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The spontaneous self-organization of two-dimensional magnetized plasma is investigated within the
framework of magnetohydrodynamics with a particular emphasis on the symmetry-breaking
induced by the shape of the confining boundaries. This symmetry-breaking is quantified by the
angular momentum, which is shown to be generated rapidly and spontaneously from initial
conditions free from angular momentum as soon as the geometry lacks axisymmetry. This effect is
illustrated by considering circular, square, and elliptical boundaries. It is shown that the generation
of angular momentum in nonaxisymmetric geometries can be enhanced by increasing the magnetic
pressure. The effect becomes stronger at higher Reynolds numbers. The generation of magnetic
angular momentum (or angular field), previously observed at low Reynolds numbers, becomes
weaker at larger Reynolds numbers. © 2010 American Institute of Physics.

[doi:10.1063/1.3466030]

I. INTRODUCTION

Understanding the coupling of a magnetic field with the
motion of plasmas or conducting fluids is a challenging issue
both from a fundamental and an applied perspective. In par-
ticular, the self-organization of the velocity and magnetic
fields at large scales is an intriguing phenomenon. One ex-
ample is the dynamo problem, studying the formation of a
large scale magnetic field induced and amplified by fluid
motion (see, for example, Ref. 1 for recent experimental
progress). Another example are large-scale spontaneous tor-
oidal and poloidal rotations observed in fusion plasmas,
an effect that is beneficial for confinement as it may suppress
turbulence and radially extended structures. This effect may
be related to the transition to an improved confinement
state.” The absence of this transition might jeopardize
the success of the ITER (Ref. 3) project.* The under-
standing of large-scale self-organization is therefore a key
issue in different branches of physics and deserves detailed
investigation.

An academic example of self-organization is the sponta-
neous generation of angular momentum in two-dimensional
hydrodynamic turbulence. This phenomenon was discovered
by Clercx et al’ by considering flow in a square domain. We
note that this effect was also present, but not recognized as
such, in calculations by Pointin and Lundgren.6 In circular
domains it was observed to be absent.”® In Ref. 9, it was
shown that the strength of the spin-up can be controlled by
increasing the eccentricity of an elliptic domain. For recent
reviews on the dynamics of two-dimensional turbulence
bounded by walls, we refer to Refs. 10 and 11, and for an
explanation of spin-up in terms of statistical mechanics to
Refs. 12 and 13.

In a recent Work,14 it was shown that this effect is en-
hanced in magnetohydrodynamics (MHD). The shape of the
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boundary which contains a plasma may thus be very impor-
tant in determining the dynamics of close to two-dimensional
plasma flow. In three dimensions, the importance of the
shape of the plasma container is far from trivial. Indeed,
while in infinite cylinders plasma can be retained in a static,
quiescent state by the Lorentz force, toroidal geometries are
shown to induce nonzero velocities due to viscoresistive
effects.'>"” These studies concentrated on steady states in
axisymmetric geometry which could be qualified as two-and-
a-half dimensional. It is reasonable to expect that the same
statement will be true in fully three-dimensional nonstation-
ary MHD. That case will be studied in a future work. Here
we will consider the unsteady case, but in two space dimen-
sions.

In the present work we will extend the investigation pre-
sented in Ref. 14. Wall bounded two-dimensional MHD tur-
bulence will be studied, in which the solid boundaries are
taken into account by the penalization method.'® This
method is relatively young and has been applied to MHD
turbulence only 1recent1y,19 so that the present paper, in addi-
tion to its physical relevance, also constitutes a check of the
capability of the method to model the influence of walls on
high Reynolds number MHD turbulence. We consider simu-
lations in which the Reynolds number is increased by ap-
proximately two orders of magnitude with respect to the pre-
vious works.'*!* We consider three differently shaped
confining domains. In addition to the square and circular
geometries considered in the previous study, we consider an
ellipse. The choice of this geometry is inspired by the work
of Keetels er al.’ and this geometry has the particularity with
respect to the other two to be noncircular, without the pres-
ence of sharp corners. The initial conditions are completely
free from angular momentum, unlike the simulations re-
ported in Ref. 14 in which a small but nonzero initial angular
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momentum existed. It is shown that the tendency to generate
angular momentum becomes stronger at higher Reynolds
number in the nonaxisymmetric geometries, while it is ab-
sent in the circular container. Furthermore, the tendency to
generate angular fields vanishes in the limit of large Rey-
nolds numbers. An explanation is given for the vanishing of
this magnetic angular momentum.

