓁𝐾 𝜓

𝓁
𝐾
)

, 𝐾 ∈ 𝛺ℎ. (60)

We are particularly interested in how the multiscale information is
carried by the multiwavelet contribution, ̃𝐾 . This contribution carries
the individual features of the new approximation 𝑢̃ℎ and, by extension,
it becomes an instrument to measure the behavior of the original
DG solution 𝑢ℎ. In regions where the solution is regular ̃𝐾 reports
minor or negligible values, whereas regions that harbor discontinuities
translate into ̃𝐾 reaching significant values. Certainly, the works
of Hovhannisyan et al. [19] and Shelton [24] have capitalized on
the multiwavelet contribution along a hierarchy of multiple levels to
perform grid adaptation. Additionally, Vuik [28] has employed this
contribution for troubled-cell indication. It is worth mentioning that
Vuik also developed a two-level multiscale representation. However,
in line with the global MRA philosophy, it is restricted to a sufficiently
detailed DG solution 𝑢∗ℎ, as illustrated in Fig. 3(a).

4.2.1. Two-dimensional multiwavelet decomposition
In the two-dimensional setting, Eq. (58) becomes

𝐬̃𝓁𝜅𝑖 =
1
2
𝐔̃𝓁
𝜅𝑖
, 𝓁 = 1,… , 𝑁2D

𝑝 ; 𝑖 = 0,… , 𝑁art − 1; (61)

where 𝑁2D
𝑝 = (𝑝 + 1)2 and 𝑁art = 4. As a reminder, the artificial sub-

elements 𝜅𝑖 originate from element 𝐾 and they have been previously
defined in Eq. (48). The QMF coefficients [35] described in Eq. (59) can
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be applied to calculate the single-scale coefficients and multiwavelet
coefficients along the 𝑥-, 𝑦- and 𝑥𝑦-directions [26]. They read:

𝐬̃𝓁𝐾 =
1
∑

𝑖𝑥 ,𝑖𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐻 (𝑖𝑥)
𝓁𝑥 ,𝑘𝑥

𝐻
(𝑖𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬̃𝑘𝜅𝑖
]

, (62a)

̃𝓁,𝛼
𝐾 =

1
∑

𝑖𝑥 ,𝑖𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐺(𝑖𝑥)
𝓁𝑥 ,𝑘𝑥

𝐻
(𝑖𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬̃𝑘𝜅𝑖
]

, (62b)

𝐝𝓁,𝛽𝐾 =
1
∑

𝑖𝑥 ,𝑖𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐻 (𝑖𝑥)
𝓁𝑥 ,𝑘𝑥

𝐺
(𝑖𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬̃𝑘𝜅𝑖
]

, (62c)

𝐝𝓁,𝛾𝐾 =
1
∑

𝑖𝑥 ,𝑖𝑦=0

𝑁1D
𝑝

∑

𝑘𝑥 ,𝑘𝑦=1

[

𝐺(𝑖𝑥)
𝓁𝑥 ,𝑘𝑥

𝐺
(𝑖𝑦)
𝓁𝑦 ,𝑘𝑦

𝐬̃𝑘𝜅𝑖
]

, (62d)

here

𝑖 = 2𝑖𝑥 + 𝑖𝑦,

= 𝑁1D
𝑝 (𝑘𝑥 − 1) + 𝑘𝑦, 𝓁 = 𝑁1D

𝑝 (𝓁𝑥 − 1) + 𝓁𝑦,

ith 𝑁1D
𝑝 = 𝑝 + 1. The link between the coefficients of element 𝐾 and

he coefficients of sub-elements 𝜅𝑖 has been now established. Lastly, the
ultiscale representation of 𝐮̃ℎ resembles Eq. (60) and thus it can be

xpressed as:

̃ ℎ = ̃𝐾 + ̃𝛼
𝐾 + ̃𝛽

𝐾 + ̃𝛾
𝐾

=
𝑁2D
𝑝

∑

𝓁=1

(

𝐬̃𝓁𝐾 𝜱𝓁
𝐾 + 𝐝𝓁,𝛼𝐾 𝜳𝓁,𝛼

𝐾 + 𝐝𝓁,𝛽𝐾 𝜳𝓁,𝛽
𝐾 + 𝐝𝓁,𝛾𝐾 𝜳𝓁,𝛾

𝐾

)

. (63)

.3. Novel error estimators based on local MRA

Up to this point, we have described several post-enrichment meth-
ds applied to the original DG solution 𝑢ℎ. Thanks to them we have
een able to construct a new approximation 𝑢̃ℎ. Subsequent to this step,
e have performed a local MRA decomposition of 𝑢̃ℎ by means of a
ultiwavelet expansion.

In this section we resume from the local MRA representation. We
ill evaluate its multiwavelet contribution, ̃𝐾 , to achieve an estima-

ion of the discretization error on element 𝐾. The resulting local error
stimators constitute a hybrid approach between the more traditional
posteriori error indicators, e.g. Mavriplis [36], and the more reliable

ndicators of the global MRA presented in Gerhard et al. [20].
The main idea is to compute the 𝐿2-norm of ̃𝐾 from Eq. (60),

hich can be read as an evaluation of the energy associated to the
ndividual fluctuations of 𝑢̃ℎ. Consequently, in the 1-D context the
nderlying structure of the local indicators can be expressed as:

𝐾 = ‖

‖

‖

̃𝐾
‖

‖

‖𝐿2(𝐾)

=
‖

‖

‖

‖

𝑁𝑝
∑

𝓁=1
𝑑𝓁𝐾 𝜓

𝓁
𝐾
‖

‖

‖

‖𝐿2(𝐾)

=
[𝑁𝑝
∑

𝓁=1

(

𝑑𝓁𝐾
)2
]1∕2

, 𝐾 ∈ 𝛺ℎ, (64)

here
⟨

𝜓𝓁
𝐾 , 𝜓

𝓁′
𝐾
⟩

𝐾= 𝛿𝓁,𝓁′ derived from the orthonormality relations in
q. (17) has been used to simplify the final expression.

With this framework in mind, we propose three error indicators in
otal. The difference between them lies in the reconstruction method
mployed to reach 𝑢̃ℎ and their terminology reflects this fact (see
ections 4.1.1 to 4.1.3). Consequently, we rewrite Eq. (64) to account
or the post-enrichment procedure. Namely:

-multiwavelet indicator, 𝜂𝑟-MW
𝐾 ,

ith
9

∈ {𝜅-, 𝐾-, 𝛤 -reconstruction}, 𝐾 ∈ 𝛺ℎ,
here index 𝑟 may refer to method 1⃝, 2⃝, or 3⃝from Fig. 4, respec-
ively.

.3.1. Two-dimensional indicator
Similarly to the 1-D setting, we will evaluate the multiwavelet

ontribution resulting from applying a local MRA to the new approx-
mation 𝐮̃ℎ as an assessment of the discretization error on element
. However, in the 2-D context only one error indicator will be
eveloped. This indicator will be based on the 𝜅-reconstruction pro-
edure presented in Section 4.1.4 and its terminology will be adapted
ccordingly.

Hence, the 𝜅-multiwavelet indicator is defined by evaluating the 𝑥-
𝑦- and 𝑥𝑦- components of the multiwavelet contribution given by
q. (63) in the 𝐿2-norm. Namely:

𝜅-MW
𝐾 = ‖

‖

‖

̃𝛼
𝐾 + ̃𝛽

𝐾 + ̃𝛾
𝐾
‖

‖

‖𝐿2(𝐾)

=
‖

‖

‖

‖

𝑁𝑝
∑

𝓁=1

(

𝐝𝓁,𝛼𝐾 𝜳𝓁,𝛼
𝐾 + 𝐝𝓁,𝛽𝐾 𝜳𝓁,𝛽

𝐾 + 𝐝𝓁,𝛾𝐾 𝜳𝓁,𝛾
𝐾

)

‖

‖

‖

‖𝐿2(𝐾)
, (65)

where 𝐾 ∈ 𝛺ℎ and 𝑁𝑝 = 𝑁2D
𝑝 = (𝑝 + 1)2. In general, if we extend

the orthonormality relations in Eq. (17) to the current 2-D setting and
consider the extra directions given by the superscripts 𝛼, 𝛽, and 𝛾 we
have the following new orthonormality relations:
⟨

𝜳𝓁,𝛼
𝐾 , 𝜳 𝑘,𝛼

𝐾

⟩

𝐾
= 𝛿𝓁,𝑘,

⟨

𝜳𝓁,𝛼
𝐾 , 𝜳 𝑘,𝛽

𝐾

⟩

𝐾
=
⟨

𝜳𝓁,𝛼
𝐾 , 𝜳 𝑘,𝛾

𝐾

⟩

𝐾
= 0, (66a)

⟨

𝜳𝓁,𝛽
𝐾 , 𝜳 𝑘,𝛽

𝐾

⟩

𝐾
= 𝛿𝓁,𝑘,

⟨

𝜳𝓁,𝛽
𝐾 , 𝜳 𝑘,𝛼

𝐾

⟩

𝐾
=
⟨

𝜳𝓁,𝛽
𝐾 , 𝜳 𝑘,𝛾

𝐾

⟩

𝐾
= 0, (66b)

