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ABSTRACT

The goal of this numerical study is to get insight into singular solutions of the two-dimensional (2D) Euler equations for nonsmooth initial
data, in particular for vortex sheets. To this end, high resolution computations of vortex layers in two-dimensional incompressible Euler flows
are performed using the characteristic mapping method (CMM). This semi-Lagrangian method evolves the flow map using the gradient-
augmented level set method. The semigroup structure of the flow map allows its decomposition into submaps (each over a finite time
interval), and thus, the precision can be controlled by choosing appropriate remapping times. Composing the flow map yields exponential
resolution in linear time, a unique feature of CMM, and thus, fine-scale flow structures can be resolved in great detail. Here, the roll-up pro-
cess of vortex layers is studied varying the thickness of the layer showing its impact on the growth of palinstrophy and possible blow up of
absolute vorticity. The curvature of the vortex sheet shows a singular-like behavior. The self-similar structure of the vortex core is investigated
in the vanishing thickness limit. Conclusions on the presence of posssible singularities of two-dimensional Euler equations for nonsmooth
initial data are drawn by tracking them in the complex plane.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0241214

I. INTRODUCTION

The emergence of coherent vorticity is ubiquitous in high
Reynolds number turbulence, as for example in shear layers or in wall
bounded flow in the form of thin boundary layers detaching and trav-
eling into the bulk flow. The dynamics of thin vortex layers in the limit
of vanishing viscosity is of tremendous interest for understanding the
formation of singularities in the incompressible 2D Euler equations
with nonsmooth initial data. In contrast to 2D Euler with smooth ini-
tial conditions, for which results on global regularity and uniqueness
of the solution are well known,1 it was shown by Sz�ekelyhidi2 that for
vortex sheet initial data infinitely many nonstationary weak solutions
exist, which moreover conserve energy. For a review on the mathemat-
ics of turbulence, we refer, e.g., to Majda and Bertozzi,3 and Bardos

and Titi.4 Extensive literature on vortex sheets and their dynamics is
available, and an exhaustive review is beyond the scope of the current
paper. The textbook of Saffman5 gives a nice overview and contains
numerous references. Singularities in two-dimensional vortex layers
have been studied in Caflisch et al.6 and their introduction gives some
overview on the specific topic of the paper. The limit of thin shear
layers has been investigated before (Baker and Shelley,7 Baker and
Pham,8 and Sohn9,10) while Pullin and Shen11 studied recently vortex-
sheet solutions.

In a recent work Caflisch et al.6 showed by means of direct
numerical simulation using a classical pseudo-spectral method that 2D
vortex layers may have complex singularities and after the roll up of
the layer that the vortex cores may have unbounded vorticity in the
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limit of infinite Reynolds numbers. We recall that Caflisch et al.6 did
almost exclusively viscous computations by solving Navier–Stokes
using Fourier pseudo-spectral methods and coupling the vortex layer
thickness with the viscosity, i.e., the inverse Reynolds number. Some
computations for the inviscid case, i.e., for 2D Euler, were likewise pre-
sented in Caflisch et al.12 and Caflisch et al.6 However, the inviscid
computations were limited to minimum layer thickness values
(d ¼ 0:0141). Note that smaller values did not work due to the neces-
sary resolution requirements, however, they also used larger values (cf.
Table III in Caflisch et al.6) The motion of an inviscid vortex sheet, i.e.,
for vanishing thickness, is governed by the Birkhoff–Rott model equa-
tion13,14 which develops a singularity in finite time starting from
smooth initial data.15 Perturbations grow due to the Kelvin–Helmholtz
instability and the vortex sheet does roll up. Regularized simulations
using a vortex blob method have been also performed in Caflisch
et al.,6 Baker and Pham8 and compared with Navier–Stokes
computations.

The vanishing viscosity limit of 2D Navier–Stokes in the presence
of boundaries was likewise studied in Nguyen Van Yen et al.16,17

Dipole-wall collisions were simulated and the existence of a Reynolds-
independent energy dissipation rate was shown. In this context
Prandtl’s classical boundary layer argument was complemented, which
states that both the boundary-layer thickness and dissipation rate are
proportional to Re�1=2: However, for detaching boundary layers,
Kato’s scaling was shown to be more appropriate than Prandtl’s scal-
ing, which implies that the boundary layer scales with Re�1. Some
reviews of 2D flows with walls can be found in Clercx and Van
Heijst18 and mathematical analysis of weak solutions of the 2D
Navier–Stokes equations in bounded domains, in the vanishing viscos-
ity limit, in Constantin et al.19

State of the art for solving Navier–Stokes or Euler equations
numerically with high precision are pseudo-spectral methods20,21

which have been also extensively used for investigating nearly singular
solutions of the 3D Euler equations.22,23 A Cauchy–Lagrange method
for computing 2D Euler flows was proposed in Podvigina et al.24 This
semi-Lagrangian method exploits the time-analyticity of fluid particle
trajectories and was shown to be more efficient than pseudo-spectral
computations. However, detailed singularity studies have not been
reported so far. An even more powerful tool for solving the incom-
pressible Euler equations is the Characteristic Mapping Method
(CMM). Evolving the flow map with a Gradient Augmented Level Set
Method, developed in Refs. 25–27 one can decompose the long time
deformation into short time submaps due to the semigroup structure
of the flow map. This yields a numerical scheme with exponential reso-
lution in linear time developed for linear advection in Mercier et al.28

and 2D Euler in Ref. 29 allowing to capture the exponential growth of
vorticity gradients. The implementation of the method has global
third-order convergence in space and time and its efficiency has been
demonstrated in comparison with spectral and Cauchy–Lagrange
methods in Ref. 29. More recently an extension to 3D incompressible
Euler flows has been proposed in Ref. 30. The compositional adaptivity
of CMM is an essential feature which allows detailed insight into the
small scales of the solution without using prohibitive numerical
resolutions.

The goal of the present paper is to study inviscid vortex layers
with regard to possible singularities using high resolution CMM com-
putations. The motivation is triggered by the vortex layer simulations

of Caflisch et al.6 where, with a few exceptions, viscous results have
been presented and where the layer thickness is coupled with the vis-
cosity. As presented in Caflisch et al.,12 for too thick vortex layers the
vortex merging process starts to interfere with the formation of the
two vortex blobs with spiral arms. Here, we compute solutions of 2D
incompressible Euler flows and study the dynamics of these extremely
thin vortex layers in the vanishing thickness limit and investigate pos-
sible singularities. The aim is to get some insights about possible singu-
larities in 2D incompressible Euler for nonsmooth initial data.
Curvature and vortex strength of the vortex centerline are analyzed
and a temporal and spatial normalization unveils the dynamics for
vanishing thickness limit, as well as the investigation of singularities in
the complex plane. The palinstrophy growth and energy spectra show
and distinguish the impact of both the forming vortices and vortex
merger process. Thanks to the high resolution capabilities of CMM we
get insight into the fine scale structure of vortex cores and their
dynamics in Euler flows.