The remainder of the paper is organized as follows. In
Sec. II, the mathematical model, the governing equations,
and their numerical discretization are described. Numerical
results are presented in Sec. III and finally, conclusions and
perspectives for future work are given in Sec. IV.

Il. MATHEMATICAL MODEL OF BOUNDED MHD
TURBULENCE

A. Governing equations and boundary conditions

Direct numerical simulation of high Reynolds number
MHD turbulence constitutes a challenge for computational
physics due to the presence of a multitude of nonlinearly
interacting spatial and temporal scales. Presently, the most
efficient method to solve homogeneous turbulence (both hy-
drodynamic and MHD) is by pseudospectral methods, using
fast Fourier transforms.”**' The additional complexity in-
duced by the presence of solid walls requires advanced nu-
merical methods. Pure spectral simulations have been pro-
posed and applied to study wall bounded MHD,* but their
prohibitive complexity for increasing Reynolds numbers lim-
its their application to flows with a relatively limited range of
interacting degrees of freedom.

An efficient method to compute flows in the presence of
solid obstacles and walls is the volume penalization ap-
proach which was introduced by Angot et al."® for the
Navier—Stokes equations and applied to hydrodynamic tur-
bulence in Refs. 8 and 23. This method was extended to
MHD turbulence in a recent work." Using this method, ef-
ficient pseudospectral solvers can be used to compute flows
which contain solid walls and obstacles, which may even
move in time.**

The governing equations are

Jdu . 2 1
E+u-Vu:—Vp+J><B+VVll—_)((u—uo), (1)
€
B 1
E:V X (u XB)"‘ ﬂVZB__X(B_BO)9 (2)
€
V.u:O’ (3)
V.B=0, 4)

with u the velocity, B the magnetic field, p the pressure, and
j=V X B the current density. Here v and 7 are, respectively,
the kinematic viscosity and the magnetic diffusivity. The last
term in the evolution equations for u and B is the penaliza-
tion term which allows imposing the solid boundary condi-
tions. Thus, both the fluid domain and the confining walls are
embedded in a 27-periodic square domain. We consider cir-
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cular, square, and elliptic domains. For further details we
refer to Ref. 25.

The quantities u, and B, correspond to the values im-
posed in the solid part of the numerical domain. Here we
choose uy=0 and By=B,. Here B is the tangential compo-
nent of B at the wall which is not being fixed at a constant
value but being recomputed at each time step. Thus the nor-
mal component of the magnetic field vanishes at the wall,
while the tangential component can freely evolve. This con-
figuration corresponds to an electrically conducting fluid or
plasma in a container with perfectly conducting walls, coated
on the inside with a thin insulating layer.26 In addition to the
normal component of the magnetic field, the current density
cannot penetrate into the walls, a property which is automati-
cally satisfied for two-dimensional flow since the current
density only has a component perpendicular to the plane of
the flow. The mask function y is equal to O inside the fluid
domain (where the penalization terms thereby disappear) and
equal to 1 inside the part of the domain which is considered
to be a solid. The physical idea is to model the solid part as
a porous medium whose permeability € tends to zero."®* For
€— 0, where the obstacle is present, the velocity u tends to
u, and the magnetic field B tends to B,. Since uy=0, the
nature of the boundary condition for the velocity is no-slip at
the wall.

B. Numerical method

In the case of two-dimensional flow (here in the x—y
plane), it is convenient to take the curl of Egs. (1) and (2) to
obtain after simplification equations for the vorticity and the
current density, which become scalar valued (in the
z-direction) and are perpendicular to the velocity and the
magnetic field, respectively. The vorticity is defined by
we,=V Xu and je,=V XB denotes the current density. Fur-
thermore, we define the vector potential a=ae, as B=V Xa
and the stream function ¢ as u=V=L=(=dy/ dy, Iyl dx). We
discretize the evolution equations of vorticity and current
density,

J 1
a—c;)+u~Vw=B-Vj+ W2o - —(V X [x(u-up))) e,
€

(5)

Lo V([ x B]- € = V%~ =(V X [x(B - By)) -e.,

(6)

using a classical Fourier pseudospectral method. Terms con-
taining products and the penalization terms are evaluated by
the pseudospectral technique using collocation in physical
space. To avoid aliasing errors, i.e., the production of small
scales due to the nonlinear terms which are not resolved on
the grid, we de-alias at each time step by truncating the Fou-
rier coefficients of w and j using the 2/3 rule. For time inte-
gration we use a semi-implicit scheme of second order, a
Euler-Backward scheme for the linear viscous term and an
Adams—Bashforth scheme for the nonlinear terms, see, e.g.,
Ref. 23.
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C. Initial conditions