⟨

𝜳𝓁,𝛾
𝐾 , 𝜳 𝑘,𝛾

𝐾

⟩

𝐾
= 𝛿𝓁,𝑘,

⟨

𝜳𝓁,𝛾
𝐾 , 𝜳 𝑘,𝛼

𝐾

⟩

𝐾
=
⟨

𝜳𝓁,𝛾
𝐾 , 𝜳 𝑘,𝛽

𝐾

⟩

𝐾
= 0. (66c)

where 𝓁, 𝑘 = 1,… , 𝑁𝑝. Consequently, Eq. (65) can be simplified to

𝜂𝜅-MW
𝐾 =

[𝑁𝑝
∑

𝓁=1

(

𝐝𝓁,𝛼𝐾
)

+
𝑁𝑝
∑

𝓁=1

(

𝐝𝓁,𝛽𝐾
)

+
𝑁𝑝
∑

𝓁=1

(

𝐝𝓁,𝛾𝐾
)2
]1∕2

, 𝐾 ∈ 𝛺ℎ. (67)

4.4. Element marking strategies

Once we have determined the set of local error estimates 𝜂𝐾 for
every 𝐾 ∈ 𝛺ℎ, we now will use this information to select (mark)
which elements require higher spatial resolution (h-refinement). Note
that the error estimates could be used to identify elements which re-
quire lower spatial resolution (h-coarsening) as well. However, element
agglomeration will not be considered in this study.

There are numerous marking strategies developed in the literature.
Based on the findings of Naddei [9] we have opted for the two following
procedures:

(a) Local threshold strategy. It is the most intuitive and widely used
strategy (see e.g. Oden et al. [40] or Rueda-Ramírez et al. [41]).
The idea is to flag an element 𝐾 if the local value of the error
indicator 𝜂𝐾 is above a user-defined tolerance, 𝜂tol. Therefore,
we define the set of marked elements, 𝛬, as follows:

𝛬 =
{

𝐾 ∈ 𝛺ℎ ∣ 𝜂𝐾 > 𝜂tol
}

. (68)

For this strategy, the selection of appropriate tolerances is influ-
enced by the characteristics of the flow under study. Therefore,
the experience of the user plays a significant role in the decision
process. However, we can recommend basic instructions on how
to select some preliminary values. For instance, when using the
multiwavelet indicator in Eq. (67), the error estimator delivers
a mean value of the fluctuations of a given physical quantity
(e.g. momentum density, pressure, vorticity) within the confines
of the element. Consequently, we can set a percentage of the
pertinent reference quantity as an appropriate tolerance.
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Fig. 5. Isotropic h-refinement in the context of reference and physical element.

(b) Maximum marking strategy. Initially proposed by Babuvška and
Rheinboldt [42], it has seen widespread adoption (see e.g. Dör-
fler and Heuveline [43]). In this case, 𝐾 is flagged if 𝜂𝐾 is above
a specified percentage of its maximum. Namely:

𝛬 =
{

𝐾 ∈ 𝛺ℎ ∣ 𝜂𝐾 > 𝜃 max
𝐾∈𝛺ℎ

𝜂𝐾
}

, (69)

where the user-defined parameter 𝜃 ∈ [0, 1] is called marking
fraction. The lower this parameter, the higher the number of total
marked elements.

In addition, we limit the separation in refinement levels between
neighboring elements to at most one by marking additional elements
if necessary. This is frequently called the two-to-one rule [44] and
safeguards that neighboring elements are not of exceedingly dissimilar
size.

4.5. Element refinement strategy

After selecting the elements that require higher spatial resolution by
one of the proposed marking strategies, we proceed to the construction
of the new (adapted) mesh. For that purpose, we follow the so-called
local mesh refinement strategy [45], which restrict the adaptation to
individual marked elements. This is in contrast to semi-local approaches
such as AMR [46], in which elements of one or more regions of the
mesh are refined as a group.

The element refinement strategy pursued in this study is based
on the work by Kuru et al. [47] and Naddei [9], where they have
implemented an (isotropic) local mesh refinement strategy on non-
conforming curvilinear hexahedral and quadrilateral meshes. Their idea
is to divide each of the marked elements into 2𝑑 new elements, where
𝑑 is the dimension of the problem.

In our case, we consider simpler non-conforming Cartesian meshes
in 2-D. Consequently, elements become rectangles that, if marked for
refinement, may produce four new geometrically similar rectangles. To
visualize this concept let 0 = 𝛺ℎ be the given initial mesh and 1 be
the resulting mesh after refinement. We denote any 𝐾 ∈ 𝛬 with 𝛬 ⊂
0 by a parent element. Its associated child elements are denoted by
the set {𝐾𝑗}3𝑗=0 ∈ 1. Then, thanks to the refinement operator R ∶
{𝐾} → {𝐾0,… , 𝐾3} we can explicitly define the link between parent
nd children in physical space. The operator R can be further expressed
n the reference space as follows:

= 𝛯𝐾 R̂𝛯−1
𝐾 (70)

here R̂ ∶ {𝐾̂} → {𝐾̂0,… , 𝐾̂3} denotes the operator that divides
he reference element into four identical children, and 𝛯𝐾 is a linear
ransformation that maps elements of the reference space, 𝐾̂ ∈ 𝛺̂ , to
10

ℎ

Fig. 6. Flow chart of the proposed h-adaptive algorithm.

elements of the physical space, 𝐾 ∈ 𝛺ℎ. Further to this, because we
work with rectangles, the mapping function is simply a scaling of the
reference space. Fig. 5 describes the procedure in detail.

4.6. The h-adaptive algorithm

A flow chart describing our h-refinement algorithm for steady prob-
lems is shown in Fig. 6. The diagram describes adaptation in the 1-D
context, but the extension to 2-D is straightforward. The algorithm con-
sists of first providing an initial mesh and solving for the corresponding
DG approximate solution. Next, the approximation is subjected to a
series of post-processing steps. Firstly, we build a more accurate approx-
imate solution by employing the reconstruction methods described in
Section 4.1. Secondly, we perform a local multiscale decomposition of
the reconstruction to extract its multiwavelet contribution, as explained
in Section 4.2. Lastly, we construct the local error estimator based
on the multiwavelet contribution, as presented in Section 4.3. This
estimation offers an insight into the quality of the solution and thus it
determines if the spatial resolution must be upgraded. If that is the case,
we proceed to flag the elements that demand higher resolution accord-
ing to the marking strategies identified in Section 4.4. We then refine
those elements by following the guidelines presented in Section 4.5 to
arrive to the adapted mesh. The discrete problem for the new mesh is
solved again and the entire procedure is repeated until certain error
criteria are fulfilled.

Generally, two extra steps are applied directly after obtaining the
new refined mesh. The first step is the so-called reinitialization op-
eration. It means that the 𝐿2-projection of the previous solution is
used as the initial condition on the new mesh. The second step is
load balancing in the context of parallel computations. This operation
leads to a uniform distribution of the computational load by efficiently
partitioning the new mesh.
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5. Numerical results

In the following, the different error estimation strategies developed
in Section 4.3 will be assessed and compared against relevant indi-
cators from the literature. Our objective is to evaluate their overall
performance in the context of h-adaptive simulations, first in the one
dimensional case for the viscous Burgers equation and then in two
dimensions for compressible Navier–Stokes considering a laminar flow
over a backward-facing step.

5.1. One-dimensional viscous Burgers equation

Based on the viscous Burgers equation, which has been described
in detail in Appendix, we perform a series of steady simulations on
the computational domain 𝛺ℎ = [−1, 1]. We cover two configurations
with different initial conditions (ICs) and boundary conditions (BCs).
Firstly, a stationary front (IC-shock) which simulates the presence of
a sharp gradient in the middle of the domain. For this configuration
we have 𝑢(𝑥, 0) = − tanh(𝑥∕2𝜈) with 𝜈 = 0.02 and 𝑢(∓1, 𝑡) = ±1. These
conditions are analogous to the solution of the Riemann problem for
large enough 𝑡 > 0. The second configuration is determined by a
sinusoid and it is representative of a smooth solution (IC-smooth). Thus
we define 𝑢(𝑥, 0) = sin(2𝜋𝑥) and 𝑢(∓1, 𝑡) = 0. To avoid the development
of sharp gradients, a source term is added to the formulation by the
method of manufactured solutions. Namely:

𝑆(𝑥) = (2𝜋) sin(2𝜋𝑥) cos(2𝜋𝑥) + 𝜈(2𝜋)2 sin(2𝜋𝑥). (71)

To evolve the solution in time from either of the initial conditions up to
the steady-state, the explicit scheme in Eq. (A.7) is employed. We then
apply recursively the h-adaptive algorithm explained in Section 4.6 and
Fig. 6 until we achieve the desired adapted solution.

The h-adaptive algorithm determines if refinement is required based
on the value provided by an error estimator in conjunction with the
local threshold marking strategy described by Eq. (68) in Section 4.4.
We center our computations on the three multiwavelet-based error es-
timation strategies developed in Section 4.3 and derived from Eq. (64).
We remind the reader of the terminology of these indicators:

1. 𝜅-multiwavelet indicator, denoted by 𝜂𝜅-MW
𝐾 .

