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a b s t r a c t

The statistical properties of Lagrangian particle transport are investigated in dissipative drift-wave
turbulence modelled by the Hasegawa–Wakatani system. By varying the adiabaticity parameter c , the
flow regime can be modified from a hydrodynamic limit for c = 0 to a geostrophic limit for c → ∞.
For c of order unity the quasi-adiabatic regime is obtained, which might be relevant to describe the edge
turbulence of fusion plasmas in tokamaks. This particularity of the model allows one to study the change
in dynamics when varying from one turbulent flow regime to another. By means of direct numerical
simulation we consider four values for c and show that the Lagrangian dynamics is most intermittent
in the hydrodynamic regime, while the other regimes are not or only weakly intermittent. In both quasi-
adiabatic and quasi-geostrophic regimes the PDFs of acceleration exhibit exponential tails. This behaviour
is due to the pressure term in the acceleration and not a signature of intermittency.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

An understanding of the Lagrangian dynamics of fluid particles
is of great practical interest, in particular for understanding and
modelling turbulent transport and mixing. For a recent review we
refer to [1]. One important application is the understanding of the
dynamics of impurities in fusion plasmas. Indeed the confinement
quality of a fusion plasma can be largely affected by the presence
of heavy ions in the plasma. Their presence in the edge region
might enhance the quality of the confinement by reinforcing
transport barriers but the impurity accumulation in the core of
the plasma might lead to heat loss by radiation, which decreases
the confinement quality. A detailed understanding of the impurity
transport is therefore primordial in fusion plasma design and
operation.
Transport in edge plasmas is largely anomalous, which means

that it exceeds the estimations based on Coulomb interactions
only. This is now generally assumed to be due to turbulent electro-
static drift-velocity fluctuations in the plasma edge e.g. [2,3]. To a
certain extend, the impurities will follow the velocity fluctuations,
which makes the Lagrangian description the most natural choice.
It is important here to note that the impurity transport can be
studied in two complementary ways. The first one is the passive
scalar approach in which the impurity density in a fluid element is
evaluated (see for example Refs. [4,5]). This process is governed by
an advection-diffusion equation for a passive scalar. An alternative
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approach consists of following individual marked fluid particles.
These approaches are closely related but differ by the fact that
the equation for the Lagrangian velocity contains a fluid-pressure
term which is known to play a dominant role in the fluid particle
acceleration. It is the second approach that we will apply in the
present work.
The Lagrangian dynamics of fluid particles in Navier–Stokes

turbulence have been investigated extensively since numerical
simulations [6] and experimental methods [7] allow one to follow
individual fluid particles. In [6] it is shown that the Lagrangian
dynamics display an intermittent behaviour. By intermittent we
understand that the dynamics are not scale-invariant and thus
do not display simple scaling behaviour as would be expected
from dimensional analysis à la Kolmogorov 1941 [8]. In three
dimensions it was shown that the Lagrangian intermittency is
stronger than its Eulerian counterpart [9,10]. In two dimensions, it
was recently shown that Lagrangian intermittency can exist even
if it is completely absent in the Eulerian reference frame [11].
In wall bounded domains no-slip conditions can even enhance
the Lagrangian intermittency significantly [12]. This intermittent
behaviour constitutes amajor challenge tomodellers.Whereas the
statistics of the complex dynamics of scale-invariant Lagrangian
dynamics could be modelled by a Gaussian process, intermittency
impedes this. Large fluctuations in the velocity increments and
particle accelerations would be largely underestimated by such
an approach. The main issue in the present work is therefore to
characterise these dynamics in the case of plasma turbulence and
to checkwhether it can, or not, bemodelled by Gaussian processes.
In order to achieve this,we investigate the Lagrangian dynamics

in a model for drift-wave turbulence in the tokamak edge, the
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Hasegawa–Wakatani two-field model [13]. Due to the strong
toroidal magnetic field in tokamaks, the dynamics are close to
two-dimensional. In the 2D version of the model, which we will
consider here, two equations are solved. One equation governs
the evolution of the vorticity, the other the advection of the
plasma-density fluctuations. As we will see in the next section, the
model is formally very similar to the dynamics of two-dimensional
turbulence advecting a passive scalar. The difference is the
presence of a coupling term related to the parallel (with respect to
the toroidal magnetic field) dynamics of the plasma. An adjustable
parameter c in front of this term, related to the toroidal dynamics of
the tokamak, allows one to consider different regimes. For c = 0
we obtain the hydrodynamic limit and for c → ∞ one obtains
the Charney–Hasegawa–Mima model [14,15], frequently used in
studies of the geostrophic dynamics in planetary atmospheres. An
intermediate value for c of order unity yields dynamics which are
supposed to be close to the tokamak edge-turbulence.
Eventually, the goal of the present work is two-fold. Not

only will we answer the question how to practically model the
Lagrangian dynamics of tokamak-relevant drift wave turbulence,
we also show how the Lagrangian dynamics change when going
from the hydrodynamic limit to the geostrophic limit.
The rest of the paper will be constructed as follows. In the

next section we will write the equations and describe the numer-
ical method. In Section 3 we present some Eulerian characteris-
tics of the different flows considered. In Section 4 we present the
Lagrangian statistics. These statistics and their interpretation con-
stitute the main results of the present paper. Several observations
are made which we summarise here.