The main goal of the present work is the investigation of
the formation of large scale structures containing significant
angular momentum. We therefore want our initial conditions
to respect two criteria. In the first place we want them to be
free from angular momentum; in the second place we want
them to be free from coherent structures. One way to gener-
ate a zero-angular momentum initial condition is, as de-
scribed in Ref. 27, to take an ensemble of a large number of
Gaussian vortices equally spaced. Half of the vortices have
positive circulation and the other vortices have negative cir-
culation. The disadvantage is that the initial condition hereby
contains coherent structures. A straightforward way to gen-
erate an initial condition without coherent structures is to
start with Gaussian random noise. The absence of phase cor-
relations ensures that no structures are present. We therefore
initialize both vorticity and current density fields with
Gaussian random noise as in Ref. 19. The Fourier transforms
@ and j, where &(k)=(1/472)fw(x)e ®*dx, are initialized
with random phases and their amplitudes yield isotropic en-
ergy spectra of the form

E,(k),Ep(k) = m,

where g=0.98 and k0=f-1\e"%. This energy spectrum is
peaked at the largest scales and follows a power law propor-
tional to k= at large wavenumbers. The energy spectra are
thus the same for the magnetic and the velocity fields. The
phases of the Fourier modes are, however, chosen randomly
and independently, so that the initial fields are different. The
corresponding fields u and B are calculated from w and j
using the Biot—Savart law. The fields contain vanishing cross
helicity [qu;B;dA, with ) the flow domain. The so-generated
fields are, however, in general, not free from angular mo-
mentum. We note that this was the case in Ref. 14, in which
the initial conditions contained a small amount of angular
momentum. We want to avoid this in the present study in
order to be able to answer to the question whether it is pos-
sible to generate angular momentum when initially none is
present.

Before describing how we achieved the generation of
initial conditions free from angular momentum, let us recall
the definition of angular momentum L, and angular field Lg,
respectively,

Lu=f ez-(rXu)dA=—2f WdA,
Q Q

(7
L3=f e - (rx B)dA:Zf adA,
Q o)

where r is the position vector with respect to the center of
the domain. Note that the equalities on the right hand side
assume that ¢ and ¢ vanish at the boundary of the fluid
domain. The angular field integral in terms of the vector
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TABLE 1. Parameters of the simulations of series A, B, and C. SU*: number
of spin-up. The initial kinetic and magnetic energies are E,(0)=0.3 and
E,(0)=0.7, respectively, for all simulations. The penalization parameter € is
chosen 5 X 10~ for all runs.

v=7 dt D SU* Irax
Square (A) 7.9%x10™ 10~ 2 1/10 100
Circle (A) 7.9%x107 1074 2.24 0/10 100
Ellipse (A) 7.9%107* 1074 2 1/10 100
Square (B) 1.2x107* 7.5X107 2 7/10 100
Circle (B) 1.2X107* 7.5X1073 2.24 0/10 100
Ellipse (B) 12x10™* 7.0X 107 2 6/10 100
Square (C) 1.5X 107 1073 2 1/1 10
Circle (C) 1.7X1075 1073 2.24 0/1 10
Ellipse (C) 1.7%X1075 107 2 /1 10

potential a has some significance for “reduced” MHD.*® To
obtain initial fields with L,=Lz=0, we proceed as follows.
We generate one set of fields u;,B; with corresponding an-
gular momenta LLll and Lg and a second set u,,B, with cor-
responding angular momenta Li and Lé. By linear combina-
tion of these conditions,

1 1

L
u B
u=u,-—u,, B=B,-—B,, (8)
1 Li 2 1 leg 2

we get initial velocity and magnetic fields free from kinetic
and angular momenta.

lll. NUMERICAL RESULTS

We investigate in total 63 computations in a square, cir-
cular, and elliptic domain, the latter with an eccentricity
equal to 0.6. The mechanical Reynolds number and magnetic
Reynolds number are defined, respectively, as