2. 𝐾-multiwavelet indicator, symbolized by 𝜂𝐾-MW
𝐾 .

3. 𝛤 -multiwavelet indicator, given by 𝜂𝛤 -MW
𝐾 .

We also include from the literature two indicators extensively tested
in Naddei et al. [7,8] and Naddei [9] so that we can compare them
against the MW-based indicators. We consider the small-scale energy
density (SSED) indicator [7,47] and the spectral decay (SD) indica-
tor [48]. The SSED measures the energy associated with the highest-
order modes. It is expressed as:

𝜂SSED𝐾 =
‖

‖

‖

‖

𝑁𝑝
∑

𝓁=1
𝑈𝓁
𝐾𝜙

𝓁
𝐾 −

𝑁𝑝−1
∑

𝓁=1
𝑈𝓁
𝐾𝜙

𝓁
𝐾
‖

‖

‖

‖𝐿2(𝐾)

. (72)

The SD corresponds to the SSED indicator normalized by the total
energy within the element. That is:

𝜂SD𝐾 =

‖

‖

‖

∑𝑁𝑝
𝓁=1 𝑈

𝓁
𝐾𝜙

𝓁
𝐾 −

∑𝑁𝑝−1
𝓁=1 𝑈𝓁

𝐾𝜙
𝓁
𝐾
‖

‖

‖𝐿2(𝐾)

‖

‖

‖

∑𝑁𝑝
𝓁=1 𝑈

𝓁
𝐾𝜙

𝓁
𝐾
‖

‖

‖𝐿2(𝐾)

. (73)

In the following we define several quantities that will be used to
better understand the numerical results. Let 𝑢 be the exact solution to
the viscous Burgers equation and 𝑢ℎ ∈ 𝑝ℎ its approximate DG solution.
We define the discretization error as follows:

‖𝑒ℎ‖𝐿2(𝛺) = ‖𝑢 − 𝑢ℎ‖𝐿2(𝛺). (74)

Additionally, we measure the difference between the approximate DG
solution 𝑢ℎ and the reconstruction 𝑢̃ℎ ∈ 𝑝ℎ by:

ℎ‖𝐿2(𝛺) = ‖𝑢̃ℎ − 𝑢ℎ‖𝐿2(𝛺), with 𝑢̃ℎ =
∑

𝑢̃ℎ|𝐾 , ∀𝐾 ∈ 𝛺ℎ, (75)
11

𝐾

which follows the nomenclature in Dolejší and Solin [32]. The authors
set Eq. (75) as their estimation of the discretization error. We call this
measure the Dolejší estimation. In our case, the value of 𝑢̃ℎ is given by the
reconstruction methods described in Section 4.1. Therefore, we have
three versions of the Dolejší estimation, corresponding to the three post-
enrichment methods studied. They are denoted by 𝜅ℎ , 𝐾ℎ , and 𝛤ℎ . The
Dolejší estimation becomes another entry to the comparison between
the multiwavelet-based indicators and the SSED and SD indicators.

Finally, we define the effectivity index as the ratio between the error
iven by the indicator and the discretization error. It reads
eff =

𝜂
𝑒ℎ

, (76)

here 𝜂 =
(

∑

𝐾∈𝛺ℎ 𝜂
2
𝐾

)1∕2
. This index is a measure of the quality of

he error estimation. An index close to unity means that the estimator
ccurately mimics the evolution of the discretization error. For each
omputation of the h-adaptive algorithm, we evaluate the error esti-
ator over the full domain, 𝜂; the discretization error, 𝑒ℎ; and the
olejší estimation, ℎ. In addition, we evaluate the effectivity index

or selected cases.
An analysis of the effect of the indicators in the adaptation of the

iscous Burgers equation under IC-shock is plotted in Fig. 7 for different
egrees 𝑝 of the numerical solution. Figs. 7(a), 7(b), and 7(c) show the
ariation of the discretization error 𝑒ℎ in the conservative variable 𝑢
ersus the number of degrees of freedom (#DOFs) when uniform h-
efinement is performed as well as for the locally h-adapted solution
nder the different error estimators. For every analyzed degree, the
rror associated with the uniform h-refinement follows the theoretical
lope representing the order of the method, as illustrated by the dashed
ines. With respect to the adaptive procedure, all the indicators lead to
large decrease in the #DOFs for a given level of accuracy. The SSED

nd SD indicators show a marginally faster reduction of the #DOFs
uring the initial refinement steps. However, the multiwavelet-based
ndicators display a slightly better performance in the last refinement
teps, especially at lower degrees of the approximation. They achieve
avings in #DOFs of about 85% in 𝑝 = 1, see Fig. 7(a), whereas the SSED
nd SD indicators show a reduction of around 81% for the same degree.
he savings are scaled down to 77% for the MW-based indicators and
5% for the SSED and SD indicators when the degree is increased to
= 3, as can be seen in Fig. 7(c). This shows that the higher the

egree, the closer is the behavior of the MW-based indicators to the
SED and SD indicators. Indeed, the difference in the savings of #DOFs
oes from 4% to 2% when jumping from 𝑝 = 1 to 𝑝 = 3. Overall, the
volution of the MW-based indicators closely resembles the behavior of
he indicators from the literature while showing slightly larger savings
t lower degrees. This low-order outcome is expected, as the SSED
nd SD indicators are known to underperform at low-orders of the
pproximation [9]. These results yield a validation of our proposed
stimators.

Finally, in the same figures we observe that the different Dole-
ší estimations behave similarly to their homologous MW-based error
stimators. This further validates the idea of using reconstruction tech-
iques as an important tool in mesh adaptation. At this point, the
uestion of why using a multiwavelet expansion which is computation-
lly more expensive than a direct comparison between the original DG
olution and a post-enriched solution may arise. The answer resides in
he fact that the multiwavelet expansion yields more detailed informa-
ion about the solution and its local regularity. This is especially true
n higher dimensions, where the details are directly given component-
isely. Moreover, studies of the effectivity index (not presented in

his work) show a behavior closer to unity when employing the mul-
iwavelet decomposition. Hence, these reasons motivate the use of a
ultiwavelet expansion to compute the indicators.

We now focus our attention on the final h-adapted mesh resulting
rom the activation of the three different local multiwavelet-based
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Fig. 7. Viscous Burgers equation with IC-shock. Discretization error in 𝐿2-norm under uniform and h-adaptive refinement for selected orders of the numerical solution. Adaptation
is guided by various estimators. The multiwavelet family of estimators, Eq. (64), is denoted by , the estimators from the literature, Eqs. (72) and (73), are symbolized
by , and the Dolejší estimation, Eq. (75), is showcased by . For all estimators, the adaptive process is performed up to the 7th adaptation step.
Fig. 8. Viscous Burgers equation with IC-shock. Different levels of refinement achieved by every error estimator at the last iteration step for selected solution orders. The dashed
line corresponds to an uniform mesh with discretization error ‖𝑒ℎ|𝐾‖ < 𝜂tol for all 𝐾 ∈ 𝛺ℎ where 𝜂tol = 1 × 10−6. The adaptive process is then performed for each estimator until
we achieve 𝜂𝐾 < 𝜂tol in every element of the domain.
indicators proposed in this research. We have just seen that the SSED in-
dicator shows a slightly better agreement with our indicators compared
to the SD. Thus from now on we will only use the SSED indicator for
comparison purposes. The distribution of the refinement levels along
the computational domain for each indicator are plotted in Figs. 8(a),
8(b), and 8(c) for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3, respectively. It can
be observed that, predictably, the area surrounding the discontinuity
is subjected to a higher level of refinement. This is true for every
estimator. When we increase the degree of the solution, the number
of refinement levels decreases. This behavior is expected because we
are increasing the spatial resolution by modifying the local polynomial
degree and thus fewer elements are required to achieve a prescribed
level of accuracy. The dashed line represents the required refinement
level of an uniform mesh to reach the user defined tolerance 𝜂tol =1e-
6. The activation of the 𝐾-multiwavelet and 𝜅-multiwavelet indicators
leads to an almost identical pattern of refinement centered around the
discontinuity, regardless of the degree. The 𝛤 -multiwavelet indicator
seems to perform marginally better by generating a narrower refined
region surrounding the discontinuity. In the case of the SSED indicator,
the wider refined region translates into a higher amount of #DOFs
compared the MW-based indicators. Again, this is due to the better
performance of the MW-based estimators in the last refinement steps.
Certainly, they never surpass the dashed line. This behavior is ideal
because this means that their highest refinement level remains below
the level of the uniform mesh imposed by the tolerance 𝜂tol. For the
SSED indicator the behavior is different, it exceeds the fixed tolerance
leading to an over-refined mesh. Particularly severe is the behavior for
𝑝 = 1, surpassing six levels above 𝜂 . The over-refinement is mitigated
12

tol
by using 𝑝 = 3, in which the difference is reduced to one level. This
behavior is closely related to the effectivity index, as we will discuss in
the next paragraph.

