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The angle between subsequent particle displacement increments is evaluated as a function of the time lag
in isotropic turbulence. It is shown that the evolution of this angle contains two well-defined power laws,
reflecting the multiscale dynamics of high-Reynolds number turbulence. The probability density function
of the directional change is shown to be self-similar and well approximated by an analytically derived
model assuming Gaussianity and independence of the velocity and the Lagrangian acceleration.
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Advances in experimental devices and numerical simu-
lations over the last two decades have opened the way to a
Lagrangian characterization of turbulent flows [1–3]. The
structural description of the statistical dynamics of turbu-
lence has thereby shifted from the investigation of spatial
correlations of instantaneous velocity fields to the study of
temporal correlations along fluid particle trajectories. In the
Lagrangian reference frame, the spatiotemporal complexity
of turbulence manifests itself through the spiraling chaotic
motion of fluid particles, changing direction at every time
scale. This directional change of Lagrangian tracers, as a
function of the time lag between two observations, is the
subject of the present Letter. Instantaneous measures of the
curvature in turbulence have been investigated in the past
ten years for academic turbulent flows, both in three [4–7]
and in two space dimensions [8,9]. Curvature is dominated
by the small-scale structures and contains only little
information on the multiscale dynamics of turbulent flows.
Multiscale dynamics can be measured by Lagrangian
structure functions [1,3], but those do not contain any
direct information on the curvature of the trajectories.
A time scale dependent measure which is related to the

curvature was only recently introduced by Burov et al. [10].
More precisely, in this last work, the directional change
of a particle was introduced, and the characteristics of this
new measure were investigated in various types of random
walks. In the present Letter, we will show how this measure
can characterize the time correlation of the direction of a
fluid particle in a turbulent flow. In particular, we will show
how the multiscale character of a turbulent flow can be
revealed by considering the time lag dependence of the
directional change.
We define the Lagrangian spatial increment as

δXðx0; t; τÞ ¼ Xðx0; tÞ − Xðx0; t − τÞ; ð1Þ
where Xðx0; tÞ is the position of a fluid particle at time t,
passing through point x0 at the reference time t ¼ t0 and
advected by a velocity field u, i.e., dX=dt ¼ u. The cosine

of the angle Θðt; τÞ between subsequent particle incre-
ments, introduced in [10], is

cos (Θðt; τÞ) ¼ δXðx0; t; τÞ ⋅ δXðx0; tþ τ; τÞ
jδXðx0; t; τÞjjδXðx0; tþ τ; τÞj : ð2Þ

The angle is illustrated in Fig. 1 (top). Rather than
considering its instantaneous evolution, its averaged abso-
lute value is of particular interest in an isotropic random

FIG. 1 (color online). Top: definition of the angle between
subsequent Lagrangian particle increments. Bottom: short time
evolution and definition of the length scales l⊥ and l∥. These
lengths are defined by fitting a right triangle through the
three measurement points, with its hypotenuse passing through
Xðx0; t − τÞ and Xðx0; tþ τÞ. The length of the leg that passes
through Xðx0; tÞ and Xðx0; t − τÞ defines l∥ and the length of the
leg that passes through Xðx0; tþ τÞ defines l⊥.
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velocity field. The ensemble average will be denoted in the
following by

θðτÞ≡ hjΘðt; τÞji: ð3Þ

We omitted the time dependence since we will consider
statistically stationary flow in the following. For short time
lags, θðτÞ should be close to zero, whereas for times long
compared to the correlation time associated with the
spiraling motion θðτÞ should tend to π=2 by symmetry.
For short times, the instantaneous angle Θðτ; tÞ is related

to the curvature κ [see Fig. 1 (top)] by the relation

κðtÞ ¼ lim
τ→0

jΘðt; τÞj
2τ∥uðtÞ∥ ; ð4Þ

with u being the velocity. How the angle varies in between
the short and long-time limits is the main subject of the
present Letter, and we will show that the dependence of
θðτÞ on the time lag contains the signature of the multiscale
dynamics of a turbulent flow.
The database used to investigate the behavior of θðτÞ is