(i) The Lagrangian acceleration, will, as soon as it is dominated by
the pressure gradient, not be Gaussian. Indeed it was shown
in [16] that the quadratic dependence of the pressure on the ve-
locity can account for the exponential tails, and their occurrence
is not an argument for ’intermittency’ under any reasonable def-
inition of the term. This argument holds also for the pressure
gradient. Lagrangian velocity increment PDFs will therefore
never be scale-invariant, but will always develop, at least, ex-
ponential tails.

(ii) Drift wave turbulence in the regimes c = 0.7, 2 and 4 is not
intermittent. By increasing the adiabaticity parameter c from
c = 0.01 upwards, the flaring tails of the acceleration PDF
smoothly reduce to exponential tails.

(iii) Extended Self-Similarity (ESS)will for short times always yield
a behaviour in agreement with K41. It make the detection of
the inertial range more difficult instead of simplifying it. This
is not a new result, but we want to stress this property of ESS,
since it is sometimes ignored in investigations.

2. Lagrangian dynamics of the Hasegawa–Wakatani model

In the present work the two-dimensional slab-geometry ver-
sion of the Hasegawa–Wakatani model is considered. An illustra-
tion of the flow configuration is shown in Fig. 1.
The equations in dimensionless form read [2],(
∂

∂t
− ν∇2

)
∇
2φ + c(n− φ) =

[
∇
2φ, φ

]
, (1)(

∂

∂t
− D∇2

)
n+ Γ

∂φ

∂y
+ c(n− φ) = [n, φ] , (2)

with n the plasma density fluctuation and φ the electrostatic
potential fluctuation.D and ν are the cross-field diffusion of plasma
density fluctuations and kinematic viscosity, respectively.Γ can be
interpreted as the mean plasma density gradient in the x-direction
Fig. 1. Illustration of the slab geometry used in the present study.

and is taken as unity. The adiabaticity c , as introduced in the
introduction, is related to the parallel dynamics of the plasma,

c =
Tek2‖

e2n0ηωci
, (3)

with k‖ the effective parallel wavenumber, η the electron resistiv-
ity, Te the electron temperature, e the electron charge and ωci the
ion cyclotron frequency. The equilibrium plasma density is n0. The
use of an effective parallel wavenumber is of course a simplifica-
tion, since the fluctuations in the parallel direction are in reality
governed by a broad spectrum of parallel wavenumbers, related
to the nonlinear cascades in the parallel direction. For a given ma-
chine it is however possible that the parallel dynamics are domi-
nated by a particular effectivewavenumber k‖. The value of c , most
relevant to describe edge turbulence is therefore not fixed and this
should be kept in mind while assessing the results in the present
work. Rather than insisting on its physical meaning we use it is as
a model parameter which allows one to switch between different
flow regimes. The Poisson brackets are defined as

[a, b] =
∂a
∂x
∂b
∂y
−
∂a
∂y
∂b
∂x
. (4)

We identify the x-coordinate with the radial direction and the
y-coordinate with the poloidal direction (cf. Fig. 1). The normal-
isations are chosen as in the original work in which the model
was proposed [13] and we will not discuss them further here.
Rather will we concentrate on the change in dynamics by evolv-
ing the Hasegawa–Wakatani model from its hydrodynamic limit
to its geostrophic limit. In order to clearly illustrate the similari-
ties and differences with respect to Navier–Stokes turbulence we
rewrite Eqs. (1) and (2) in two different forms. First we consider
the vorticity formulation. The vorticity is defined as ω = ∇2φ. The
electro-static potential φ thus plays the role the stream-function
plays in fluid dynamics. Eqs. (1) and (2) can then be recast as

∂ω

∂t
+ (u · ∇)ω = ν∇2ω − c(n− φ), (5)

∂n
∂t
+ (u · ∇)n = −Γ u+ D∇2n− c(n− φ), (6)

in which the velocity u = ∇⊥φ:

u = −
∂φ

∂y
, v =

∂φ

∂x
. (7)

In the Lagrangian dynamics of a fluid particle, in particular in its
acceleration, the pressure is known to play a dominant role. The
influence of the pressure is not explicitly present in the vorticity
formulation. Therefore we recast another time the equations to
obtain the velocity formulation. The vorticity is the curl of the
velocity so that we have to apply the Biot-Savart operator, which
we will denote by ∇⊥/∇2, to Eq. (5), giving
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∂u
∂t
+ (u · ∇)u = −∇p+ ν∇2u−

∇
⊥

∇2
[c(n− φ)] , (8)

∇ · u = 0.

Eq. (6) does not change. The pressure appears here as the non-
solenoidal part of the Biot-Savart transformed vorticity advection
term, which has the role of a Lagrangian multiplier to enforce the
incompressibility of the velocity field.
The fluid particle position x at time t is given by the equation

dx
dt
= u(x(t), t) (9)

in which the velocity is governed by Eq. (8). The acceleration of a
fluid particle is

d2x
dt2
=
∂u
∂t
+ (u · ∇)u (10)

which should thus be equal to the right hand side of (8).We see that
three contributions play a role in the fluid particle acceleration:
the pressure gradient, the viscous stresses and the coupling-term
proportional to the adiabaticity c.
The time-scale-similarity of the Lagrangian dynamics can be