A closer look at the evolution of the discretization error for the 𝑝 = 3
adapted and uniform grid solutions for the initial condition IC-shock
is illustrated in Fig. 9. In this case the error on the adapted mesh is
compared to the value given by the indicator. If these values show
a similar evolution along the refinement process, then the effectivity
index associated with the indicator, 𝜄eff , is close to unity. That is 𝜂 ≃ 𝑒ℎ.
It is understood that values of the effectivity index close to unity are
desirable for a posteriori indicators (see e.g. error estimation for elliptic
problems in Babuvška and Rheinboldt [49]). However, when dealing
with hyperbolic or parabolic problems such as the viscous Burgers
equation, you may come up with possibly less precise estimates and
assume effectivity indices higher than unity (see e.g. Johnson [50]).

Fig. 9(a) presents the estimated error computed by the 𝛤 -multi-
wavelet indicator versus the #DOFs corresponding to each iteration
of the adaptation process. The indicator reports an effectivity index
between 0.4 < 𝜄eff < 0.7 during the first iterations. Then progressively
drops to 𝜄eff = 0.3 in the last steps of refinement. The same behavior
is observed in Fig. 9(b) for the 𝐾-multiwavelet indicator. However, the
first refinement steps report a poor effectivity index for this indicator,
which may explain the error overshoot on the adapted mesh. After the
first iterations, the effectivity index gradually improves until achieving
values close to unity in the last refinement steps. Moving to the 𝜅-
multiwavelet indicator, Fig. 9(c), we observe a more uniform behavior.
Except during the first steps of refinement, the effectivity index remains
mostly constant at 𝜄eff = 2. The estimation mimics the behavior of
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Fig. 9. Viscous Burgers equation with IC-shock and 𝑝 = 3. Error estimator performance under h-adaptation. We compare the discretization error (solid line) versus the estimation
reported by the indicator (dashed line).
Fig. 10. Viscous Burgers equation with IC-smooth and 𝑝 = 3. We measure the discretization error (solid line) against the estimation reported by the indicator (dashed line) to
evaluate the performance of the said indicator.
the discretization error, while remaining slightly higher. Lastly, the
SSED indicator displayed in Fig. 9(d) reports an erratic behavior, with a
precise estimate during the first refinement steps and effectivity ratios
progressively deteriorating to 𝜄eff > 10. This behavior may justify the
over-refining observed in Fig. 7.

Before drawing any conclusion, it is worth studying the behavior
of the indicators for a more regular solution. A further analysis of
the effectivity index for the initial conditions IC-smooth and 𝑝 = 3 is
performed in Fig. 10. This example shows no difference between the
use of the uniform and the adapted mesh. This is a consequence of the
regularity of the solution. In this situation, performing adaptation is
not justified because the final adapted grid is nearly indistinguishable
from the uniform mesh. However, a few interesting conclusions can
be extracted from this analysis. Firstly, the 𝛤 -multiwavelet indicator,
displayed in Fig. 10(a), behaves inadequately when the solution is
smooth. In this case, the effectivity index steadily drops to 𝜄eff < 0.1 in
the last steps of refinement. It seems that the influence of the jump of
the conservative quantity at the interface between elements is not well
captured by the reconstruction. Thus the disparity between estimation
and discretization error. Secondly, the 𝐾-multiwavelet indicator, illus-
trated in Fig. 10(b), follows the discretization error particularly well,
with 𝜄eff = 1 during the last steps of refinement. However, a slight
overshoot of the estimator appears in the first stage of the refinement.
This has been likely caused by under-refining during the early steps.
If we pay attention to previous results in reported in Fig. 9(b), we
can resolve that the 𝐾-multiwavelet indicator is prone to this sort of
behavior. The same overshoot can be observed for the SSED indicator,
Fig. 10(c), though happening at later stage. This indicator continues to
report high values of the effectivity index, 𝜄eff > 10, similarly to what
we observed when IC-shock was studied. Finally, the 𝜅-multiwavelet
indicator, Fig. 10(d), maintains its characteristic regular behavior with
a nearly constant 𝜄eff = 2 and a satisfactory tracking performance.

From the analysis of Figs. 9 and 10 we thus conclude that the
multiwavelet-based indicators constitute a consistent approach for
13
tracking the discretization error of the DG approximation. They per-
form substantially better than the SSED indicator provided by the
literature, which shows an excessively high value of the effectivity
index. In particular, the 𝜅-multiwavelet indicator features a regu-
lar behavior while maintaining an acceptable effectivity index so
that it can be reliably used to control the adaptation process. Based
on this analysis, the 𝜅-multiwavelet indicator has been selected to
drive the h-adaptive algorithm in the study of the two-dimensional
backward-facing step flow.

5.2. Laminar flow over a backward-facing step

In this section a series of numerical simulations of a two-dimensional
steady laminar incompressible flow over a backward-facing step are
performed to assess the validity of our novel error estimator for efficient
mesh adaptation.

The geometry of the computational domain is outlined in Fig. 11(a).
Following the work of Barton [51], an extra inlet channel has been
considered to ameliorate the influence of the step in the upstream
flow region. Similarly, Erturk [52] has concluded that its length must
be at least five times the height of the step to be effective. Thus we
have sized our inlet channel accordingly. With regard to the outlet or
exit boundary, it must be located at a distance sufficiently far away
from the step so that the flow becomes fully developed. Similar studies
by Keskar and Lyn [53] and Gartling [54] have found that placing
the exit boundary at 60 step heights downstream from the step is
sufficient to recover a fully developed flow. Therefore, we have sized
our expanded channel in accordance. The height of the inlet channel
is equal to the dimension of the step, and the channel height in the
expanded region (downstream of the step), 𝐻 , is twice the height of
the step, ℎ. Therefore, the expansion ratio of the backward-facing step
results in 𝐻∕ℎ = 2. The Reynolds number of the problem is 𝑅𝑒 =
800 and defined as 𝑅𝑒 = 𝑈𝐻 , where 𝑈 is the inlet mean velocity,
𝜈
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Fig. 11. Description of the backward-facing step.
.e. two thirds of the maximum inlet velocity. Lastly, to insure the
ncompressibility of the problem the Mach number is set to 𝑀𝑎 = 0.1.

Regarding the boundary conditions, we impose at the inlet bound-
ry a fully developed plane Poiseuille flow so that the velocity profile
t the entrance of the domain is parabolic. At the exit boundary, a non-
eflecting boundary condition is imposed such that the velocity profile
f the numerical solution at the exit boundary matches the analytical
arabolic profile of a Poiseuille flow. Finally, wall boundary conditions
re imposed on the upper and bottom walls of the channel, as well
s on the surface of the step. The details regarding the considered
onfiguration are reported in Fig. 11(a).

To mesh the domain we have considered 11 different Cartesian
niform grids, depending on the order of the numerical solution at
and. Fig. 11(c) describes the configurations in detail. The grids are
amed A to K, and ordered by increasing resolution. A sample of the
eshes C, E and G is displayed in Fig. 11(b). The grids A, B and C

gray shaded cells) correspond to the three initial computational grids
rom which the adapted grids will be built. They represent the coarsest
tarting meshes for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3, respectively. The grid

K with 𝑝 = 2 (boxed cell) corresponds to the reference solution of
the present study. Those grids that retain an equivalent number of
degrees of freedom (#DOFs) for different orders in the computations
are labeled with the same color nomenclature. That means that their
numerical solution should be comparable between computations based
on different polynomial orders. Fig. 11(c) also reports how this equiv-
alence in #DOFs is maintained along the 𝑦-direction of the expanded
channel. The uniform grids obviously display the same #DOFs per unit
distance in both 𝑥- and 𝑦-direction. Finally, for the coarser meshes
(grids A to E), the region immediately after the inlet has been locally
refined so that we are able to properly capture the parabolic inflow
from the initial steps of the adaptation process and therefore impose
an appropriate inlet profile. Indeed, the study by Yee et al. [55] shows
that when a coarse grid is employed in the backward-facing step flow
at 𝑅𝑒 = 800, a spurious oscillating numerical solution is obtained and
the steady-state cannot be reached. The work of Erturk [52], in which
an interval of 𝑅𝑒 = [100, 3000] is investigated by solving the flow using

second order finite difference method, employs a very fine mesh so
hat convergence to the steady-state can be achieved. For the meshes
mployed in this work, and the polynomial orders considered in the
GM used, the convergence problems reported by Yee et al. [55] were
ot encountered, even for solutions with low polynomial degrees such
14

s 𝑝 = 1.
To evaluate the quality of our numerical solution, we have selected
three streamwise locations along the expanded channel, as reported
in Fig. 11(a). They cover the lower and upper recirculation bubbles
(𝑥 = 6ℎ and 𝑥 = 14ℎ), and an overview of the developed flow far away
downstream (𝑥 = 30ℎ). The idea is to extract the profiles of the relevant
physical quantities along the vertical direction of the main channel. We
will consider the profiles of the horizontal and vertical components
of the velocity, given by 𝑢 and 𝑣. The profile vorticity, defined as
𝜔 = 𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑦, is also included in the analysis. These profiles are
examined and compared to the results from the study of Erturk [52]
at the same streamwise locations. In that study, the author uses a grid
of 101 uniform elements along the vertical direction of the expanded
channel and their scheme is second order accurate. Thus we count
202 DOFs along the 𝑦-direction. In comparison, we have described our
reference solution as a third order numerical solution with 384 DOFs
along the same direction (see Fig. 11(c)).