described in [11,12]. The simulation was carried out using
standard pseudospectral techniques, following 8 × 106

fluid particles in a statistically stationary isotropic turbulent
flow during 5.8 integral time scales in a periodic cube of
dimension 2π. The resolution is 10243 gridpoints. The
integral time scale is 2.1 and the Kolmogorov time scale
τK ¼ ðν=ϵÞ1=2 ¼ 0.036, where ϵ ¼ 0.31 is the mean dis-
sipation rate and ν ¼ 4 × 10−4 the kinematic viscosity.
The Lagrangian integral time scale is of the order of the
Eulerian integral timescale. The Taylor-scale Reynolds
number is Rλ ¼ 225.
Figure 2 shows θðτÞ in double-logarithmic representa-

tion. The angle increases monotonically from zero to π=2,
and this latter value is approached for values of τ of the
order of the Lagrangian integral timescale. Two power laws

can be identified in this graph, with a crossover around
twice the Kolmogorov time scale. The origin of these power
laws will now be elucidated.
For our phenomenological explanation, we consider

high-Reynolds-number isotropic turbulence, containing
flow structures on a wide range of different scales. We
consider short time lags τ ≪ T, where T is the Lagrangian
integral time scale of the flow. In this limit, the angleΘðt; τÞ
can be approximated using a Taylor expansion by,

l⊥
l∥

≈ j tanðΘ=2Þj ≈ jΘ=2j: ð5Þ

The definitions of l⊥ and l∥ are given in Fig. 1 (bottom) and
correspond to the absolute values of the distance traveled
parallel with, and perpendicular to, the initial displacement
increment, respectively, over a time interval 2τ. The values
of l∥ and l⊥ can be estimated, again using a Taylor
expansion, to be

l∥ ≈ 2Uðt; τÞτ; l⊥ ≈ 2τ2a⊥ðt; τÞ; ð6Þ
with Uðt; τÞ and a⊥ðt; τÞ the absolute values of the velocity
and the acceleration perpendicular to the velocity, respec-
tively, coarse grained over a time τ along the fluid particle
trajectory. Without loss of generality, we will write Uðt; τÞ
and a⊥ðt; τÞ as
Uðt; τÞ ¼ σuðτÞξuðt; τÞ; a⊥ðt; τÞ ¼ σaðτÞξaðt; τÞ; ð7Þ
where σ2uðτÞ and σ2aðτÞ are the variance of the coarse-
grained velocity and perpendicular acceleration, respec-
tively. The quantities ξuðt; τÞ and ξaðt; τÞ are positive
random variables with unit mean value and unit mean
variance. We thereby obtain,

jΘðt; τÞj ≈ 2τ
σaðτÞξaðt; τÞ
σuðτÞξuðt; τÞ

: ð8Þ

We assume the velocity and the acceleration uncorrelated,
a reasonable assumption at very high Reynolds numbers, as
long as τ ≪ T. Without coarse graining, this assumption
was also used in Ref. [5] to model the curvature in isotropic
turbulence. Using this assumption, we find

θðτÞ ≈ 2τ
σaðτÞ
σuðτÞ

: ð9Þ

Since for τ ≪ T, the velocity is roughly constant over the
time interval, σuðτÞ ≈ Urms. However, a⊥ is dominantly
determined by the small scales and fluctuates rapidly.
Only for τ small with respect to the smallest Lagrangian
time scale, the Kolmogorov scale, can we consider
σaðτÞ ≈ ða⊥Þrms, i.e., independent of τ. For these very short
time scales, we have thus

θðτÞ ≈ 2τ
σa
σu

for τ ≪ τK; ð10Þ
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FIG. 2 (color online). The average angle θ as a function of the
time lag τ normalized by the Kolmogorov time scale τK . In the
inset, the compensated angle, ~θðτÞ≡ θðτÞσu=ðϵτÞ1=2, is plotted.
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where σa and σu are the total rms perpendicular accel-
eration and velocity, respectively. The linear relation
between θðτÞ and τ is well observed in Fig. 2. We can
further express this in terms of quantities which are easy to
determine experimentally. Assuming classical scaling [13],
the acceleration variance for sufficiently high Reynolds
number is given by the relation