conveniently assessed by considering time increments. In the
present work we will consider increments of the position of a fluid
particle δx(t, τ ) = x(t + τ) − x(t) and of its velocity δu(t, τ ) =
u(t + τ) − u(t). Assuming a finite time-correlation for both the
position and the velocity, these increments will tend in the limit
of large τ to the sum of two independent variables. In the limit of
small τ , we recover the time derivative of the quantity times τ . The
shape of the PDF of the position increment at small τ will therefore
tend to the shape of the PDF of the velocity multiplied by the value
of τ . Similarly, the shape of the PDF of the Lagrangian velocity
increments at small τ will tend to the PDF of the Lagrangian
acceleration times τ .
In the following we will consider four cases with different

values of c. The smallest value of the adiabaticity is c = 0.01which
should display a behaviour close to the Navier–Stokes turbulence.
The intermediate value c = 0.7 is generally assumed to be
most relevant for the tokamak edge dynamics. The largest values
considered here, c = 2 and 4, are supposed to display similarities
with geostrophic fluid motion.
Starting from random initial conditions, Eqs. (5) and (6) are

integrated using a classical Fourier pseudo-spectral method which
is fully dealiased and completed with a semi-implicit time-
integration scheme of second order [17]. The resolution is 5122
and the box-size is 642. In Navier–Stokes turbulence the box-size
is generally (2π)2 in dimensionless units. In the present model
length-scales are normalised by the hybrid Larmor-radius ρs and
the size of the box corresponds thus to 64ρs, a value used in
previous work [18,19,5]. The viscosity and the diffusion coefficient
are taken equal to 0.01. The Hasegawa–Wakatani model contains
an internal instability, which will lead the flow to a turbulent
saturated state, independent of the initial conditions. At t = 300,
the first three cases have reached this turbulent state and for case
IV this is at t = 1200. At that moment 104 particles are injected
into the system, equally spaced. To solve the particles’ advection
equation (9), we use a second order Runge–Kutta scheme and the
velocity of each particle in a grid-cell is computed via a bicubic
interpolation. During a time interval of 300, the particles are stored
every ten time steps, one time step being equal to 10−3.
The Lagrangian acceleration is computed directly by computing

the three contributions of Eq. (8),

aL = −∇p+ ν∇2u−
∇
⊥

∇2
[c(n− φ)] , (11)

along the fluid trajectory using again bicubic interpolation to
obtain the values at the particle position.
Fig. 2. Kinetic energy and enstrophy as a function of time for case I (c = 0.01), II
(c = 0.7), III (c = 2) and, in the inset, IV (c = 4).

3. Eulerian results

In Fig. 2 we show the time-evolution of the kinetic energy and
enstrophy. It is observed that after a fast drop, corresponding to
the viscous decay of the initial condition, the energy and enstrophy
increase and saturate at a certain level. The generation of energy
is due to the drift-wave instability, which drains the energy from
the imposed plasma density gradient. In Eq. (6) the −Γ u term
is responsible for the generation of energy. It corresponds to the
generation of plasma density fluctuations through the interaction
of the velocity field with the mean gradient Γ . The variance of
the plasma density fluctuations is then transferred though non-
linear interaction among wavenumbers and serves as an energy
input in the velocity field through the coupling term c(n − φ). At
long times statistical equilibrium is reached between the source
term and the nonlinear and viscous processes. It is also observed
that this time for c = 4 is significantly later than for the other
three cases. This is related to the tendency of the Hasegawa-Mima
system to transfer energy to the larger scales by means of the
inverse cascade [20]. An alternative explanation is that the linear
growth rate of the Hasegawa–Wakatani system is a decreasing
function of c , as proposed in [21]. In this work one can also find
a detailed study of the transfer mechanisms between the different
wavemodes and the different fields.
In the flow visualisations, Fig. 3, it can be seen that the flow

structures for the c = 0.01 and c = 4 case are larger than for
the two intermediate cases. In the case c = 0.01 this is because
the energy is mainly injected into the small wavenumbers. Indeed,
to a first approximation, the drift-wave instability will inject most
of its energy around the peak of the growth rate spectrum of the
most unstable mode. This peak is an increasing function of c [18].
The main energy injection for the c = 4 case is thus at larger
wavenumbers then for the case c = 0.01. However, through the
inverse energy cascade large structures are formed on a larger
time-scale. The slowly increasing energy between t = 300 and
t = 800 corresponds to the time-interval in which the inverse
cascade builds increasingly larger flow structures. Apparently, in
the two intermediate cases this inverse energy cascade is absent,
so that the flow-structures are smaller.
The isotropic energy spectra in Fig. 4 illustrate the energy

distribution in Fourier space. It is observed that the energy is
peaked at smaller wavenumbers for the cases c = 0.01 and c =
4 than for the two intermediate cases, which reflects the larger
structures observed in case I and IV. The spectra exhibit power-law
scalingwith an exponent close to−4,which is typically observed in
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Fig. 3. Visualization of the vorticity field, when a statistically stationary flow regime is established. In this and all following figures, if there are four subfigures, they
correspond, from left to right to case I, II, III and IV, respectively.
Fig. 4. Kinetic energy spectra. The maximum of the energy spectra of case I and IV
is at smaller wavenumbers than case II and III. The slope k−4 is plotted for reference.