The results comparing the solution obtained by Erturk versus our
reference solution are shown in Fig. 12. We observe that our computed
profiles agree well with those of the literature for every physical quan-
tity analyzed. There are small discrepancies in the maximum values
of the 𝑥- and 𝑦- velocities. We believe this is due to the fact that
in our simulations the maximum 𝑥-velocity of the parabolic profile
is slightly higher right at the fall of the step than at the upstream
inlet. However, Erturk shows that for 𝑅𝑒 = 800, these two profiles
must be nearly identical. We think that by using a compressible solver
(for an incompressible flow) it makes it much harder to adjust the
inflow/outflow boundary conditions to attenuate the small increase in
the horizontal velocity at the step. We consider that this slight deviation
does not substantially affect the outcome of the h-adaptation analysis,
which is the main focus of our study.

After validating the numerical results on uniform grids, we now
investigate how to reduce the grid size locally, and thus the compu-
tational load, for a given level of accuracy. The idea is to start from
a coarse mesh, such as the mesh A, B or C reported in Fig. 11(c),
and to detect the regions in which the approximate DG solution is
underresolved and a finer local mesh resolution might be required. To
that end, the h-adaptive algorithm described in Section 4.6 is applied
repeatedly until the desired adapted solution is reached. To select
those elements that require higher resolution for each iteration we use
an error estimator (Section 4.3) in conjunction with an appropriate

marking strategy (Section 4.4).



Computers and Fluids 256 (2023) 105844J. García Bautista et al.

f

c
m
t

w
a
S

t
e
o
s
o
S
i
s

Fig. 12. Laminar backward-facing-step. Profiles for different physical quantities at three different streamwise locations along the expanded channel. The profiles have been extracted
rom our reference numerical solution (mesh K with 𝑝 = 2) and compared with the literature at the same locations.
f
m
i
a
o

h
𝜌

t
F
t
p
i
d
t
h
i
t
i
w
r
a
h
m
f
F
r
n
j
o
s
e
t
t
l
d
a

𝑝
b
a
w

Next, we will enumerate the error estimators employed for this
onfiguration, and later we will stress the importance of a suitable
arking strategy associated to the estimation. We focus our compu-

ations on the 𝜅-multiwavelet indicator as defined by Eq. (67). This
choice of the error estimator was justified by the encouraging results
reported from the computations of the 1-D viscous Burgers equation
in Section 5.1, where it proved to have the best overall behavior.
The 𝜅-multiwavelet indicator may be evaluated for every conservative
variable 𝐮 = (𝜌, 𝜌𝐯, 𝜌𝐸) or any other derived quantity. For the study of
the backward-facing step we have selected the horizontal and vertical
components of the momentum density vector (𝜌𝐯), the pressure (𝑝), and
the vorticity (𝜔). They constitute relevant quantities representative of
the behavior of the overall solution. Therefore we come up with three
different variations of the multiwavelet-based indicator that will be
used in the computations, namely:

1. 𝜅-multiwavelet on density momentum indicator (MW-𝜌𝐯), denoted
by 𝜂MW-𝜌𝐯

𝐾 .
2. 𝜅-multiwavelet on pressure indicator (MW-𝑝), given by 𝜂MW-𝑝

𝐾 .
3. 𝜅-multiwavelet on vorticity indicator (MW-𝜔), symbolized by

𝜂MW-𝜔
𝐾 .

It is worth mentioning that we have dropped the ‘‘𝜅-’’ terminology
when symbolizing the new indicators to simplify the nomenclature.
However, we remind the reader that when denoting MW-based indica-
tors in this section, we exclusively refer to the 𝜅-multiwavelet indicator
applied to selected conservative and derived quantities.

Similarly to the one-dimensional configuration in Section 5.1, the
small-scale energy density (SSED) and spectral decay (SD) error estima-
tors will be once more compared to the multiwavelet-based indicators.
In the two-dimensional setting, they are defined as [7]:

𝜂SSED𝐾 =

‖

‖

‖

(𝜌𝐯)𝑝 − (𝜌𝐯)𝑝−1
‖

‖

‖𝐿2(𝐾)

|𝐾|

1∕2
, (77)

𝜂SD𝐾 =

‖

‖

‖

(𝜌𝐯)𝑝 − (𝜌𝐯)𝑝−1
‖

‖

‖𝐿2(𝐾)
‖

‖

‖

(𝜌𝐯)𝑝
‖

‖

‖𝐿2(𝐾)

, (78)

here the normalization is given by the volume of the element, |𝐾|,
nd the total energy in the element, ‖‖

‖

(𝜌𝐯)𝑝
‖

‖

‖𝐿2(𝐾)
, for the SSED and the

D indicators, respectively.
Regarding the marking strategy, initially we had used the local

hreshold strategy defined by Eq. (68), similarly to Section 5.1. How-
ver, this strategy proved to be inadequate when comparing indicators
f different nature in the context of the more complex backward-facing
tep. The reason is that we are dealing with differences of several orders
f magnitude between the estimators, especially when comparing the
SED and SD indicators to the multiwavelet-based indicators. Therefore
t was not possible to find a user-defined tolerance that fitted them all
atisfactorily and kept the comparison meaningful. In a more general
15

M

ramework, it might be more convenient to opt for the maximum
arking strategy as defined by Eq. (69), in which the refining threshold

s defined as a percentage of the highest value of the indicator. This
llows us to set a given fraction of elements to be marked independently
f the value of the indicator.

Fig. 13 shows the final adapted grids resulting from applying the
-adaptive algorithm driven by the multiwavelet-based indicators (MW-
𝐯, MW-𝑝, and MW-𝜔) and the two indicators from the literature (SD

and SSED). The leftmost column corresponds to the simulation 𝑝 = 1
and its associated initial uniform grid is Mesh C. The column in the
middle corresponds to 𝑝 = 2 and the starting grid is Mesh B. Finally,
the rightmost column corresponds to the simulation starting from Mesh
A and a polynomial degree equal to 𝑝 = 3.

The adapted grids associated with the lowest degree 𝑝 = 1 exhibit
he highest number of refined elements. Clearly, the SSED indicator in
ig. 13(e) produces the finest grid. This is due to the fact that it tends
o over-refine along the entire channel. However, it only manages to
artially capture the geometrical jump. This tendency to over-refining
s explained by the low-order approximation used in this simulation. It
oes not have enough modes to capture the high-frequency content of
he solution and thus the indicator, which measures the energy of the
ighest modes, does not properly work [7]. On the other hand, the SD
ndicator in Fig. 13(d) is refining aggressively at the walls and along
he recirculation bubbles (locations 𝑥 = 6ℎ and 𝑥 = 14ℎ). This behavior
s expected due to its normalization by the total energy of the flow,
hich approaches zero near walls. This makes the indicator to detect

egions that simultaneously report low values of high-frequency content
nd of the total energy, such as recirculation regions [9]. On the other
and, the refinement produced by the multiwavelet-based indicators is
ore consistent with the physics, with similar patterns of h-refinement

or all indicators. Indeed, the MW-𝜌𝐯 and MW-𝜔 indicators, reported in
igs. 13(a) and 13(c), respectively, follow the dynamics of the flow and
efine the stream accordingly, with the latter showing a slightly lower
umber of adapted elements overall. The region around the geometrical
ump together with the separated shear layer yields the highest level
f refinement. The top and bottom recirculation regions caused by the
eparation of the flow at the step corner are also adapted to a lesser
xtent, which can be explained by the regularity of the solution in
hat region. The MW-𝑝 indicator given in Fig. 13(b) displays a higher
endency to refine the region around the step and the separated shear
ayer. Moreover, it emphasizes adaptation where the flow changes
irection to fill the expanded channel (between 𝑥 = 6ℎ and 𝑥 = 14ℎ),
s the pressure changes abruptly in this region.

We now draw our attention to the final adapted grid associated with
= 3. We observe that a much lower level of h-refinement is displayed
y the adapted grid. This is expected as the grid cell now holds a larger
mount of information (corresponding to more DOFs). Yet, regions
ith geometrical singularities will stand out. Surely, the MW-𝜌𝐯 and

W-𝜔 indicators shown in Fig. 13(a) and Fig. 13(c), respectively,
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Fig. 13. Laminar backward-facing-step. Final h-refined grids at four regions along the expanded channel. Figures are organized by error estimator and computational degree, from
𝑝 = 1 (left column), 𝑝 = 2 (middle column), and 𝑝 = 3 (right column).
focus the adaptation efforts on the separated shear layer and in the
vicinity of the step. Indeed, a strong velocity gradient appears due
to presence of the geometrical jump. In comparison, the lower and
upper recirculation regions along the expanded channel undergo little
refinement. Similar conclusions can be obtained for the MW-𝑝 indicator
16
in Fig. 13(b). The main difference lies in the further refinement along
the inlet channel. The higher count of DOFs allows the SSED indicator
in Fig. 13(e) to amend the deficiencies reported for the low-order
approximation, obtaining a similar pattern of h-refinement as compared
to the multiwavelet-based indicators. Though still gaining a larger
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Fig. 14. Laminar backward-facing-step. 𝐿2-norm of the error in momentum density vs the number of degrees of freedom under uniform and adaptive h-refinement for different
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umber of elements in general. Fig. 13(d) shows that the SD indicator
lso benefits from a larger number of DOFs per element. It does fully
orrect the behavior on the walls but still continues to over-refine in
he lower recirculation region.