UD
R,=—, )
14
UD
Rp=—. (10)
7

The Reynolds numbers are based on the initial root mean
square velocity U=2E,(t=0), the domain size D, and the
kinematic viscosity v and resistivity 7. The magnetic Prandtl
number v/ 7 is unity in all simulations so that both Reynolds
numbers are equal and denoted by R. In the following we
will therefore not distinguish between the two Reynolds
numbers. Two series of computations denoted by A and B
were performed at a resolution of 512% grid points and at
Reynolds numbers of the order of 10° and 10, respectively,
performing ten runs for each geometry for each Reynolds
number. The third series, denoted by C was performed at
resolution N>=10242, at Reynolds number of the order of
10°. The time is normalized by D/U, D being the typical
lengthscale of the fluid domain, i.e., the sidelength of the
square, the diameter of the circle, and the longest cross-
section of the ellipse. Parameters of the simulations are listed
in Table 1.
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FIG. 1. (Color online) Visualizations of (from top to bottom) the vorticity w, the stream function #, the current density j, and the vector potential a for the
square, circular, and elliptic geometries. The three columns correspond to (from left to right) the time instants *=3,3,2.7 of series B for which L, (Fig. 2)
is maximal. The time is normalized by the initial turn-over time. Note that the numerical method used in the present work does not impose a zero value of
a and ¢ at the wall of the fluid domain. Thus a constant value was subtracted from a and ¢ at every point in the fluid domain to impose this.

A. Visualizations

Visualizations of the vorticity w, the stream-function ¢,
the current density j, and the vector potential a are displayed
in Fig. 1. The displayed results are typical results for series
B. We will first focus on the behavior in the square geometry.
It is observed that both the velocity and the magnetic fields
exhibit a tendency to generate large-scale structures. The cur-
rent density shows that the magnetic field lines of the two
main flow structures are in the opposite direction. This is

even clearer in the plot of the vector potential. The magnetic
angular momentum Ly is therefore small, since the contribu-
tions of both structures cancel each other out. Note that the
right hand side of Eq. (7) relates the magnetic angular mo-
mentum directly to the vector potential.

In contrast, the velocity field displays significant
symmetry-breaking, which is directly reflected in the stream
function. Both vortices are turning in the same sense, with a
strong shearing region in between them; nonzero angular



092302-5 Self-organization and symmetry-breaking...

momentum results. Similar observations can be made for the
elliptic geometry. In the circular geometry it is more difficult
to visually evaluate the generation of angular momentum.

B. The influence of the Reynolds number
and geometry

To quantify the extent to which a large-scale swirling
structure dominates the flow, we plot in Fig. 2 the angular
momentum in the three geometries for series A and B corre-
sponding to Reynolds numbers of the order of 10 and 10%,
respectively. Since not all runs present spin-up (a flow is
defined to spin-up when the amount of angular momentum is
greater than 10% of the angular momentum £, of a solid-
body having the same initial kinetic energy), we show en-
semble averages of the absolute value of the normalized an-
gular momentum over ten realizations. We observe that the
magnitude of the spin-up increases more than a factor 2
when increasing the Reynolds number by an order of mag-
nitude. It is observed that the angular momentum in the cir-
cular domain is weaker but not negligible.

In Fig. 3, we show the angular momentum in the three
geometries for series B and C corresponding to Reynolds
numbers of the order of 10* and 10°, respectively. For each
Reynolds number, one particular realization is chosen for
which L, is maximum. For both series it is observed that
strong spin-up takes place in the square and in the ellipse.
The generation of the angular momentum is spontaneous and
rapid and one observes that the amplitude is of the order of
0.25 in the square and in the ellipse. This implies that the
fluid reaches an angular momentum which corresponds to
approximately 25% of the angular momentum which would
possess a fluid in solid-body rotation containing the same
energy at =0. There is practically no spin-up in the circular
container.

In Fig. 3, right, the magnetic angular momentum is
evaluated in all geometries. Surprisingly, in the square in
which the generation of kinetic angular momentum was the
strongest, Ly remains close to zero. In the other two geom-
etries an amount of Ly is created; however, this magnetic
spin-up takes place on a time scale which is larger than
for its kinetic counterpart. Furthermore it can be observed
that once L is created, it remains almost constant over time.
For series C, Ly remains close to zero at all times in all
geometries.

C. Influence of the magnetic pressure

In Ref. 14, we derived the evolution equation for L, in
the case of MHD turbulence. It reads

dL,
—=v§ w(r-n)ds+j€
dt a0 P

with v the kinematic viscosity, @ the vorticity, n the unit
vector perpendicular to the wall, and p*=p+B?/2 is the sum
of the hydrodynamic and magnetic pressure. It was discov-
ered by Clercx et al’ that spontaneous generation of
angular momentum in hydrodynamic turbulence is observed
in square domains, whereas it is absent in a circular domain.

pr-ds, (11)
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FIG. 2. (Color online) Influence of the Reynolds number on the spin-up:
time dependence of the absolute value of the normalized kinetic angular
momentum L, averaged over ten simulations of series A (R~10% and
series B (R = 10 for the square, circular, and elliptic geometries, from top
to bottom. Here and in the following, the angular momentum is always
normalized by £,(0) [and L(0) for the magnetic equivalent] corresponding
to the angular momentum of a solid-body having the same initial kinetic
energy.