Table 1
Average values of some typical turbulence quantities. These quantities are averaged
over space and time during a time-interval of approximately 300 time units. The
correlation coefficient ρun is defined as ρun = un/

√
u2n2 and analogous for ρvn .

c 0.01 0.7 2 4

u2 4.1 1.9 1.6 0.42
v2 3.9 1.7 1.4 0.38
n2 162 6.9 6.0 7.3
un 5.2 0.94 0.37 0.017
vn 0.021 0.028 1.0 · 10−3 1.1 · 10−3

ρun 0.20 0.26 0.12 9.7 · 10−3

ρvn 8.4 · 10−4 8.1 · 10−3 3.5 · 10−4 6.7 · 10−4

forced two-dimensional Navier–Stokes turbulence in the forward
enstrophy range. Indeed, the scaling close to the energy injection
generally displays power-laws which are steeper than the −3
Kraichnan prediction [22], due to logarithmic corrections [23]. The
−5/3 inverse cascade seems to be absent. This can be understood
since the coupling term acts as a friction term, which drains
energy from the velocity field at the largest wavenumbers. In the
present case, the region where the friction is dominant coincides
approximately with the region where the inverse cascade is
expected.
In Table 1, typical parameters characterising the turbulence and

the turbulent transport are given for the simulations. The correla-
tion coefficient ρun = un/

√
u2n2 characterises the efficiency of the

flow to transport plasma density fluctuations. The normalised tur-
bulent flux is most efficient for intermediate values of c . This result
was also found in Camargo et al. [21]. For large values, the wavy
character of the velocity does not transport the density well. Intu-
itively this is understandable since purewaveswill simply oscillate
the fluid particles. The case of very coherent structures in the limit
of small c is not most efficient either. Indeed, trapped fluid parti-
cles in a fixed coherent structure will on average contribute little
to the flux. This effect (see also the work by Koniges et al. [18]) can
be described as a function of the Kubo-number [24], defined as the
ratio of the correlation time of the velocity field over the sweeping
time, associated to the large-scale velocity and length-scale of the
flow (see e.g. Refs. [25–27]).

4. Lagrangian results

4.1. Trajectories and single particle dispersion

In Fig. 5 the trajectories of the fluid particles are plotted. It is
again clear that the flow-structures in regime I are larger than
in case II and III. This is less pronounced for case IV. Another
feature is the anisotropy, which is important at large values of c.
In particular in the case c = 4 a clear vertical particle drift is
observed. This drift gives rise to a super-diffusive dispersion as
can be seen in Fig. 6, in which |X − X(0)| is the displacement of a
fluid particle from its initial position. For short times the dispersion
is ballistic and and for larger times Brownian, which corresponds
to decorrelated motion. Only in the case c = 4 for the longest
times a superdiffusive behaviour is observed, corresponding to the
non-random vertical plasma drift. Indeed, movies show a clear,
vertical drift velocity, which is approximately uniform. At long
times, this drift would induce a t2 dependence of the displacement
from the initial position. The anisotropy of the dispersion was
discussed in [28]. The drift is not confined to a radially localised
band (even though the computational domain itself represents
only a small segment of a tokamak), so that it is not clear whether
it can be defined as a zonal flow [29]. The influence of the Reynolds
number on these flows also necessitates further study. Indeed, in
a recent theoretical study it was proposed that the structure of the
dissipative mechanisms is directly related to the strength of the
zonal flows in drift-wave turbulence [30]. However, it seemsmore
probable that the flow is a function of collisional drag, acting at all
scales, than that the viscous and diffusive effects, dominant at the
smallest scales, play a role.

4.2. PDFs of time increments: A note on the definition of Lagrangian
intermittency

In the insets of Fig. 7 the PDF of the position-increments is
shown for the different cases. In case II, III and IV the PDF at both
small and large τ is Gaussian. In Fig. 7 we also show the PDF of
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Fig. 5. Particle trajectories. In case I the spiraling motion corresponds to the larger flow structures than in case II and III. Clear drift-trajectories are observed for case IV.
Fig. 6. Single particle dispersion. The ballistic and Brownian behaviour are present
in all cases. In case IV a long-time super-diffusive behaviour is observed.
the absolute value of the position-increments. As it is supposed to
be for the norm of a Gaussian-distributed quantity, the PDF obeys a
Rayleigh-distribution. The step size in the tokamak relevant regime
is thus not intermittent, contrary to what was stated in [5]. For
the case c = 0.01, all distributions are strongly non-Gaussian.
This regime, even though it shares some similarities with hydro-
dynamic turbulence, is not completely equivalent since in hydro-
dynamic turbulence the velocity PDF is generally Gaussian.
In Fig. 8 the PDF of the velocity-increments is shown for the dif-