σ2a ¼
ϵ3=2

ν1=2
fðRλÞ; ð11Þ

where fðRλÞ is constant in the absence of intermittency.
Taking into account intermittency corrections [14–16], the
function f is well described by the expression

fðRλÞ ¼ 2.5R0.25
λ þ 0.8R0.11

λ : ð12Þ
Equations (10) and (11) then yield,

θðτÞ ∼ τ

T
R1=2
λ fðRλÞ1=2; for τ ≪ τK: ð13Þ

This relation could be checked by varying the Reynolds
numbers in experiments or simulations.
At time scales larger than τK , but smaller than T, i.e., in

the inertial interval, the above approximations to obtain
Eq. (9) are still valid. However, the subsequent approxi-
mation, that σaðτÞ is independent of τ is not valid anymore.
Indeed, the orientation of the acceleration fluctuates rapidly
in time [17], on a time scale of the order of τK . Coarse
graining the acceleration over an interval τ > τK , the
influence of the more rapidly fluctuating scales is filtered
out. Indeed, even if their contribution to the rms accel-
eration is dominant, if the coarse graining is performed
before considering the norm, positive and negative con-
tributions will cancel each other. The remaining variance
will be predominantly caused by scales with a time
scale larger than, or comparable to τ. Following classical
Kolmogorov phenomenology [18,19], the acceleration
induced by inertial range structures with typical time scale
τ will be of the order

σaðτÞ ∼ ðϵ=τÞ1=2: ð14Þ
This estimate is obtained by neglecting the viscous con-
tribution to the acceleration, a reasonable assumption even
near the dissipation range scales [15], and realizing that
the acceleration is due to pressure forces, which satisfy, at
inertial range scales, to a good approximation Kolmogorov
scaling [20,21]. Indeed, intermittency does not seem to
affect the scaling of the pressure spectrum significantly, but
it does change the prefactor [22].
The reciprocal dependence of the acceleration variance

on τ in Eq. (14) illustrates that the smallest scales are most
efficient in accelerating the fluid particles. After the
influence of the scales smaller than τ is removed by the
coarse graining, the remaining dominant contribution is

caused by the smallest scales still present, i.e., with time
scale τ. It is therefore those scales, with correlation-time τ
which will deviate particles from their trajectory over a
length scale of the order of the correlation length of the
structures. The scale of such inertial range eddies with a
correlation time τ is proportional to

lðτÞ ∼ τ3=2ϵ1=2: ð15Þ
This phenomenological picture is illustrated in Fig. 1
bottom, where it can be understood intuitively that scales
of the size l ≪ lðτÞ are too small to efficiently contribute
to a perpendicular displacement averaged over a time
interval τ.
Combining Eqs. (14) and (8) we obtain in the inertial

range

θðτÞ ∼ τ1=2
ϵ1=2

σu
∼
�
τ

T

�
1=2

; for τK ≪ τ ≪ T: ð16Þ

Again, this scaling is observable in Fig. 2, even though the
power law is less well present than in the dissipation range.
This is better appreciated by considering the compensated
angle, ~θðτÞ≡ θðτÞσu=ðϵτÞ1=2, plotted in the inset of the
figure. The slow emergence of inertial ranges with the
Reynolds number in Lagrangian statistics is fairly common
[23], and is was recently even argued that they might be
nonexistent [24]. In the present case, the emergence of a
plateau is strongly suggestive. This might be because the
inertial range scaling of the mean-angle θðτÞ is not directly
related to the Lagrangian structure functions. Indeed, the
scaling is induced by considering the coarse-grained
Lagrangian acceleration, a quantity of which the scaling
is related to that of the Eulerian pressure gradient. The wave
number spectrum of the pressure fluctuations, and thereby
of its gradient, is in the inertial range, as mentioned above,
rather well described by Kolmogorov scaling.
The above arguments and results considered the average