The remainder of the paper is organized as follows. Setup and
initial conditions are discussed in Sec. II. A short description of the
characteristic mapping method for solving the 2D incompressible
Euler equations is given in Sec. III. Section IV gives an overview on the
performed computations and numerical results are then presented in
Sec. V. A singularity analysis in the complex plane is performed
in Sec. VI. Finally, conclusions and perspectives for future work
are given in Sec. VII.

II. GOVERNING EQUATIONS AND INITIAL CONDITION

We consider inviscid flow in a 2p periodic domain X ¼ ½�p; p�
� ½�p; p� in the plane, governed by the 2D incompressible Euler equa-
tions. The starting point is the vorticity transport equation,

@txþ ðu � rÞx ¼ 0; (1)

where the vorticity is defined as x ¼ r� u and u is the incompress-
ible velocity, satisfying r � u ¼ 0. The curl operator is invertible, and
the velocity can be computed from the vorticity, u ¼ �r� D�1x
using the Biot–Savart operator. Equation (1) is completed with a suit-
able initial condition x0ðxÞ ¼ xðx; t ¼ 0Þ, here a regularized vortex
sheet and where x ¼ ðx; yÞ with ðx; yÞ 2 X as the cardinal directions.
All variables have been nondimensionalized, similar to Caflisch et al.,6

as follows,

x ¼ x�
1
k
; t ¼ t�

C

k2
; u ¼ u�

k
C
; x ¼ x� k

2

C
: (2)

With the domain length Lx ¼ Ly ¼ 2p we have for the spatial
scaling k ¼ Lx=ð2pÞ ¼ 1. The circulation C equals 2p, as shown
below. The regularized vortex sheet initial condition proposed in
Caflisch et al.6 reads,

x0ðx; yÞ ¼ 1ffiffiffiffiffi
2p

p
d
exp �ðy � /ðxÞÞ2

2d2

� �
; (3)

where d is the thickness parameter and / a perturbation function. The
initial field corresponds to a vorticity line with Gaussian cross section
of thickness d centered around a perturbation function /ðxÞ shown in
Fig. 1. The profile for /ðxÞ is sinusoidal with /ðxÞ ¼ sinðxÞ=2 and
ðx; yÞ 2 X. For the perturbation, the amplitude over wavelength ratio
is 1=ð4pÞ. The position of the centerline / is the curve of maximum
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vorticity, which oscillates around y¼ 0. For d ! 0 this vortex layer
converges toward a vortex sheet used in Caflisch et al.6 as initial condi-
tion for the Birkhoff–Rott equation.

The energy spectrum of the initial condition describes the initial
frequencies present in the flow field. It is defined as:

Eðk; tÞ ¼ 1
2

X
k�1=2�jkj<kþ1=2

jbuðk; tÞj2: (4)

Here, b� denotes the 2D Fourier transform. The initial condition, a
vortex line regularized with a Gaussian cross section, does in the limit
of d ! 0 approach a vortex line, i.e., a Dirac distribution. The
enstrophy spectrum thus exhibits a k0 scaling and consequently the
energy spectrum Z(k, t) yields a k�2 scaling, using the relation
Eðk; tÞ ¼ k�2Zðk; tÞ. For large d values the regularization becomes
more and more visible resulting in a faster, i.e., exponential, decay for
large wave-numbers, as shown in Fig. 1(b).

For viscous flow simulations, considered in Caflisch et al.,6 d
was related to the Reynolds number Re ¼ C=� via d ¼ Re�1=2, with
C ¼ Ð

xðx; t ¼ 0Þdx being the initial circulation of the vortex layer
and � being the kinematic viscosity. Note that in the present study �
vanishes. For the given initial condition, the initial circulation is:ð

X
x0ðxÞdx ¼

ðp
�p

ðp
�p

1ffiffiffiffiffi
2p

p
d
exp �ðy � /ðxÞÞ2

2d2

� �
dxdy

¼
ðp
�p

ððp�/ðxÞÞ=2d

ð�p�/ðxÞÞ=2d

1ffiffiffi
p

p exp �v2ð Þdvdx

¼
ðp
�p

1
2
erfðvÞ½ �ðp�/ðxÞÞ=2d

ð�p�/ðxÞÞ=2ddx

¼ 2pþ oðexpð�d�2ÞÞ: (5)

The evaluation limits ð6p� /ðxÞÞ=2d arise from the truncation
of the Gaussian profile by the periodic box (on the upper and lower
sides of which there is technically a discontinuity). Here, erfðzÞ
¼ 2ffiffi

p
p

Ð z
0 exp ð�v2Þdv is the error function which rapidly approaches 1

for z ! 1, i.e., for d ! 0. Hence, the error function can be

approximated by 1 for all investigated thickness values d to a certainty
far below machine precision, justified by the expansion erfðxÞ ¼
1� e�x2 1ffiffi

p
p 1

x � 1
2x3 þ 3

4x5 � 15
8x7

� �þ oðx�8e�x2Þ.31 The term

½erfðvÞ�ðp�/ðxÞÞ=d
ð�p�/ðxÞÞ=d can, therefore, be approximated to 2 with error of

order oðexp �ðp� 1
2Þ2d�2

� �
Þ using that j/ðxÞj � 1

2.

For an incompressible and inviscid flow, energy E(t) and enstro-
phy Z(t) remain constant over time, while the palinstrophy does
increase superexponentially.32 Those quantities are defined by:

EðtÞ ¼ 1
2

ð
X
juðx; tÞj2dx; (6)

ZðtÞ ¼ 1
2

ð
X
jxðx; tÞj2dx; (7)

PðtÞ ¼ 1
2

ð
X
jrxðx; tÞj2dx: (8)

With varying thickness d, the initial energy Eðt ¼ 0Þ was found to
increase linearly with decreasing vortex sheet thickness with a limit value
estimated as 1.52 as d ! 0 (Fig. 2), The initial enstrophy Zðt ¼ 0Þ is
shown below to scale with d�1 and the initial palinstrophy Pðt ¼ 0Þ
with d�3, both values thus go to infinity with vanishing vortex sheet
thickness. Similar to the circulation, we get for the initial enstrophy:

1
2

ð
X
jx0ðxÞj2dx

¼ 1
2

ðp
�p

ðp
�p

1

2pd2
exp �ðy � /ðxÞÞ2

d2

� �
dxdy

¼ 1
2

ðp
�p

ððp�/ðxÞÞ=d

ð�p�/ðxÞÞ=d

1
2pd

exp �v2ð Þdvdx

¼ 1
2

ðp
�p

1
2

ffiffiffi
p

p
d
erfðvÞ½ �ðp�/ðxÞÞ=d

ð�p�/ðxÞÞ=ddx

¼
ffiffiffi
p

p
2d

þ oðexpð�d�2ÞÞ: (9)

FIG. 1. Initial condition x0 for d � 0:032 (a) and energy spectra for different d-values (b).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 124126 (2024); doi: 10.1063/5.0241214 36, 124126-3

Published under an exclusive license by AIP Publishing

 12 D
ecem

ber 2024 18:36:12

pubs.aip.org/aip/phf


Respectively, the initial palinstrophy can be computed analytically
with the gradient of the initial vorticity:

rx0 ¼ � �/0ðxÞ=d
1=d

� �
y þ /ðxÞ

d
x0ðx; yÞ: (10)

We thus obtain:ð
X
jrx0j2dx

¼ 1

2pd3

ðp
�p

ððp�/ðxÞÞ=d

ð�p�/ðxÞÞ=d
1þð/0ðxÞÞ2
� �

v2expð�v2Þdvdx

¼ 1

8pd3

ðp
�p

1þcos2ðxÞ
4

� �h ffiffiffi
p

p
erfðvÞ�2vexpð�v2Þ

iðp�/ðxÞÞ=d

ð�p�/ðxÞÞ=d
dx

¼9
ffiffiffi
p

p

32d3
þoðexpð�d�2ÞÞ: (11)

We bound the size of this error using max/ðxÞ, by erfððp� 1=2Þ=dÞ
¼ 1� oðexp ð�ðp� 1=2Þ=dÞ2ÞÞ and similarly for the 2u exp ð�u2Þ
term. This then gives the initial palinstrophy Pðt ¼ 0Þ ¼ 9

ffiffi
p

p
32d3

þ oðexpð�d�2ÞÞ.
The numerical values for normalized initial enstrophy Zðt ¼ 0Þ

� d ¼
ffiffi
p

p
2 � 0:886 and palinstrophy Pðt ¼ 0Þ � d3 ¼ 9

ffiffi
p

p
32 � 0:499

encountered in the simulations are consistent with the analytically
derived values up to machine precision (10�16). The same observation
applies for the initial circulation, matching the value 2p to machine
precision.

III. CHARACTERISTIC MAPPING FOR 2D EULER

In this section, we briefly recall the characteristic mapping
method (CMM) for solving the 2D incompressible Euler equations.
For details and numerical implementation we refer the reader to Yin
et al.29 The numerical results in this paper are computed using a GPU
Cuda implementation of the method. The open source code is avail-
able on GitHub.33

The CMM for the 2D incompressible Euler equations is based on
the 2D scalar vorticity formulation [Eq. (1)] coupled with the CMM
for linear transport. We recall that the characteristic map vB is the
backward Lagrangian flow map and can be thought of as the back-to-
label operator for the advection of Lagrangian particles. Indeed, for
any particle trajectory cðtÞ given by,

d
dt

cðtÞ ¼ uðcðtÞ; tÞ; (12)

with initial condition cð0Þ ¼ c0, we have that vB satisfies,

c0 ¼ vBðcðtÞ; tÞ: (13)

It follows by the method of characteristics, that any scalar quantity /
advected by the same velocity u satisfies /ðx; tÞ ¼ /0ðvBðx; tÞÞ, this is
known as the relabeling symmetry.

In the vorticity equations, x is a scalar-valued quantity advected
by u, and thus, has the above relabeling symmetry. The velocity field u
is in turn obtained from the Biot–Savart law. The coupling of the vor-
ticity equations with the characteristic map yields the following gov-
erning equations for the numerical method:

@tvB þ ðu � rÞvB ¼ 0; (14a)

xðx; tÞ ¼ x0ðvBðx; tÞÞ; (14b)

u ¼ �r� D�1x: (14c)

Numerically, the advection equation for the map (14a) is discretized
through the Gradient-Augmented Level-Set method25–27 which is a
semi-Lagrangian method using Hermite cubic spatial interpolation
with Runge–Kutta time-stepping schemes. The vorticity evaluation
step (14b) is performed on a fixed fine grid by interpolation of the
Hermite cubic representation of vB followed by a direct evaluation of
the initial conditionx0. Figure 3 illustrates the computation of the vor-
ticity by pullback on the initial condition. Finally, the velocity field is
defined through the Biot–Savart law (14c) as the curl of the Hermite
interpolant of the stream function, which we obtain from a spectral
solver for the Poisson equation using Fast Fourier Transforms. The
time dependence of the velocity field is obtained from a Lagrange
extrapolation in time using stream function data from the three most
recent time steps.

This approach has several desirable numerical properties for the
problem investigated here. First, the use of the advection solution oper-
ator vB maintains a back-to-label symmetry of the vorticity field. This
ensures a nondissipative numerical method, since there exists a coordi-
nate transform which transports the numerical solution to the exact
one. This property is beneficial to the study of singularity formation,
since artificial viscosity is eliminated as a potential regularization
mechanism preventing blow-up. Second, the characteristic maps bene-
fit from the structure of the Lie-groups of volume-preserving diffeo-
morphisms. Therefore, a long-time map can be represented as the
composition of multiple short-time sub-maps. For a time subdivision
0 < t1 < t2 < � � � < tm�1 < T , the sub-map decomposition is an
adaptive and multi-resolution representation of the full map vB
given by:

vBð�;TÞ ¼ v t1 ;0½ � 	 v t2 ;t1½ � 	 � � � 	 v T;tm�1½ �; (15)

where v½ti;ti�1 � represents the backwards map in the time interval
½ti�1; ti�. On each time subinterval, the spatial deformation is

FIG. 2. Initial energy Eðt ¼ 0Þ as a function of the sheet thickness d showing a lin-
ear decrease with a value of � 1:52 for d ! 0.
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comparatively small and can be well resolved on a coarser grid, the
remapping step is triggered dynamically as the numerical resolution of
the sub-map coarse grids are depleted. The full map obtained from the
map composition in (15) retains all scales formed by each submap.

The movement of the vortex sheet centerline, parametrized by
xðh; tÞ, is tracked by following the trajectories of Lagrangian particles
in the vortex core. The initial position corresponds to the perturbation
function /ðxÞ, i.e., xðh; t ¼ 0Þ ¼ ðh;/ðhÞ þ pÞ; h 2 ½0; 2p�. The
initial vortex center curve is discretized using NP uniformly distributed
sample particles with hn ¼ n 2p=NP . A sufficiently high number of
points NP 
 106 ensures that all dynamics of the material line is cap-
tured even under strong elongation effects.