ferent cases. In case I the PDF is non-Gaussian at large τ and be-
comes increasingly non-Gaussian with decreasing τ . We note that
in [31] similar PDFswere observed,where thenon-Gaussianitywas
related to long-living coherent structures. The Lagrangian inter-
mittency is clearly present in the sense that the flaring tails be-
come increasinglywider at smaller time-scales. Regime II, III and IV
show PDFswhich evolve from a Gaussian to a Laplace (or exponen-
tial) distribution. This is expected if the acceleration is governed by
the pressure-gradient contribution. As was shown by Holzer and
Siggia [16], the quadratic nonlinearity in the Navier–Stokes equa-
tions leads to an exponential distribution for the pressure gradi-
ent if the velocity field is a Gaussian, non-intermittent field. This is
also discussed in [32] and a similar argument can be found in [33].
If the pressure gradient is the dominant term in the acceleration
(Eq. (11)), the acceleration (and the small τ velocity increment
PDF) are expected to be exponential.
Fig. 7. Step length PDFs. The PDFs of the norm of the particle position increments is shown. In the inset the PDF of the value (not the norm) is shown. All PDFs in this paper
are normalised by their corresponding standard deviation.
Fig. 8. PDFs of the Lagrangian velocity increments. At large τ the PDFs are close to Gaussian and for smaller τ the PDFs become increasingly non-Gaussian. PDFs are shifted
vertically for clarity.
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Fig. 9. Left two graphs: flatness of the Lagrangian velocity increments PDFs as a function of τ . Right two graphs: acceleration PDFs. The PDFs of case II, III and IV collapse
and can be fitted by a Laplace distribution, indicated by black symbols.
This has an important implication for the definition of intermit-
tency: if the presence of intermittency is detected by the change
in shape of the velocity increment PDF, then Lagrangian statis-
tics are always intermittent because the pressure gradient, which
dominates the increments at small τ , is exponential due to the
quadratic dependence of the pressure on the velocity even in
non-intermittent fields. The definition of intermittency should
therefore in our opinion be modified. A more adequate definition
of intermittency in the Lagrangian framework should read: if the
shape of the PDF changes and its flatness for small τ is superior to
6 (the value of the flatness of the Laplace distribution), the charac-
teristics are intermittent.
Using this modified definition we arrive at one of the main ob-

servations of the present work: from a Lagrangian point of view,
the Hasegawa–Wakatani model in the quasi-adiabatic regime is not
intermittent. The flatness of the velocity increment PDFs as a func-
tion of the time increment τ is displayed in Fig. 9. In the hydro-
dynamic case the flatness decreases from values superior to 50 at
small τ to the Gaussian value 3 at long times. The flatness of the
Laplace distribution is 6. Cases II, III and IV show values in between
5.5 and 9 for small τ , which is close to the theoretical value for
non-intermittent velocity fields.
We highlight this in Fig. 9, where all the acceleration PDFs

of regime II, III and IV collapse perfectly and can be fitted by a
Laplace distribution, while regime I shows large flaring tails. A
question which one can ask is if there is a sharp threshold between
the intermittent and non-intermittent behaviour. To check this
we performed a supplementary computation with c = 0.1. The
acceleration PDFs are shown in Fig. 10. Indeed the PDF for c =
0.1 shows tails intermediate between the exponential tails for
large c and the heavy tails for c = 0.01. The transition between
intermittent and non-intermittent dynamics seems thus to be
smooth. For the largest values of the acceleration, the tails fall
off rapidly. It was checked that this is not a problem of statistical
convergence. It is however not clear whether this fall-off is a
physical effect or an artifact of the numerical simulations.

4.3. Lagrangian structure functions: A note on the use of extended self-
similarity

Lagrangian structure functions of the order p are defined as

DLp(τ ) =
〈
|u(t + τ)− u(t)|p

〉
t (12)

in which 〈·〉t represents an average over t . According to K41-like
dimensional arguments, in the inertial range DLp(τ ) should scale as

DLp(τ ) ∼ (ετ )
ζ Lp (13)

with ζ Lp = p/2. The deviation of these exponents reflects the
Lagrangian intermittency. In practice the inertial ranges are very
small, evenmore in the Lagrangian than in the Eulerian framework
so that a precise determination is not simple. This explains the
Fig. 10. Comparison of the PDFs of the x-component of the acceleration for 5
different values of c . PDFs are shifted vertically for clarity.

success of Extended Self-Similarity (ESS) [34]. ESS is a widely
used tool, which amplifies the scaling range over which power-
laws are observed. An important question is whether these wide
ranges correspond to inertial ranges. In the Lagrangian context
ESS consists of plotting DLp(τ ) as a function of D

L
2(τ ). D

L
2(τ ) ∼ τ

according to K41-like arguments, and it is shown that the scaling
of the Lagrangian structure functions holds over a wider range in
this representation. This was illustrated in e.g. [35].
In Fig. 11 we show the ESS representation of the structure-

functions of orders p = 3–8. The straight lines are the non-
intermittent prediction ζ Lp = p/2. At a first glance this prediction
holds. A first, uncareful, conclusion could be drawn that all
structure functions exhibit K41 scaling. One should however not
forget the following. For very short timelags τ one can, using a
Taylor series, write

DLp(τ ) =
〈
|u(t + τ)− u(t)|p

〉
t (14)

≈

〈∣∣∣∣du(t)dt τ

∣∣∣∣p〉
t

(15)

=

〈∣∣aL∣∣p τ p〉
t

(16)

=

〈∣∣aL∣∣p〉
t
τ p (17)

∼ τ p. (18)
Note that the error of this approximation is of the order of τ p+1
and hence becomes smaller for increasing values of p. From (18)
trivially follows:

DLp(τ ) ∼ D
L
2(τ )

p/2. (19)
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Fig. 11. ESS analysis of the Lagrangian structure functions of order 3 to 8. The straight lines correspond to K41 predictions.
Fig. 12. DL2(τ ), the second order Lagrangian structure function.