value θðτÞ only. Further information, in particular, on
higher order moments, is contained in the probability
density function (PDF) of the instantaneous angle and its
evolution with τ. Those PDFs of the angle Θðt; τÞ and its
cosine are shown in Fig. 3. It is observed that the PτðΘÞ for
small τ consists of a peak near zero, whereas for long times,
a symmetric distribution between 0 and π is obtained. This
latter distribution corresponds to the distribution between
two randomly chosen vectors in three dimensions. Its
distribution is given by P∞ðΘÞ ¼ sinðΘÞ=2. The distribu-
tion of the cosine of the angle between two random vectors
is thus equidistributed so that P∞( cosðΘÞ) ¼ 1=2. It is
observed that these two long-time distributions are
approached for long times in Fig. 3. We will now show
how we can predict the short-time, small Θðτ; tÞ behavior
of the PDFs. In particular, we will consider the PDF of
1 − cosðΘÞ. Since the cosine of small deviations in Θ
gives values near unity, 1 − cosðΘÞ directly measures the
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magnitude of the directional change. In addition, it is easy
to compare the PDF of this quantity to the long-time limit
consisting of a straight line. The PDFs of 1 − cosðΘÞ are
shown in Fig. 4(a) in double logarithmic representation. To
explain their shape and their evolution with τ, we use a
Taylor expansion for small Θ,

1 − cos (Θðt; τÞ) ≈ 1

2
Θðt; τÞ2 ≈ 2τ2

σ2aðτÞξ2aðt; τÞ
σ2uðτÞξ2uðt; τÞ

; ð17Þ

where we used Eq. (8). If we assume a⊥ to satisfy a
Gaussian distribution, which is only a good approximation
for the core of the PDF, and if we further assume u to be
uncorrelated with a⊥, and also multivariate Gaussian [5],
then both ξ2a and ξ2u satisfy a χ-squared distribution. For a
given velocity vector in 3D, having 3 degrees of freedom,
the perpendicular acceleration is confined to the plane
perpendicular to the velocity and is a 2-component vector.
The ratio of two properly normalized independent
χ2-distributed quantities with n;m degrees of freedom,
respectively, is given by an Fn;m Fischer distribution.
We expect the PDF of 1 − cosðΘÞ therefore to be given
by an F2;3 distribution. More precisely,

γðτÞP1−cos (Θðt;τÞ)½x=γðτÞ� ¼ F2;3ðxÞ; ð18Þ

where γðτÞ ¼ θðτÞ2=3 and θðτÞ is shown in Fig. 2. It is
observed in Fig. 4(b) that the agreement with the prediction
is fairly satisfactory, considering the assumptions we made
in the derivation of the shape of the PDF and the fact that no
adjustable parameters were used to fit the PDF to the F
distribution.
The results obtained in the present investigation show

that the time series of the Lagrangian position can reveal the
inertial range structure of turbulence through the time lag
dependence of the quantity θðτÞ. In particular, we show
how Kolmogorov’s inertial range theory is linked to the
angular statistics of Lagrangian fluid particle trajectories.
The present framework will allow experimentalists to

verify the scaling of Lagrangian statistics in very-high-
Reynolds numbers flows, even if the measurement tech-
niques are not sufficiently rapid to resolve down to the
Kolmogorov scale. Indeed, no measurements of the
instantaneous velocity or acceleration are needed, only
Lagrangian position measurements sufficiently sampled to
resolve the inertial range time scales. A further come out of
this investigation are the scale-dependent measures for the
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mean-angle and the probability density functions, which
will allow us to more accurately model the topology of
Lagrangian trajectories in dispersion models.
The measure we investigated in the foregoing allows

a different approach to simultaneously characterize the
multiscale character of turbulence and the curvature of
Lagrangian fluid particle trajectories. In this light, an
interesting perspective is to clarify the link between the
current work and the results obtained using the recently
introduced longitudinal and transversal Lagrangian struc-
ture functions [25].

The authors are indebted to Oliver Kamps and Michael
Wilczek who provided us the DNS data used in the present
investigation.
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