Their time evolution under the numerical velocity field computed
from the CMM is then tracked individually using standard explicit
Runge–Kutta methods. We must note here that the velocity field
obtained from the CMM is only C0 in space since it is defined as the
curl of the Hermite cubic interpolant of the stream function. The size
of the discontinuities in higher derivatives depends on the grid size Nw

used for the stream function with the jumps in ith derivative scaling
like jjD4wjj1N�4þi

w . This introduces a negligible error in the L1 error
for the curve position and derivatives but can be a source of noise for
the regularity analysis.

IV. PERFORMED COMPUTATIONS

Several runs with successively decreasing d-values were executed
on state-of-the art graphics cards, maximizing the available usable
memory. All used parameters are summarized in Table I. Two grid
sizes were used: A coarser one for the description of the flow map v

and velocity u and one for the initial vorticity x0 defined for each sub-
map as well as the discrete vorticity used in the Biot–Savart law. The
merit of this lies in the enhanced smoothness of the velocity field, obvi-
ating the need for a highly detailed representation. Additionally, fine
scales of the flow captured by the flow map are retained from the com-
position of the individual submaps. The time step Dt is set after a
Courant–Friedrich–Lewis (CFL) number of 1/3 of the coarse map to
neglect its influence, however the semi-Lagrangian method can easily
deal with large CFL numbers> 1 as well. The incompressibility thresh-
old of dinc;b ensures the volume preservation of the sub-maps, i.e., we
monitor that jdetrvBj � dinc;B. The parameter of the local stencil size
�m defines the distance at which spatial derivatives for the creation of

the Hermite interpolants with the gradient-augmented level set
method (GALS) method are computed, together with its correspond-
ing map update stencil order. The filter size kLP defines the cutoff fre-
quency for the low-pass filter and was disabled by setting it to high
frequencies of negligible energy. The fluid and embedded particle time
schemes are chosen to adapted versions of the Runge–Kutta scheme
with improved efficiency for the CMmethod. At last, NP is the number
of equidistant particles embedded in the vortex centerline. Further in-
depth analysis and explanation of all used parameters are reported in
Yin et al.,29 Bergmann.34

The parameters were specifically chosen to maximize the coarse
grid size for the given GPU memory, which in return leads to lower
growth of incompressibility error, and therefore, more accurate flow
representation over time. With too low grid resolution, a simulation
with small thickness d leads to premature emergence of Kelvin–
Helmholtz (KH) instabilities along the line of high vorticity. This was
observed to be suppressed with increased grid size, and therefore,
attributed to numerically induced errors. For the highest available grid
settings on the NVIDIA A100 cards, a value of d � 0:007 was the

FIG. 3. Illustration of the pullback operation by the characteristic map. (a) Shows the initial vorticity, (b) overlays onto (a) the backward map, and (c) shows the time t vorticity
obtained by pullback using the relabeling symmetry.

TABLE I. Simulation parameters for the different runs on NVIDIA V100 and A100
machines.

Parameter Symbol V100 A100

Coarse & stream function grid Ncoarse &
Nw

8192 12288

Fine & sample grid Nfine &
Nx

12288 24576

Time-step Dtfluid 1/24576 1/36864
Incompressibility threshold dinc;b 10�3 10�3

Local stencil size for GALS method �m 10�4 5 � 10�5

Low-pass filter size kLP 4096 12288
Fluid time integration scheme RK4Mod RK3Mod
GALS map update stencil fourth

order
fourth
order

Number of particles NP 106 107

Particle time integration scheme RK4Mod RK3Mod
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lowest observed value where perturbations are bounded and do not
dominate the flow behavior. In simulations with smaller vortex sheet
thickness, the flow is completely dominated by the emerging KH-
vortices before any roll-up process starts to occur. In total, simulations
for six different d-values have been performed successfully, ranging

from d � 0:007 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 104

p
to d � 0:045 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 102

p
. The values

were placed with 1=d2 to ensure comparability to the Navier–Stokes
results from Caflisch et al.6 by their overall dynamics, as they did for
their inviscid results.

All runs were performed until the map-stack of emerging sub-
maps depleted the CPU RAM of the available compute nodes. The
computations were computed on the IDRIS supercomputer. Up to
43 convoluted maps for A100 runs and 117 convoluted maps for
V100 runs were captured. Details on the executed run architecture
and final observed time together with the amount of captured
windings of the emerging vortex structures are given in Table II.
The settings ensure that energy and enstrophy are conserved to an
error of �2 � 10�5, see Fig. 4, which is supported by the error of the
CM-method being not dissipative in nature for transported
quantities.

Simulations with successively decreasing thickness values d reveal
the flow behavior for the limit d ! 0. An example for the vortex
dynamics for different times and with d � 0:032 is shown in Fig. 5.
Interestingly, two small vortices start to roll up along a common center
each. These have a compressed, round-shaped vortex core of high vor-

TABLE II. Overview on the used vorticity layer thickness values d including the
obtained final time and the number of windings, for which computations were
performed.

d� 1=d2 Run on Final time Captured windings

0.0045 5� 104 A100 1.24 0
0.007 2� 104 A100 2.29 3
0.01 1� 104 V100 2.86 5
0.0141 5� 103 V100 3.46 6
0.022 2� 103 V100 4.37 6
0.032 1� 103 V100 5.82 7
0.045 5� 102 V100 7.59 7

FIG. 4. Relative energy and enstrophy error to the initial condition t¼ 0 for simulations with different d-values over time. Both quantities are well conserved up to 2 � 10�5.

FIG. 5. Evolution of initial condition with d � 0:032 portraying the roll-up of the two vortices. The images are centered around 0 with extent p=2.
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ticity and two elongated spiral arms. Both vortex cores, being of equal
vorticity sign, attract each other and will for long times roll-up into
one another. With decreasing sheet thickness, the initial roll-up pro-
cess is triggered earlier, and the emerging structures are smaller in
scale. Figure 6(a) shows that the vortex core is of slight elliptic shape,
being stretched toward the second vortex due to the mutual attraction.
This shape looks similar to those obtained by Baker and Shelley7 using
layer interfaces for thin vortex layers with the Birkhoff–Rott model.
The local palinstrophy captured in Fig. 6(b), is very pronounced in the
spiral arms and shows the spiraling structures also present within the
vortex core itself.

The acquired results are comparable with inviscid flow fields
reported by Caflisch et al.6,12 The depicted vortex in Fig. 7(a) is in
excellent agreement with Fig. 14(d) of Caflisch et al.,6 given in

Fig. 7(b). It is important to mention that the original results are
depicted in nonequal aspect ratio, due to which the vortex core appears
more elliptic.