Lastly, regarding the final adapted grid obtained for the quadratic
pproximation 𝑝 = 2, it appears to be in between those obtained
or 𝑝 = 1 and 𝑝 = 3. Indeed, Figs. 13(a) to 13(c) show how the
ultiwavelet-based estimators moderately follow the changing stream

ight after the channel expansion. This behavior is less pronounced
or the MW-𝑝 indicator in Fig. 13(b), which tends to refine more
lements in the inlet region. As for the adaptive 𝑝 = 1 simulation,
he multiwavelet estimators lead to the highest level of refinement
n the shear layer and in the region in the proximity of the corner,
hile the more regular recirculation regions display a considerable

ower refinement level, closer to the grids obtained for 𝑝 = 3. With
espect to the SSED and SD indicators, the increase in the number of
OFs somewhat lessens the deficiencies observed in 𝑝 = 1. Fig. 13(e)

hows a more targeted adaptation with the SSED indicator, though
till heavily refining along the inlet and immediately after. The SD
ndicator in Fig. 13(d) significantly reduces refinement closer to walls
hile excessively adapting the recirculation regions akin to 𝑝 = 1.

In order to measure the accuracy of the h-refined solutions resulting
rom the different indicators, we will analyze the convergence history
f the error in the 𝐿2-norm of the momentum density versus the number
f DOFs. To complete the analysis, we will also include an exami-
ation of the computational times. Later we will study the locations
f flow detachment/reattachment along the expanded channel versus
he #DOFs. The reference solution employed to obtain these error
uantities is based on the uniform mesh K described in Fig. 11(c) and
17

= 2. t
Fig. 14 shows the convergence history of the error in the 𝐿2-norm
f the momentum density under uniform and adaptive h-refinement
or different orders of the DGM. The evolution of the error on the
niform grids is recorded in Fig. 14(a). We start the adaptation from
elatively coarse grids and we want to make sure that we eventually
chieve the asymptotic region. Indeed, the plotted data confirm that
he asymptotic convergence rate is reached for sufficiently fine grids.
he later convergence behavior observed in the higher-order solutions
an be explained due to the influence of the singularity at the step.

Figs. 14(b) to 14(d) describe the behavior of the error in the
-adaptive solutions driven by the five error estimators. We make
he observation that the maximum local refinement level is limited
o reaching the same element size as its uniform counterpart. Aside
rom the starting grid, four uniformly refined simulations are reported,
herefore four refinement steps are performed for each indicator. That
xplains why the h-refinement procedure does not match the accuracy
f the uniform grids. As we previously explained while describing the
dapted grids in Fig. 13, the SD and SSED indicators perform poorly for
ow-orders of the solution. This is due to their dependency on the higher
odes of the numerical approximation, which are not well captured for

ow-orders. By contrast, the multiwavelet-based estimators do not show
his dependence and their behavior is more consistent for every order
f the adapted solution.

This is evident in Fig. 14(b) with 𝑝 = 1, where the error line
f the SD and SSED indicators lies above the uniformly refined line,
eaning that no benefit is gained by activating adaptation with these

ndicators. In the case of the SD indicator the extremely slow decay
f the error is explained by its tendency to incorrectly refine on walls
nd recirculations regions, which are not the main source of error in

he backward-facing step configuration. The SSED indicator actually
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Table 1
Laminar backward-facing-step. #DOFs and memory comparison for final h-adapted
grids. Percentages are measured with respect to uniform grids that report similar
solution accuracy. Positive percentages represent savings, while negative values mean
higher #DOFs/memory consumption.

Error #DOFs change (%) Memory change (%)

estimator 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3

MW-𝜌𝐯 30 83 90 33 82 89
MW-𝑝 48 84 88 52 81 87
MW-𝜔 31 83 89 35 82 89
SD −491 −120 82 −481 −114 79
SSED −198 66 84 −220 64 82

Table 2
Laminar backward-facing-step. Memory change for final h-adapted grids. Percentages
are evaluated with respect to an equivalent uniform grid with fixed 𝑝 = 1. Positive
percentages speak for higher memory consumption, while negative values describe a
lower memory utilization.

Error
estimator

h-refined (%) Uniform
refinement (%)

𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3

MW-𝜌𝐯 −33 −56 −53 – 145 320
MW-𝑝 −52 −44 −52 – 204 280
MW-𝜔 −35 −40 −42 – 238 371
SSED 220 23 −43 – 244 221

manages to reach the same level of accuracy than the multiwavelet-
based indicators but at the expense of much larger amount of degrees
of freedom, a clear sign of over-refining. On the other hand, the family
of multiwavelet-based indicators leads to a moderate reduction of 30%
to 48% in the total number of DOFs as compared to uniform refinement,
with the MW-𝑝 indicator reporting the highest savings.

When the polynomial degree is increased to 𝑝 = 2, as illustrated
n Fig. 14(c), the multiwavelet-based indicators lead to a reduction
f one order of magnitude in the error with respect to 𝑝 = 1 while
eeping an equivalent total number of degrees of freedom. When they
re measured against uniform refinement with the same total error we
btain a decrease of the total number of DOFs of approximately 80%.
y contrast, the SSED indicator achieves a similar level of accuracy
ut reporting a significantly lower performance of about 66%. Its
endency to over-refine is ameliorated but not fully corrected. In a
imilar manner, the SD indicator seems to slightly improve its behavior
ompared to 𝑝 = 1 but it still retains a slower convergence rate than the
niformly refined simulations and it continues to lag behind the other
ndicators.

Finally the highest order of the h-adapted solution with 𝑝 = 3
s reported in Fig. 14(d). Every error estimator lead to substantial
eduction of the required number of degrees of freedom to attain a
iven level of accuracy. Again, the error is further decreased compared
o lower degrees for a similar number of DOFs. The multiwavelet-based
ndicators achieve the best performance, with savings of approximately
0% compared to uniform refinement. The differences are small, but
he MW-𝜌𝐯 indicator reports a small lead. The family of multiwavelet-
ased indicators become more accurate when we increase the number
f DOFs because more information can be efficiently stored by the
ultiwavelet coefficients. In the same way, a higher-order solution also

enefits the SSED and SD indicators. The former achieves a reduction
n the total number of DOFs of about 84%, while the latter shows a
lightly slower convergence rate only reaching in accuracy the third
niformly refined simulation with savings of around 82%.

Table 1 offers a summary of the savings in the number of degrees of
reedom when the h-adaptive algorithm is activated. The multiwavelet-
ased indicators display a more consistent and reliable behavior with
avings increasing from 30% to 40% for 𝑝 = 1 to almost 90% for the
ighest order. By contrast, the SSED and SD indicators underperform
18

he multiwavelet family of indicators for the lower-order simulations, r
nd only manage to achieve savings of about 80% for 𝑝 = 3. Fi-
ally, similar percentages in memory savings show how the number
f DOFs and memory are closely linked. Certainly, the differences
etween these two quantities are not higher than 10%, even when
he order is increased. This happens despite the fact that implicit
ime integration with higher-order DG methods imposes larger memory
equirements [4].

Memory behavior is further studied in Table 2. Only those error
stimators which reach a similar level of accuracy are analyzed. We
ave set the memory consumption of the uniformly refined simulation
ith 𝑝 = 1 as reference to measure the effect of increasing the order

n memory growth. We observe a constant decrease in memory of
pproximately 30% to 50% for the multiwavelet family of indicators,
lmost independently of the order. Conversely, the uniformly refined
imulations report an increase of about three to four times in memory
equirements following the increment in order to achieve the same
rescribed level of accuracy than its h-adapted counterpart. We remark
hat the irregular results of the SSED indicator are due to its poorly
erformance for low-order simulations.

Fig. 15 outlines the behavior of the error versus the computational
ost for the different h-adaptive simulations. Interestingly, the rate of
onvergence in CPU-time for the h-adaptive simulations with 𝑝 = 1 is
lower in the last iterations than the uniformly refined simulations, as
llustrated by Fig. 15(a). We expect this result for the SD and SSED
ndicators, as they report significantly higher number of degrees of
reedom than the uniform simulations for a similar accuracy (see Table
). However, the multiwavelet estimators do show moderate number
f DOFs reductions which do not translate into computational savings.
his may occur because for a similar number of DOFs adapted meshes
ith hanging nodes may take longer to reach convergence than uniform
nes.