Hence at short time intervals, shorter than the Lagrangian acceler-
ation correlation time, ESS yields always and trivially K41 scaling.
This explains why K41 was observed in [35] for times shorter than
the Kolmogorov time. Is it possible to determine the inertial range
scaling? This is questionable as is illustrated in Fig. 12, where we
show the second order structure functionDL2(τ ). The scaling as pre-
dicted by foregoing arguments for small times is clearly present.
The τ 2 range extends over more than one decade and can even be
extended indefinitely if τ is decreased. To observe the expected in-
ertial range slope proportional to τ , one needs some imagination.
This range, if present, is very small. Wewill therefore not intend to
determine the scaling exponents of the structure functions in the
present work. Larger Reynolds numberswould be needed to deter-
mine them.
The Lagrangian energy spectrum, obtained from Fourier-

transforming the Lagrangian velocity data along the trajectories,
is shown in Fig. 13. In the hydrodynamic regime a scaling range
can be observed, which is larger than in the second order structure
functions. The inertial range is proportional to f −2, as observed in
previousworks [9]. In the inset the acceleration spectrum is shown,
which should be similar to the velocity spectrum compensated by
f 2. The acceleration spectrum shows a small but clear plateau. In
the other 3 regimes this plateau is not visible.

4.4. Time-auto-correlations: A note on long-time correlations

In [36] it was proposed that long time-correlations of the norm
of the acceleration are a key-feature of Lagrangian intermittency.
Indeed, the direction of the velocity of fluid particles in a turbulent
velocity field changes rapidly so that the Cartesian components of
the acceleration vector decorrelate on a short time scale, typically
of the order of the Kolmogorov time-scale. The norm of the
acceleration remains correlated over time-scales of the order of the
eddy turn over time, since the acceleration is dominated by the
centripetal component, when the fluid particles follow a vortical
motion and because fluid particles remain trapped in vortices for
relatively long times.
In Fig. 14 we show the velocity auto-correlations and the accel-

eration auto-correlations for the 4 regimes. These correlations are
shown for both x and y components and for the norm. One recur-
rent feature in all the regimes is that the norm of the acceleration
(and the norm of the velocity) is correlated over longer times than
the components of the acceleration. Even in the non-intermittent
cases II, III and IV this is the case. It would be interesting to check
whether there exists a quantitative link between the length of the
time-correlations and the flatness of the acceleration PDFs. A de-
tailed investigation of this will be postponed to a future study.
This would allow to check the statement in [36] that long time-
correlations are a key to Lagrangian intermittency.

4.5. A note on intermittency models

We showed in the previous sections that drift-wave turbu-
lence is not intermittent in the Lagrangian framework for c ≥
0.7. A question is now how we can reconcile this with recent
work claiming that the case c = 0.7 is intermittent. In this sec-
tion we will try to understand the difference in the reasoning be-
tween [5] and the present work. First, on which observation do
they base their conclusion that the flow is intermittent? In [5]
structure functions were determined for various quantities in the
Fig. 13. Lagrangian energy spectra. The insets show the acceleration spectrum which can be obtained by compensating the spectra by f 2 .
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Fig. 14. Lagrangian velocity auto-correlations and acceleration auto-correlations for both x and y components and for the norm.
Hasegawa–Wakatani model. Note that they considered spatial ve-
locity increments, which assess the Eulerian scale-self-similarity.
However, generally, Lagrangian intermittency is stronger in the
Lagrangian framework [9,10], so that this difference does not ex-
plain the discrepancy between the conclusions. In [5] it is shown
that the velocity increment structure functions scale perfectly well
according to K41 arguments, i.e., the values of the scaling expo-
nents are p/3, which corresponds to a velocity field free from in-
termittency. Subsequently they determine the scaling exponents
of the vorticity increments and they compare the results to K41
predictions for the velocity. They show that the scaling exponents
are close to the She–Levequemodel [37], which is amodel which is
able to fit the exponents for the velocity-increment structure func-
tions. We think that the agreement is fortuitous. A possible expla-
nation of the results will be given here.
In 1994, the same year that She and Leveque proposed

their model, Kraichnan [38] showed that a passive scalar shows
anomalous scaling exponents, even when the advecting velocity
field is completely Gaussian, solenoidal and δ-correlated in time. In
Fig. 15 we show the exponents predicted by this model, compared
to the She–Leveque exponents. The values are very close and
within numerical or experimental errors hard to distinguish. We
think that this is the real explanation for the observations in [5]: the
’anomalous’ scaling of the vorticity structure functions is related to
the anomalous scaling of a passive scalar. It was shown in recent
work [4] that the scalar behaviour is close to the behaviour of the
vorticity in the case considered (c = 0.7). This explains that the
vorticity agrees with the same scaling. However the interpretation
that the dissipative structures in drift-wave turbulence are
vorticity filaments does not follow from these results.

5. Conclusion

We presented a detailed Lagrangian investigation of dissipative
drift-wave turbulence in the Hasegawa–Wakatani model. This
model is generally assumed to possess some similarities with
tokamak-edge plasma-turbulence. One of the goals was to
characterise the Lagrangian intermittency of this kind of micro-
turbulence. We showed that within the present model, for c ≥
0.7, drift-wave turbulence is not intermittent. We also gave an
explanation as to why in recent work it was thought that this kind
of turbulence is intermittent [5]. The above observations suggest
to model the transport in drift-wave turbulence, except for the
hydrodynamic limit, by a simple Langevin-like stochastic process.
Fig. 15. Comparison of the She–Levequemodel and the Kraichnan prediction. Even
though the curves are very similar, they have been derived for different quantities:
She–Leveque for the velocity structure functions, Kraichnan’s model for the passive
scalar structure functions.