V. ANALYSIS OF THE RESULTS

In the following, the numerical results are analyzed and discussed.
Comparison of global quantities as well as the material line uncover
the different flow dynamics. Normalization in space and time with
respective scaling laws give insight into dynamics for the nonsmooth
initial condition when d ! 0.

The palinstrophy P over time, shown in Fig. 8, exhibits two
different growth stages. At early times, all performed simulations
show an algebraic growth following a t2-scaling. This initial growth
period is later on overtaken by an exponential growth once vortex

FIG. 6. Close-up of upper vortex with overlayed centerline (a) and corresponding local palinstrophy P ¼ jrxðx; tÞj2.

FIG. 7. Comparison between our results and Caflisch et al.6 with d � 0:014 and at t¼ 2.85. They show excellent agreement. (b) From Caflisch et al., “Complex singularity
analysis for vortex layer flows,” J. Fluid Mech., 932, A21, 29, 2021 Copyright Cambridge University Press, reproduced with permission.
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structures emerge. The steepness of the growth increases with
decreasing vortex sheet thickness d. For the slope s of the exponen-
tial growth with PðtÞ / expðstÞ, an empirical relation of s � d�0:77

was found with linear fitting. This means that in the limit of d ! 0
palinstrophy diverges. This is consistent with results in the litera-
ture for Navier–Stokes where exponential growth of palinstrophy
was derived, see, e.g., Lesieur.35 Early in the evolution a power-law
behavior was predicted in Ayala and Protas32 and estimates of the
maximum palinstrophy growth were given. The lower limit of the
investigated d-values, i.e., d � 0:0045, experiences artifacts in
the form of numerically accelerated secondary Kelvin–Helmholtz
instabilities along the material line, resulting in the premature and
irregular steep palinstrophy growth.

With the material line xðh; tÞ, given by the individual particle
positions, we define following6 several quantities, the arc length sðhÞ,
curvature jcðhÞ, and true vortex strength ccðhÞ. These are used to ana-
lyze the material line dynamics and are defined respectively as,

sðhÞ ¼
ð2p
0
jxhjdh; (16)

jcðhÞ ¼ ðxhyhh � yhxhhÞ=ðx2h þ y2hÞ3=2; (17)

ccðhÞ ¼ jxhj�1: (18)

with the notation xh ¼ @x
@h and correspondingly for the other

derivatives. Numerically the derivatives were computed using central
fourth-order finite differences over the particle positions for both the
first and second derivative. Both the elongation of the spiral arms and
contraction around the vortex core from Fig. 6 can be found in the
evolution of the arc length of the material line in Fig. 9(a). The overall
arc length is both increased by the emerging two vortices and the
global vortex merging process with the effect intensifying strongly over
time especially around the vortex core position. The almost vertical
lines correspond to strong stretching of the material line, while the

FIG. 8. Initial palinstrophy growth shows a t2-scaling (a). At later times an exponential palinstrophy growth is found which is due to the formation of rolled-up vortices (b). The
steepness of the slope increases for smaller d-values and exponential growth starts at earlier times.

FIG. 9. Arc length of the material curve for d ¼ 0:032 with vortex center as vertical dotted line (a). Curvature jc (b) and true vortex strength cc (b) over arc length sðhÞ around
vortex center for d ¼ 0:014.
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almost horizontal part correspond to extreme compression of the par-
ticles. Our results for the Euler case are comparable with those shown
in Caflisch et al.6 Fig. 12(b) for Navier–Stokes.

The curvature shown in Fig. 9(b) showcases the strength of
the winding process, forming two peaks of opposite sign around
the vortex cores. These are situated at the edge of the coalesced vor-
tex centers from which at longer times the spiral arms start.
Involving second-order derivatives the curvature experiences high-
frequency oscillations from numerical derivation of the particle
positions. A Gaussian filter with standard deviation of 3 � 10�4 �
NP was used to mitigate this effect. In the center of the developed
vortex the true vortex strength reaches a peak showcasing strong
convergence toward the vortex core. Before any spiral arms are
formed all particles are compressed toward the vortex core (with
cc > 1). Once the vortices start to rotate, two spiral arms will form
and elongation occurs (cc < 1) outside the vortex core. Both quan-
tities reach maximum peak values at different times, depicted by
the green curve in Fig. 9(c), and then start to disperse.

Tracking the maximum value of curvature and vortex strength
over time enables comparisons between different d-values, shown
in Fig. 10. Here, the curves have been matched empirically to the
given scaling laws. The curvature was found to empirically scale
with d�0:9 and the true vortex strength with d�0:31, for which an
explanation was not found. Nonetheless, this scaling supports the
conjecture of Caflisch et al.6 that only for the limit of d ! 0 the
curvature as well as true vortex strength go toward infinity for
finite time.

Interestingly, over time, both quantities show the same behavior
with an initial steep increase to an overall maximum, decreasing again
with oscillations. As the observed dispersion effect appears similar for
different vortex sheet thicknesses d it is interpreted as a flow behavior
rather than a result of numerical artifacts. It can be explained by the
flow evolution. At first the vorticity sheet close to the vortex core starts
to roll up. An inner and an outer region are formed based on the true
vortex strength: one close to the center of the vortex where the material
line with surrounding region of vorticity is condensed and one outside

FIG. 10. Temporal re-scaling for the maximum values of the curvature js and true vortex strength cs as well as temporal re-scaling for the vortex turnover with empirically deter-
mined coefficients. The critical times ts, given in (b), were found to be decreasing with lower d-values.

FIG. 11. Temporal re-scaling for the vortex turnover (a) and palinstrophy growth (b) with empirically determined coefficients. The critical times ts are given in (a).
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where the material line is strongly elongated from the formation of the
spiral arms due to the rotation of the vortex core. At later stages the
vortex core is reformed into a circular shape [observable in Fig. 6(a)]
and rotates with quasi-constant speed due to the induced velocity from
the Biot–Savart law. This shape bears similarities to what Baker and
Shelley7 observed for vortex layer interfaces.

This is also visible in Fig. 11(a). Here, the occurrence of the
vanishing gradient is plotted as a function of a re-scale time, where
each occurrence marks when the gradient of the material line at
the spiral center becomes zero, i.e., when either the x- or y-compo-
nent of the derivative of the material line position @xðh;tÞ

@h vanishes.
As the vortex turnover over re-scaled time occurs in constant peri-
ods [linear growth in Fig. 11(a)], the vortex rotates with constant
speed. It is similar to a solid body rotation and portrays a stable
vortex core.

Additionally, the palinstrophy growth was also found to be re-
scalable in time using ts and d, as shown in Fig. 11(b).