On the other hand, higher order simulations report clear computa-
ional gains when adaptation is activated. This is the case of Fig. 15(b)
ith 𝑝 = 2, where most of the estimators except the SD outperform
niform refinement. This trend continues for 𝑝 = 3, with Fig. 15(c) re-
orting substantial cost improvements for every indicator. Remarkably,
he multiwavelet indicators provide the best performance among all the
roposed error estimators.

Table 3 collects the CPU-time and speedup values of the h-adaptive
imulations applied to the final adapted grids. These quantities are
elative to the final uniformly refined mesh. As reported in Fig. 15,
e observe a strong variation depending on the order of the adapted

olution and the error estimator employed. In this manner, adaptation
ith 𝑝 = 1 underperforms compared to uniform refinement, whereas
igher orders achieve significant speedups for selected estimators. The
D indicator offers the lowest performance, with no gain in 𝑝 = 2 and a
peedup of three times in 𝑝 = 3. Conversely, the multiwavelet indicators
re the most efficient, delivering more than 20 times faster solutions in
= 2 and between 12 and 19 times in 𝑝 = 3. Lastly, the SSED indicator

ands in between, by providing a speedup of five times in 𝑝 = 2 and of
ine in 𝑝 = 3. Sensor estimation, element marking and refining times
ave not been included in the previous analysis. However, they never
onstitute more than 5% of the total computational time.

We complete the study of the adapted solutions by analyzing the
ormalized lengths of flow separation/reattachment. Unlike the previ-
us analysis of the error, these quantities can be found in literature
nd thus it will allow us to contrast and validate our results. Table 4
ollects some of the most relevant studies and how their values compare
o our reference solution. Their domains are slightly different with the
ain divergence being the length of the expanded channel and the

bsence/presence of the inlet channel. As reported by Barton [51],
he presence of an inlet has resulted in the reduction of the lower
eattachment length, denoted by 𝑥1, the upper separation length, 𝑥2,
nd to a lesser extent, the upper reattachment length, 𝑥3, with respect
o the use of no entrance at all. Only the study of Erturk [52] provides

esults on the separation length at the step, 𝑥0. Our reference solution
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Fig. 15. Laminar backward-facing-step. 𝐿2-norm of the error in momentum density vs the computational time under uniform and adaptive h-refinement for various values of 𝑝.
Table 3
Laminar backward-facing-step. Simulation time speedups between uniform and adapted grids for the final adaptation step in Fig. 15. The results
are presented for the different values of 𝑝.

(a) 𝑝 = 1.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌𝐯 264.26 0.38
MW-𝑝 223.30 0.45
MW-𝜔 352.23 0.28
SD 3713.44 0.03
SSED 1250.00 0.08

(b) 𝑝 = 2.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌𝐯 4.22 23.68
MW-𝑝 3.91 25.59
MW-𝜔 4.41 22.65
SD 100.00 1.00
SSED 21.06 4.75

(c) 𝑝 = 3.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌𝐯 5.23 19.10
MW-𝑝 8.24 12.14
MW-𝜔 5.56 18.00
SD 32.90 3.05
SSED 11.03 9.07
r
r
s
m

Table 4
Laminar backward-facing-step. Normalized separation and reattachment locations found
in literature.

𝑥0 𝑥1 𝑥2 𝑥3 Domain

Gartling [54] – 12.20 9.70 20.96 60ℎ, no entrance
Barton [51] – 12.03 9.64 20.96 32ℎ, no entrance

– 11.51 9.14 20.66 32ℎ + inlet channel (10ℎ)
Cruchaga [56] – 12.00 9.60 20.20 60ℎ, no entrance

– 12.00 9.40 19.40 60ℎ + inlet channel (ℎ)
Erturk [52] 0.15 11.83 9.47 20.55 300ℎ + inlet channel (20ℎ)
Present study 0.15 11.81 9.31 20.83 60ℎ + inlet channel (5ℎ)

agrees very well with the values 𝑥0 and 𝑥1 provided by Erturk. The
lengths 𝑥2 and 𝑥3, defining the upper recirculation region, show a small
deviation from the study. However, the former is still within the values
provided by Cruchaga [56] and Barton [51], and the latter, being the
furthest from the step, is the least influenced by the absence/presence
of the inlet channel and thus it is reasonable that it may be found to
be in between the estimates given by Barton.

Fig. 16 shows the convergence history of the normalized separa-
tion/reattachment lengths for every error estimator and different orders
of the numerical solution. The evolution of the separation length at
the step, denoted by 𝑥0, shines a new light on indicator behavior
not reported in the previous analysis of Fig. 14. Certainly, the SD
indicator shows the fastest convergence and highest accuracy of the
error estimators examined. Moreover, it is the only indicator that
reaches the target reference length when 𝑝 > 1 while achieving a
large reduction on the number of degrees of freedom (above 90%)
compared to uniform refinement. This unusual result can be explained
by two confluent factors. These are, the weak influence of the stream
itself on this region and the strong tendency of the SD indicator to
refine in the low energy regions. The first factor ameliorates the poor
performance of the indicator overall, and the second factor allows
for over-refining in the recirculation regions, which is beneficial to
accurately secure the separation/reattachment locations. By contrast,
the rest of the indicators do not focus as much on regions of low energy
and thus struggle to reach the target length.
19
The convergence history of the remaining locations 𝑥1, 𝑥2, and 𝑥3
shows patterns already observed during the previous analysis of the
error in Fig. 14. For the lowest degree 𝑝 = 1, the SD indicator reports
the largest divergence on achieving the reference target length. This
happens despite its tendency to heavily refine in recirculation regions
and on walls, which should help convergence to the target length. This
contradiction can be explained by the higher weight that the upstream
flow acquire on accurately capturing the locations further from the step.
Therefore, efficient refinement in of the upstream flow is key. On the
other hand, the SSED indicator displays mixed record on reaching the
reference target length, together with a slower convergence rate com-
pared to uniform refinement. Finally, the multiwavelet-based indicators
show analogous rates of convergence between them when analyzing 𝑥1,
𝑥2, and 𝑥3 for 𝑝 = 1 simulations. Apart from 𝑥3, for which only the MW-
𝜌𝐯 indicator achieves the target, every multiwavelet-based estimator
reaches the reference value with savings in the range of 45% to 60%.

When the order is increased to 𝑝 = 2, every indicator substantially
improves their convergence rate. The SSED indicator attains a reduction
of about 83% in the number of DOFs and the multiwavelet-based
indicators obtain a further decrease to be within the interval of 93%
to 95%. The SD indicator remains as the only error estimator which
does not achieve the target length.

Finally, for the highest order 𝑝 = 3 every refinement indicator
eaches the prescribed reference length while achieving a significant
eduction in the number of DOFs. They perform similarly within the
avings range of 93% to 96%. The exception is the upper reattach-
ent length, 𝑥3, for which the MW-𝜔 and the SSED indicators do

not converge to the target. It is also worth mentioning that in this
case the SD indicator performs better than in previous Fig. 14, due
to the idiosyncrasy of the separation/reattachment location quantity,
which generally will show better measurements from indicators that
lean toward refinement on the recirculation regions.

To finalize our work, we examine the different indicators within the
multiwavelet family. So far, when comparing them to the SSED and SD
indicators we have treated them mainly as a group. Now we analyze
their performance with respect to each other. To do that, we evaluate
the error in the 𝐿2-norm of the different physical quantities that charac-
terize each of the multiwavelet indicators along vertical profiles at the
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Fig. 16. Laminar backward-facing-step. Normalized locations of flow detachment/reattachment under uniform and adaptive h-refinement for varying values of 𝑝.
elected locations 𝑥 = 0, 6ℎ, 14ℎ, 30ℎ shown in Fig. 11(a). We remind
he reader that the indicators encompass density momentum, pressure
nd vorticity, and thus the error is based on these as well. We assume
hat the final adapted grid reaches an equivalent level of accuracy for
very indicator of the multiwavelet family, as reported in Fig. 14 for
he density momentum, so that we have a meaningful comparison.

Fig. 17 shows the comparison between the multiwavelet-based in-
icators. Figs. 17(b) and 17(d) represent every profile location along
he 𝑥-axis and its associated error along the 𝑦-axis. For each figure
here are three line styles covering 𝑝 = 1 to 𝑝 = 3. Color preference

is given to those indicators that typify the same physical quantity
than the current error. For example, Fig. 17(b) illustrates the error
in momentum density, and thus the red color line represents the h-
20

adapted mesh associated to the momentum density indicator, MW-𝜌𝐯.
The remaining black lines represent the h-adapted mesh driven by
the pressure indicator, MW-𝑝, and vorticity indicator, MW-𝜔, in no
preferential order. In general, we observe that 𝑝 = 1 reports a more
even distribution of error along the channel. When we increase the
approximation order the error is concentrated in the region around
the step while decreasing at the other locations, a clear sign that the
downstream convection of the error is ameliorated. Interestingly, the
best results in these locations 𝑥 > 0 with 𝑝 > 1 are generally obtained
by the indicator that share physical variable with the error, e.g. error
in pressure is better captured by the MW-𝑝 indicator. This is somehow
expected, as an indicator based on a particular physical variable would
usually monitor better its associated error.