From a point of view of fluid mechanics, the present investi-
gation is also interesting. The continuous change of behaviour be-
tween a quasi-hydrodynamic and a quasi-geostrophic flow regime
allows one to highlight the differences of the different flows,within
the same framework.Wehereby showed that the Lagrangian inter-
mittency, characterised by flaring tails disappears when themodel
parameter c is increased. Indeed all the PDFs of the Lagrangian ac-
celeration for c ≥ 0.7 collapse on a Laplace distribution, which is
not a sign of intermittency.
To conclude, we resume our findings.
(i) Drift-wave turbulence is not intermittent in the Hasegawa–
Wakatani model for c ≥ 0.7. We demonstrate this in
the Lagrangian framework and we show how, in previous
work [5], the Eulerian analysis also supports this. For smaller
values of c , the exponential tails of the acceleration PDFs
gradually become stretched exponentials.

(ii) We argue that the change of shape of the velocity-increment
PDFs is not an adequate indicator for intermittent behaviour.
Indeed forGaussiannon-intermittent velocity fields the PDFof
the increments changes its shape from a Gaussian distribution
at long τ to a Laplace distribution at small τ . Intermittency
could be detected if the tails of the PDF are heavier than
exponential.

(iii) We show that ESS might be a dangerous tool, because it in-
duces K41 scaling for small τ in a trivial way, unrelated to in-
ertial range behaviour. This feature explains the experimental
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observation [35] that K41 scaling is observed for time incre-
ments smaller than the Kolmogorov time.

6. Perspectives

Several questions remain unanswered in the present investiga-
tion and require further research. One is the issue of the Reynolds
number. It should be checked what the influence of the viscosity
is on the PDF of the Lagrangian acceleration. Indeed, it was shown
in simulations and experiments of three-dimensional fluid turbu-
lence that the tails of the acceleration PDFs are a function of the
Reynolds number [39,40]. For the moment we cannot exclude that
the non-intermittent character of the Lagrangian velocity incre-
ments in the large c cases will become more intermittent at larger
Reynolds numbers.
Future work could also focus on the poloidal drift velocity ob-

served at large values of c. Indeed in a recent theoretical study [30],
it was proposed that the zonal flow is directly proportional to the
inverse of the collisional drag.
Another issue which should be checked quantitatively is the

relation between the long-time correlations of the norm of the
acceleration on the intermittent form of the acceleration PDFs.
Indeed, it seems that for large c the fluid particle dynamics can
be described by a random walk. For small c a multifractal random
walk, as proposed in [36] might better describe the dynamics.
We hope that these insight inspire the development and im-

provement of Lagrangian models for turbulent transport in the
tokamak edge.

Acknowledgements

We thank S. Benkadda and S. Futatani for introducing us to
the Hasegawa–Wakatani system. We thank M. Bourgoin for a
discussion on Lagrangian structure functions and Wendel Horton
for comments on the manuscript. Two anonymous referees are
acknowledged for comments which significantly improved the
present paper. We thankfully acknowledge financial support from
the Agence Nationale pour la Recherche, project ‘M2TFP’. S.N. and
K.S. thank the Deutsch-Französische Hochschule, project ‘S-GRK-
ED-04-05’, for financial support.

References

[1] F. Toschi, E. Bodenschatz, Lagrangian properties of particles in turbulence,
Annu. Rev. Fluid Mech. 41 (2009) 375.

[2] W. Horton, Nonlinear drift waves and transport in magnetized plasma, Phys.
Rep. 192 (1990) 1.

[3] B.D. Scott, The nonlinear drift wave instability and its role in tokamak edge
turbulence, New J. Phys. 4 (2002) 52.

[4] M. Priego, O.E. Garcia, V. Naulin, J. Juul Rasmussen, Anomalous diffusion,
clustering, and pinch of impurities in plasma edge turbulence, Phys. Plasmas
12 (2005) 062312.

[5] S. Futatani, S. Benkadda, Y. Nakamura, K. Kondo, Characterization of
intermittency of impurity turbulent transport in tokamak edge plasmas, Phys.
Plasmas 15 (2008) 072506.

[6] P.K. Yeung, S.B. Pope, Lagrangian statistics from direct numerical simulations
of isotropic turbulence, J. Fluid Mech. 207 (1989) 531.

[7] S. Ott, J. Mann, An experimental investigation of the relative diffusion of
particle pairs in three-dimensional turbulent flow, J. Fluid Mech. 422 (2000)
207.
[8] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous
fluid for very large Reynolds numbers, Dokl. Akad. Nauk. SSSR 30 (1941)
301–305.

[9] N. Mordant, P. Metz, O. Michel, J.-F. Pinton, Measurement of lagrangian
velocity in fully developed turbulence, Phys. Rev. Lett. 87 (2001) 214501.

[10] T. Ishihara, Y. Kaneda,M. Yokokawa, K. Itakura, A. Uno, Small–scale statistics in
high–resolution direct numerical simulation of turbulence: Reynolds number
dependence of one–point velocity gradient, J. Fluid Mech. 592 (2007) 335.

[11] O. Kamps, R. Friedrich, Lagrangian statistics in forced two-dimensional
turbulence, Phys. Rev. E 78 (2008) 036321.