In all graphs of Figs. 10 and 11, a temporal scaling has been used.
As for different d-values the results are similar, those four criteria were
used to match them and determine an empirical relation. The ansatz
was taken from Caflisch et al.6 using ðt � tsÞd�1, where ts is the singu-
larity time and d�1 as re-scaling factor. The flow scales linearly with
decreasing d-values. The critical times are not equal to ts ¼ 1:505, the
value of the Birkhoff–Rott equation but were observed to be slightly
larger. They are closely constant for larger d-values but changed once
it was decreased, possibly going toward the critical time of the BR-
equation for vanishing vortex sheet thickness d. The linear scaling with
d�1 in comparison to the scaling of d�2=3 for viscous flow reported by
Caflisch et al.6 results from different flow dynamics. Results by Baker
and Pham8 for vortex blob methods for Euler flow report on the same
re-scaling factor on time. Without viscosity to diffuse the flow, the ini-
tial vorticity field can only be transported and the whole dynamics of
the condensed vortex core is an accumulation of vorticity present in
the initial vortex sheets, which scales directly with the thickness d.

FIG. 12. Spatial re-scaling with different factors for the fourth time that @xðh; tÞ=@h � 0 in the y direction for different d-values.

FIG. 13. Energy spectra E(k) defined in Eq. (4) for different d-values. Both start with an initial scaling of k�2 with exponential decay for large k as given in Fig. 1(b).
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The material curves for different d-values have strong spatial self-
similarity. Results obtained by Caflisch et al.6 for Navier–Stokes simu-
lations and Baker and Pham8 for vortex blob methods show a scaling
of d�1, however, this did not match our computed results. These show
an empirical scaling of approximately d�0:9, which is slightly different,
as shown in Fig. 12. This similarity scaling is valid for all reported sim-
ulations and all times around the vortex cores and only breaks down
with the vortex merging process for later times (observed for d �
0:045 for t> 7). There has been no reason found for the discrepancies
to other literature, however, differences might arise from the formation
of the outer and inner region, which differs in shape to Baker and
Pham8 and might behave different to those of the viscous Navier–
Stokes results of Caflisch et al.6

With the scaling relation of the thickness of the vortex core
region, it reduces to a point size for the limit d ! 0. The point of max-
imum curvature, being at the interface between the core region and the
start of the spiral arms, for the limits falls into the center point where
the diverging true vortex strength compresses the vortex line into an
individual point.

The characteristic of the initial energy spectra, defined in Eq. (4),
have already been explained in Sec. II. For larger d-values the initial
profile with exponential decay experiences a shift of energy to finer
scales [Fig. 13(a)]. In comparison, the results with lower d-values with
initially more pronounced k�2 Dirac-scaling show only little shift in
energy from larger to finer scales [Fig. 13(b)]. However, for both simu-
lations the two vortices have already emerged for the captured time
and performed several windings, while the results for Fig. 13(b) did
not yet observe any developed distortion from the vortex merging pro-
cess. Eventually, once this global process continues the energy spectra
are expected to behave similarly as to that for larger d-values. The for-
mation of the local vortices exhibits, therefore, only little impact on the
energy spectra.

The two vortices which form are quite unstable once per-
turbed to sufficient degree. With ongoing global filamentation
process of the two vortices, the shape of the vortex core becomes
more and more elliptic (Fig. 14) toward each other. This brings
an imbalance to the induced velocity field and secondary vortices
form, breaking down the regularity. The individual parts of the
spiral arm become compressed into filament structures and sec-
ondary vortices form.

VI. SINGULARITY ANALYSIS

The complex singularity of an analytic function can be analyzed
using the Fourier transform. The width of the analyticity strip can be
obtained by considering the asymptotic behavior of the Fourier spec-
trum governed by Laplace’s formula. To obtain information about sin-
gularities outside the analyticity strip the Borel–Polya–van der Hoeven
(BPH) method has been proposed.36

A. Borel–Polya–van der Hoeven method

The Borel–Polya–van der Hoeven (BPH) method36 is a numerical
tool for finding complex singularities of single variable functions by
combining the information on singularities obtained from Borel trans-
forms for Taylor series37 with numerical techniques for asymptotic
interpolation.38 This method has been successfully applied to find sin-
gularities for the 1D Burgers equations36 and has been used to analyze
potential singularity formation in the 2D Euler vortex sheet problem.6

The following is a summary of the method along with some small
modifications implemented to adapt to our case.

Given a complex-valued function f (Z) with Z 2 C and with for-
mal power series:

f ðZÞ ¼
X1
n¼0

anZ
n; (19)

its Borel transform and Borel–Laplace transform are given respec-
tively by:

f BðnÞ ¼
X1
n¼0

an
n!

nn; (20a)

f BLðZÞ ¼ 1
Z
f

1
Z

� �
¼

X1
n¼0

an
Znþ1

; (20b)

so named since f BL is formally the Laplace transform of f B.
The BPH method is built on P�olya’s theorem which is based on

the observation that for an ¼ cn for some complex number c, the Borel
transform is the exponential:

f BðnÞ ¼
X1
n¼0

ðcnÞn
n!

¼ ecn; (21)

while the Borel–Laplace transform is a simple pole at c:

FIG. 14. Material line (in black) and vorticity for d ¼ 0:032 at different times. The initially more stable spiral arms experience distortions and filament structures start to emerge
with ongoing global vortex merger process.
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f BLðZÞ ¼
X1
n¼0

cn

Znþ1
¼ 1

Z � c
: (22)

Writing f B in polar coordinates using n ¼ re�ih (reversed phase
parametrization for convenience), and c ¼ jcjei/, we have that:

ln ðf Bðr; hÞÞ ¼ jcj rðcosð/� hÞ þ i sinð/� hÞÞ; (23)

and therefore, @r ln ðjf Bðr; hÞjÞ is maximized at h ¼ / to value jcj
thereby revealing the position of the pole.

For f BL given by a linear combination of multiple isolated poles
f BLðZÞ ¼ C1

Z�c1
þ C2

Z�c2
þ � � � þ Cm

Z�cm
, the supporting function rðhÞ is

given by:

rðhÞ ¼ lim
r!1 @r ln ðjf Bðr; hÞjÞ

¼ max
j¼1;2;…;m

jcjj cosð/j � hÞ: (24)

The curve rðhÞeih, then, describes the convex hull of the set of singu-
larities. This also means that only the singularities of fBL furthest from
the origin are identified from the vertices of the convex hull. Since the
Borel–Laplace transform f 7!f BL involves the change of variable
Z 7!1=Z, we have that the complex reciprocals of these singularities
are the singularities of f closest to the origin.