Fig. 17(a) measures the error of these profiles combined. We observe

that for low-order and evenly distribution of the error, the MW-𝜌𝐯
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Fig. 17. Laminar backward-facing step. Performance comparison with varying 𝑝 among multiwavelet-based error estimators at selected profiles along the expanded channel..
indicator offers the best performance, reporting the most accurate
results in momentum density, pressure, and vorticity. When the order
is increased, the step region gains more influence and the indicator that
reports lower error there will perform best. In our case it is the MW-𝜔
indicator for 𝑝 = 2 and a combination of the MW-𝜌𝐯 and MW-𝑝 for 𝑝 = 3.
Therefore, we believe that near a singularity there is no clear indicator
that outperform the others. All of them perform similarly, with slight
variations depending on the order of the simulation.

6. Conclusions

In this work we have presented a family of novel error estimators
to perform h-adaptation based on a local multiwavelet analysis of the
DG solution of conservation laws. This high-order solution is subjected
to a post-enrichment process so that the multiwavelet expansion is able
to extract meaningful information from the locally enriched DG solu-
tion. The new information is represented in the form of multiwavelet
coefficients, on which is based the computation of the error estimators.

First simulations of the one-dimensional viscous Burgers equation
show convincing results. For these simulations an important decrease
in the number of degrees of freedom is observed when the adaptive
process is activated. A comparison of the performance of the proposed
approach with the modal error estimators developed in [7,8] shows
that, for our proposed indicators, fewer elements are refined for a given
error level. Interestingly, the effectivity index of the proposed method
is close to unity, which means that it is able to closely monitor the
evolution of the error in the approximation.

Supported by the encouraging results of the one-dimensional sim-
ulations, we have extended the multiwavelet-based error estimators to
higher dimensions. The 2-D approach is applied to a steady laminar
backward-facing step flow at 𝑅𝑒 = 800 and 𝑀𝑎 = 0.1. This more
challenging configuration certainly demonstrates the viability of h-
refinement to reach a substantial computational gain with respect to
21
uniformly refined grids. For a prescribed level of accuracy, depending
on the order of the simulation, the multiwavelet-based indicators have
achieved a reduction in the numbers of degrees of freedom of 48%,
84%, 90% for DG 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3 simulations, respectively.
The convergence study of the separation/reattachment lengths leads to
similar savings and further justifies the use of h-adaptation to reduce
the computational load.

It is worth mentioning that the number of DOFs in the final adapted
grid is kept relatively constant for every simulation order. Therefore,
the increase in savings is due to the gain in accuracy from the use of
higher-order. Most importantly, this improved accuracy with increasing
order is achieved while the memory consumption of the h-adaptive
simulations remains stable. By contrast, the same methodology applied
to uniformly refined simulations leads to an increase of up to four times
in memory requirements with respect to adapted simulations. This
result highlights the importance of high-order methods in adaptation.

A thorough comparison of the multiwavelet-based indicators versus
selected indicators provided by Naddei et al. [7,8] has found the largest
differences in behavior for the low-order simulations. Regarding the
literature estimators, the SSED indicator performs poorly due to their
dependency on the higher modes of the solution, while the underper-
forming behavior of the SD indicator is due to its tendency to wrongly
detect regions in which high-energy content and the total energy have
low values. On the other hand, the multiwavelet-based indicators do
not show this dependency across the different orders. Most notably, the
multiwavelet-based indicators become more accurate when increasing
the number of DOFs per element thanks to the higher quantity of
details captured during the multiwavelet decomposition. In a similar
manner, the SSED and SD indicators also benefit from a larger number
of DOFs, which allows for a better representation of higher modes. This
is especially relevant for the SSED indicator. However, they still do not
surpass the overall performance of the multiwavelet-based indicators.
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These differences are highlighted in the analysis of the h-adapted
rids. For low-order simulations, the SSED indicator normally produces
he largest refined grid, whereas the SD indicator tends to refine ag-
ressively at the walls and along the recirculation regions. By contrast,
he multiwavelet-based indicators display a more consistent adaptation,
ith less dependency on the numerical order. They focus the adaptation
fforts on the separated shear layer and on the vicinity of the singular-
ty. These regions display the highest h-refinement levels regardless of
, due to the presence of a sharp velocity gradient. With the exception
f the SD indicator, all indicators tend to produce similar patterns of
-refinement as the order is increased. In this case, the multiwavelet-
ased indicators and the SSED indicator lead to similar refined regions,
hough the latter still yields a slightly larger mesh.

The size of the mesh and the order of the approximation become
ey drivers of the magnitude of the simulation times. Computational
imes need to be interpreted with caution because they are hard to
easure consistently and are subjected to many variables not always

ully understood. However, the data presented demonstrates that, by
ctivating a multiwavelet-guided adaptation in simulations of higher
rder, we achieve substantial speedup times. Particularly, in the best
ase scenario, the multiwavelet indicators enable more than 20 times
aster solutions when compared to the non-adapted solution.

With regards to the individual indicators under the umbrella of the
ultiwavelet philosophy, we have found that, when the underlying

olution is smooth and for a prescribed level of accuracy, building the
ndicator on a physical quantity (e.g. momentum density) leads to h-
dapted meshes that report more accurate quantity values than the
omologous h-adapted meshes from the remaining multiwavelet-based
ndicators. However, in the presence of a singularity, the causality
eems to be weakened and the choice of the physical quantity for the
W-based indicator seems not to matter as much.

The extension to isotropic hp-adaptation by monitoring the rate
f decay of the multiwavelets’ vanishing moments is the subject of
urrent research. Future research is also planned on the analysis of
he multiwavelet components in the 𝑥-, 𝑦- and 𝑥𝑦- directions, which
ill open the door to the development of an anisotropic adaptation
lgorithm.
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ppendix. Viscous Burgers Equation

In this case 𝛺 ⊂ R and the vector of conservative variables in
qs. (1)–(2) simply becomes 𝐮 = 𝑢. The convective and viscous fluxes
ake the form 𝑐 (𝑢) =

1
2 𝑢

2 and 𝑣
(

𝑢, 𝜕𝑥𝑢
)

= 𝜈 𝜕𝑢𝜕𝑥 , respectively. Finally,
the variational projection of the convective and viscous terms in Eq. (4)
yields

𝑐 (𝑢ℎ, 𝜙ℎ) =
[

ℎ𝑐𝜙ℎ
]

𝜕𝐾 − ∫𝐾
1
2 𝑢

2
ℎ
𝜕𝜙ℎ
𝜕𝑥

d𝑥 , (A.1)

𝑣(𝑢ℎ, 𝜙ℎ) = −𝜈

(

[

𝛩𝑣𝜙ℎ
]

𝜕𝐾 − ∫𝐾
𝜕𝑢ℎ
𝜕𝑥

𝜕𝜙ℎ
𝜕𝑥

d𝑥 (A.2)

−
[

(ℎ𝑣 − 𝑢ℎ)
𝜕𝜙ℎ
𝜕𝑥

]

𝜕𝐾

)

,

in which the structure presented by Alhawwary and Wang [57] has
been followed. Similarly to the 2-D formulation reported in Section 2.1,
the LLF flux is employed. Therefore:

ℎ𝑐 =
{{

𝑐 (𝑢)
}}

− 1
2
𝛼LLF[[𝑢]] , (A.3)

with

𝛼LLF = max
min(𝑢− ,𝑢+)≤𝑢≤max(𝑢− ,𝑢+)

|

|

|

|

d𝑐 (𝑢)
d𝑢

|

|

|

|

. (A.4)

he numerical viscous fluxes, ℎ𝑣 and 𝛩𝑣, are approximated by the
symmetric interior penalty method described by Arnold et al. [58]. It
reads

ℎ𝑣 =
{{

𝑢ℎ
}}

, (A.5)

𝛩𝑣 =
{{

𝜕𝑢ℎ
𝜕𝑥

}}

− 𝛼SIP[[𝑢ℎ]] . (A.6)

he penalty parameter, 𝛼SIP, depends on the size of the element and
he polynomial degree 𝑝 [57].

For the time integration an explicit time marching scheme is em-
loyed, the strong stability preserving (SSP) 3rd-order 4-stage Runge–
utta method [59]. Consequently, Eq. (4) can be expressed as

𝓁𝓁
𝐾

𝜕𝑈𝓁
𝐾

𝜕𝑡
= 𝓁

𝐾
(

𝑈𝓁
𝐾−1, 𝑈

𝓁
𝐾 , 𝑈

𝓁
𝐾+1

)

, (A.7)

here

𝓁𝓁
𝐾 = ∫𝐾

𝜙𝓁
𝐾𝜙

𝓁
𝐾d𝑥 , ∀𝐾 ∈ 𝛺ℎ . (A.8)

he term 𝓁
𝐾

(

𝑈𝓁
𝐾−1, 𝑈

𝓁
𝐾 , 𝑈

𝓁
𝐾+1

)

encompasses the convective and vis-
ous terms of Eqs. (A.1)–(A.3), and the DOFs are the unknowns of the
ystem of ordinary differential equations.
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