[12] B. Kadoch, W.J.T. Bos, K. Schneider, Extreme lagrangian acceleration in
confined turbulent flow, Phys. Rev. Lett. 100 (2008) 184503.

[13] A. Hasegawa, M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50 (1983)
682.

[14] J.G. Charney, On the scale of atmospheric motions, Geofys. Publ. 17 (1948) 1.
[15] A. Hasegawa, K. Mima, Pseudo-three-dimensional turbulence in magnetized

nonuniform plasma, Phys. Fluids 21 (1978) 87.
[16] M. Holzer, E. Siggia, Skewed, exponential pressure distributions fromGaussian

velocities, Phys. Fluids A 5 (1993) 2525.
[17] K. Schneider, M. Farge, Decaying two-dimensional turbulence in a circular

container, Phys. Rev. Lett. 95 (2005) 244502.
[18] A.E. Koniges, J.A. Crotinger, P.H. Diamond, Structure formation and transport

in dissipative drift-wave turbulence, Phys. Fluids B 4 (1992) 2785.
[19] W.J.T. Bos, S. Futatani, S. Benkadda, M. Farge, K. Schneider, Role of coherent

vorticity in turbulent transport in resistive drift-wave turbulence, Phys.
Plasmas 15 (2008) 072305.

[20] D. Fyfe, D.C. Montgomery, Possible inverse cascade behavior for drift-wave
turbulence, Phys. Fluids 22 (1979) 246.

[21] S.J. Camargo, D. Biskamp, B.D. Scott, Resistive drift-wave turbulence, Phys.
Plasmas 2 (1995) 48.

[22] R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10
(1967) 1417.

[23] R.H. Kraichnan, Inertial-range transfer in a two- and a three-dimensional
turbulence, J. Fluid Mech. 47 (1971) 525–535.

[24] R. Kubo, Stochastic Liouville equations, J. Math. Phys. 4 (1963) 174.
[25] P. Castiglione, Diffusion coefficients as function of Kubo number in random

fields, J. Phys. A 33 (2000) 1975.
[26] M. Vlad, F. Spineanu, J.H. Misguich, J.D. Reuss, R. Balescu, K. Itoh, S.I. Itoh,

Lagrangian versus Eulerian correlations and transport scaling, Plasma Phys.
Control. Fusion 46 (2006) 1051.

[27] T. Hauff, F. Jenko, Turbulent E×B advection of charged test particles with large
gyroradii, Phys. Plasmas 13 (2006) 102309.

[28] V. Naulin, J.J. Rasmussen, Aspects of turbulence transport, Contrib. Plasma
Phys. 44 (2004) 546.

[29] P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal flows in plasma – a review,
Plasma Phys. Control. Fusion 47 (2005) 35.

[30] P.H. Diamond, O.D. Gurcan, T.S. Hahm, K. Miki, Y. Kosuga, X. Garbet,
Momentum theorems and the structure of atmospheric jets and zonal flows
in plasmas, Plasma Phys. Contr. Fusion 50 (2008) 124018.

[31] T. Dubos, A. Babiano, J. Paret, P. Tabeling, Intermittency and coherent
structures in the two-dimensional inverse energy cascade: Comparing
numerical and laboratory experiments, Phys. Rev. E 64 (2001) 036302.

[32] K. Yoshimatsu, N. Okamoto, K. Schneider, Y. Kaneda, M. Farge, Intermittency
and scale-dependent statistics in fully developed turbulence, Phys. Rev. E 79
(2009) 026303.

[33] A. Tsinober, P. Vedula, P.K. Yeung, Random taylor hypothesis and the behavior
of local and convective accelerations in isotropic turbulence, Phys. Fluids 13
(2001) 1974.

[34] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Extended
self-similarity in turbulent flows, Phys. Rev. E 48 (1993) R29.

[35] H. Xu, M. Bourgoin, N.T. Ouellette, E. Bodenschatz, High order Lagrangian
velocity statistics in turbulence, Phys. Rev. Lett. 96 (2006) 024503.

[36] N. Mordant, J. Delour, E. Leveque, A. Arneodo, J.-F. Pinton, Long time
correlations in Lagrangian dynamics: A key to intermittency in turbulence,
Phys. Rev. Lett. 89 (2002) 254502.

[37] Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence,
Phys. Rev. Lett. 72 (1994) 336.

[38] R.H. Kraichnan, Anomalous scaling of a randomly advected passive scalar,
Phys. Rev. Lett. 72 (1994) 1016.

[39] P. Vedula, P.K. Yeung, Similarity scaling of acceleration and pressure statistics
in numerical simulations of isotropic turbulence, Phys. Fluids 11 (1999) 1208.

[40] G.A. Voth, A. La Porta, A.M. Crawford, J. Alexander, E. Bodenschatz,
Measurements of particle accelerations in fully developed turbulence, J. Fluid
Mech. 469 (2002) 121.


	Lagrangian dynamics of drift-wave turbulence
	Introduction
	Lagrangian dynamics of the Hasegawa--Wakatani model
	Eulerian results
	Lagrangian results
	Trajectories and single particle dispersion
	PDFs of time increments: A note on the definition of Lagrangian intermittency
	Lagrangian structure functions: A note on the use of extended self-similarity
	Time-auto-correlations: A note on long-time correlations
	A note on intermittency models

	Conclusion
	Perspectives
	Acknowledgements
	References