This method is then applied to estimate the location of complex
plane singularities for a real valued periodic function u(x) on
S1 � ½�p; pÞ. We write u in terms of Fourier series and make the ana-
lytic extension in some strip around the real axis:

uðzÞ ¼
X
k2Z

buke
ikz; (25)

which is decomposed as the sum of two functions:

uþðzÞ ¼
X
k>0

buke
ikz; (26a)

u�ðzÞ ¼
X
k>0

bu�ke
�ikz: (26b)

We note that uþ is analytic in the upper half plane, i.e., poles are con-
tained in the lower half plane. Similarly, all poles of u� are in the upper
half plane. The change of variables Z ¼ eiz and Z ¼ e�iz are made to
uþ and u�, respectively, to yield:

f1ðZÞ ¼ uþð�i lnZÞ; (27a)

f2ðZÞ ¼ u�ði lnZÞ; (27b)

where we use the ½�p; pÞ branch cut. We note now that both f1 and f2
are analytic inside the unit disk corresponding to the image of the
upper and respectively lower half planes under the change of coordi-
nate. Applying the BPH method on f1 and f2 then reveals the poles
closest to the unit circle and hence closest to the real axis after the loga-
rithmic change of coordinate.

The algorithm of the BPH method is summarized as follows. For
a function f given as a truncated power series in (19) with coefficients
an, we compute its Borel transform f BðnÞ on a grid in polar coordi-
nates given by nj;k ¼ rje�ihk . The grid points are given by:

rj ¼ r0 þ jR
M

; hk ¼ 2pk
K

; (28)

for j ¼ 0; 1; 2;…;M � 1 and k ¼ 0; 1; 2;…;K � 1 with an appropri-
ate choice of r0 and R to be discussed later.

At each grid point, the Borel transform is given by a N-truncated
sum of (20). If we select the number of rays K to be equal to the num-
ber of power series terms N, we get that:

f Bðnj;kÞ ¼
XN�1

n¼0

an
rnj
n!
e�i2pknN ¼

XN�1

n¼0

an
rnj
n!
e�ihkn; (29)

which, for fixed j, is the expression for the discrete Fourier transforms
of the sequence fbngN�1

n¼0 with:

bn ¼ an
rnj
n!

¼ an rj exp
�lnCðnþ 1Þ

n

� �� �n

¼ exp n ln rj þ ln an � lnCðnþ 1Þ� �
: (30)

FFT algorithms are used to compute the discrete Fourier transform to
reduce round-off errors and improve speed and the log-Gamma func-
tion is used to avoid numerical overflow in the computation of the
larger n terms.

Then for each fixed hk, rðhkÞ can be estimated from finite differ-
ence on ln ðjf Bðr; hÞjÞ. Higher-order asymptotic interpolation could be
used but would require high precision arithmetic. For double precision
computations, we opted for simple finite difference. From the support-
ing function rðhÞ, we can identify SBL ¼ y�1 ; y

�
2 ;…; y�s g

	
, the vertices

of the convex hull of the singularities of fBL which we recall lie within
the unit complex disk. The choice of the values of r0 and R needs to be
adjusted carefully. Since along the ray of each y�i , the Borel transform
is expected to grow as f BðnÞ � expðy�i nÞ, to capture the exponential
growth, one should pick r0 larger than 1=jy�i j. The maximum radius R
should be picked as large as possible until the effects of finite precision
arithmetic start dominating.

Applying the inverse Borel–Laplace transform gives us the set of
singularities S ¼ Z�

1 ;Z
�
2 ;…;Z�

s g
	

for f, where Z�
j ¼ 1=y�j , which are

now the singularities of f closest to the unit circle. The locations of the
singularities z�i of u6 are then obtained by performing the inverse
transform z�i ¼ 7i lnZ. This means that if one has an a priori estimate
for the radius of analyticity d of u, the value r0 should be chosen larger
than ed.

We applied the BPH method to analyze the singularity formation
in the vortex core curve c. As in Ref. 6, we compute the closest com-
plex singularities for the vortex strength function r and the curvature
function j given by:

r ¼ j _cj�1; (31)

j ¼ j _c � €cj
j _cj3 : (32)

Since the CMM relies on Hermite cubic interpolation for the stream
function which yields a C0 velocity field with small discontinuities in
the derivative (order of h3 where here h � 1e� 9), the evolved vortex
curve c is also only C0. The lack of regularity shows up as noise in the
large wave-numbers of bc. To perform the BPH analysis on these data,
a smoothing kernel expð�1� 10�7k4Þ in Fourier space and a trunca-
tion to the 10000 first wave-numbers is applied to the curve as
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pre-processing. The results are shown in Fig. 15, where the position of
the complex singularities are drawn for times between 0.8 and 1.6. The
general trajectories of the complex plane singularities before time
t¼ 1.5 are in agreement with the results found for the viscous case in
Ref. 6. We observe that all singularities move toward the real axis as
time advances until t¼ 1.5 (marked with circles) after which they
seem to move away in some cases. The meaning of this is not clear
from these tests as the accuracy of the singularity analysis is very lim-
ited due to the limited available arithmetic precision. We cannot
exclude the possibility that the BPH method is detecting another
complex singularity which overtakes the one tracked in the above
figures resulting in a transition to a new singularity which is closest to
the real axis.

VII. CONCLUSIONS

The flow of vortex layers governed by the incompressible 2D
Euler equations has been computed for successively decreasing layer
thickness using the characteristic mapping method. This semi-
Lagrangian method features exponential resolution in linear time and
thus allows to capture the exponential growth of the vorticity gra-
dients. Our results agree with pseudo-spectral computations of
Caflisch et al.6 without viscosity and go even beyond their reported
results. In particular, the range of results for vanishing vortex sheets
thickness was extended down to d � 0:007 and longer captured simu-
lations enabled further analysis of the emerging vortex structures.
Energy and enstrophy are conserved to a high degree thanks to the
nondissipative feature of the CM method. The palinstrophy shows at
the beginning a superexponential growth, which is intercepted and
dominated by a stronger exponential growth once the two vortices
form. The dynamics of the centerline of the vortex sheet can be
described by measures of the arc length, curvature and vortex strength.
The arc length and vortex strength showcase, that the emerging vorti-
ces develop two individual regions: one core region of very strong
compression around the vortex centers and one of elongation in the
spiral arms that form. The core region forms a peak in compression
directly at the center, which increases with decreasing vortex sheet
thickness d. For the limit of d ! 0 the vortex strength is expected to
form a singularity at the center of rotation where it is compressed into

it with vortex strength tending to infinity. The curvature displays simi-
lar singular behavior. Instead of forming maximum values directly at
the vortex center, it forms two at the interface between the inner and
outer region of the condensed vortex core. These are of opposite sign
and describe the transition of the centerline from the vortex blob for-
mation to the spiral arms and additionally scale with vortex sheet
thickness d, again going to infinity for the limit of vanishing d-values,
further supporting the formation of singularity for nonsmooth initial
data suggested in Caflisch et al.6 The investigated quantities show
strong self-similarity in time and space. With the help of the curvature,
vortex strength and turnover time, the re-scaling in time of the vortex
dynamics was unveiled. In fact, after initial build up these vortices
rotate with constant speed, similar to a solid body rotation. The maxi-
mum values for the curvature and vortex strength also do not observe
monotonous growth over time, but after a steep increase, they oscillate
around a common value. The temporal re-scaling was found to be con-
sistent with other vortex sheets results of incompressible Euler equa-
tions.8 In space, the formed vortices show strong self-similarity even
for many turnover events and over a large range of d-values. The
observed scaling slightly differs from that found in Caflisch et al.6 in
the viscous case, i.e., for Navier–Stokes or8 for vortex blob methods.
The energy spectra show for small d values a power law scaling with
slope close to �2. Simulations for longer times show, that at some
point the vortex merger starts to distort the round-shaped vortex
blobs, this leads to instability in the roll-up process and secondary vor-
tices start to form, eventually breaking down the spiral structure by
continuous filamentation.

In future work we will apply CMM to compute fine scale
structures of vorticity gradients in 2D Euler. The transport equation of
the vorticty gradients contains a source term for vorticity gradient
stretching, similar to the vortex stretching source term in 3D Euler.
The latter can be solved likewise by CMM, similar to what has
proposed in Yin et al.30

Another challenging perspective is applying CMM to study Euler
flows in 3D and to investigate numerically possible singularities. First,
results presenting low resolution computations for the Hou and Li,22

Kerr39 initial condition can be found in Yin et al.30 High resolution 3D
computations considering different flow configurations, like Hou and

FIG. 15. Evolution of the complex plane singularities for the true vortex strength (a) and curvature (b) for various values of d from t¼ 0.8 to 1.6. The position of the singularity
at time t¼ 1.5 is marked by the circles. The singularity positions are computed using the BPH method using radii in ½1; 2:4�. The use of larger radii was not possible due to the
presence of noise in the data.
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Li,22 Kerr39 and more recently the one by Moffatt and Kimura,40,41 will
be published in forthcoming work.
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APPENDIX: VALIDATION OF CONVERGENCE ORDER IN
SPACE AND TIME FOR CUDA-CODE

In the following, we present numerical validation of the open
access CMM Cuda code33 similar to what has been done in Yin
et al.29 for the MATLAB implementation.

The convergence tests presented below use the 4-mode-flow
with the same parameters as in Yin et al.29 to make the results com-
parable. The initial condition is given by,

x0ðx; yÞ ¼ cosðxÞ þ cosðyÞ þ 0:6 cosð2xÞ þ 0:2 cosð3xÞ; (A1)

which develops quickly small scale features and is thus a severe test
case for any numerical method, see e.g., Podvigina et al.24 and Yin
et al.29 In Table III, all numerical parameters for the reference

FIG. 16. Convergence errors from Eqs. (A2)–(A5) in space and time for the flow variables and Eq. (A8) for the fluid particles. Expected convergence rates are plotted with dot-
ted lines.

TABLE III. Settings of the reference simulation.29

Name Value Name Value

Ncoarse 1024 Nfine 1024
Nw 2048 Nx 1024
hfluid 1/512
�m 10�3 Initial condition 4-mode-flow
Fluid time scheme RK3 Map update stencil fourth order
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simulations can be found for which the error analyses have been
carried out. The grid for the flow map v (Ncoarse), initial vorticity x0

(Nfine) and sampling of the vorticity for the FFT (NxÞ were chosen of
same size and the velocity field uses a grid with increased values to
reduce the influence of the nonsmoothness of the velocity-gradients.
The time step Dt is set to a Courant–Friedrich–Lewis (CFL) number
of 2. The size �m defines the stencil size for the GALS method. In the
presented computational study no low-pass filtering and no remap-
ping was used to capture the sub-map error correctly. All simulations
were run until a final time of t¼ 1. For further understanding of the
impact of parameters, the readers are directed to.29,34

The errors of four quantities were computed to examine the
convergence order. Those are the flow map and vorticity error in
L1-norm and the energy and enstrophy conservation error in
L2-norm. All the errors were evaluated by sampling the map on a
uniform 20482-grid and computing the vorticity and velocity
respectively on this map:

Map error ¼ jjvref ð�; tnÞ � vð�; tnÞjj1; (A2)

Vorticity error ¼ jjxref ð�; tnÞ � xð�; tnÞjj1; (A3)

Energy error ¼ jjxð�; tnÞ2jj2 � jjxð�; t0Þ2jj2; (A4)

Enstrophy error ¼ jjuð�; tnÞ2jj2 � jjuð�; t0Þ2jj2: (A5)

According to Yin et al.,29 an error bound for the characteristic
map is given by:

~En ¼ O Dx2minðDt;Dx2Dt�1Þ þ Dts þ Dtp
� �

: (A6)

Here, s and p are the orders of the s-stage Runge–Kutta scheme
and the used order of Lagrange time interpolation for the velocity,
respectively. Values were set as p¼ s to balance computation
requirements with achieved numerical accuracy. Due to the bi-cubic
spatial Hermite interpolation used, errors of order OðDx3Þ for the
convergence order in space are expected (Fig. 16). One order is
reduced to the theoretical fourth-order as the velocity to advect the
map using the GALS framework is sampled as a first-order deriva-
tive from the stream function. The Cuda code is capable of includ-
ing first to fourth-order Runge–Kutta scheme. An example for
convergence in time with third-order scheme paired with third-
order Lagrange-interpolation of the velocity is depicted in Fig. 16.
Again, all quantities converge with the expected order. The evolu-
tion of fluid particles used in the manuscript to track the material
line of the vortex sheet, is computed using Lagrangian point par-
ticles, where the velocity is set to that of the fluid flow,

dxp
dt

¼ u: (A7)

Here, xp is the position of the point particle and u the fluid
velocity. For time integration, we tested different numerical
schemes [cf. Fig. 16(c)], for spatial interpolation of the velocity at
the particle positions bi-cubic Hermite interpolation is applied.
Similarly to the map error quantities, the particle position error
can be defined as:

Particle error ¼ jjxp;ref ð�; tnÞ � xpð�; tnÞjj1: (A8)

The particles were initially scattered with uniform random distribu-
tion over the computational domain. Due to the volume preserva-
tion property of the incompressible flow, their distribution will

remain uniform as well. All fluid parameters were kept similarly to
the reference computation (Table III) and 106 particles were
deployed. The tested time-stepping methods show the expected
convergence orders. Merely fourth-order deployed time-stepping
schemes are reduced to third order, which is due to the third-order
convergence of the fluid velocity [Fig. 16(c)].
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