Subsequently, it was explained to be an effect due to the
plressure,9 the last term in Eq. (11). Indeed, this term vanishes
in a circular domain. In MHD, the presence of the magnetic
pressure allows to vary the importance of the pressure term,
while keeping the other parameters constant, by changing the
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FIG. 3. (Color online) Comparison of series B R = 10* (top) and series C R = 10’ (bottom). Time evolution of the angular momentum L,, (left) and angular
field Ly (right) in the square, circular, and elliptic geometries. Only one realization is chosen from each series.

value of the magnetic fluctuations. This is illustrated in Fig. 4
for series B (Reynolds =~ 10%). The ratio E/E, is varied, with
Ep the mean square of the magnetic fluctuations and E, the
mean square of the velocity fluctuations. It is observed that
the tendency to spin-up is significantly increased in the
square geometry while this effect is weaker in the elliptical
geometry and absent in the circle. It is thus shown that both
geometry and magnetic pressure can play a role in the gen-
eration of angular momentum.

D. On the origin of the angular fields

In Ref. 14, the tendency to generate angular fields was
also investigated by computing the value of Lg. It was found
that angular fields were observed, even in the circular geom-
etry. In Fig. 3, right, we show that at higher Reynolds num-
bers the generation of this “magnetic angular momentum”
becomes weaker and seems to vanish. Writing the evolution
equation for Lg, we find

dLg

—=7]§ Jj(r-m)ds-29l, (12)
dt a0

where I denotes the net current through the domain, defined
by I=[qjdA. The pressure plays thus no direct role and only
the net current or resistive magnetic stress can generate an-
gular fields. The mean current through the domain is com-
puted by integrating the current density over the fluid do-
main. This quantity should, in principle, be small and decay
to zero at long times. No production of mean current is
physically expected. Closer scrutiny of the results revealed

the existence of a spurious fluctuating mean current inside
the fluid domain. The fluctuations of this current are partly
numerical. Indeed, the penalization method is known to in-
duce small errors in the vicinity of the wall. These errors can
be controlled and depend on the parameter €. The thickness
of the layer in Whic_h the penalization error is significant is of
the order of A=\ ev. In this numerical boundary layer, non-
physical currents can be observed. We will denote the total
amount of numerical current by Iy. If we suppose that this
current is uniformly distributed in the boundary layer, we can
write for a circular domain of radius R

which gives an average numerical current density
Jn=Iy/ (2R ev). Now, Eq. (12) becomes
dL
— = Rn2mjy=27ly, (14)
dt
z(R,—”_—zn)IN, (15)
Vev

and for the special case of unity magnetic Prandtl number
v=m, this simplifies to

dLg _ \/E_ )
" ~(R ~-2v)iy. (16)

The fact that we have a penalization parameter of the order
of the viscosity leads to a non-negligible production of mag-
netic angular momentum through the dissipation term, pro-
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FIG. 4. (Color online) Time evolution of angular momentum L,(z) for series
B (R=10%). The influence of the magnetic pressure on the spin-up in the
square, circle, and ellipse is illustrated by changing the ratio Eg/E,, while
keeping E, fixed. The magnetic pressure is changed by varying Ejp, while
keeping constant E,.

portional to /. As one can see in Fig. 5, the time evolution
of the mean current and the time derivative of the magnetic
angular momentum, computed with a classical finite differ-
ence scheme of first order, overlap quite well. Equation (16)
shows that the effect should become smaller when the ratio
v/ € is decreased. Since we used the same value for € in all
runs and we decreased the viscosity to increase the Reynolds
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FIG. 5. (Color online) Comparison of the time derivative of Lg(7) and the
mean current (/). The run corresponds to one realization in the circle with
Ep/E,=13.3 and R~ 10*.

number, the influence of the current should become smaller
at higher Reynolds number. Indeed, in series C, the genera-
tion of angular fields was dramatically reduced with respect
to series B as observed in Fig. 3, which confirms our as-
sumption that the origin is due to a numerical boundary
layer. A remaining open issue is why this effect was small or
absent in the square geometry. We suspect that the effect is
stronger for geometries in which the mask is not aligned with
the numerical grid. Indeed, a so-called staircase effect is ex-
pected to decrease the quality of the approximation near the
walls.

IV. CONCLUSIONS AND PERSPECTIVES

In total, 63 pseudospectral simulations of two-
dimensional MHD turbulence in a bounded domain were
performed. It was shown that spin-up takes place in nonaxi-
symmetric geometries (squares and ellipses). This phenom-
enon, observed in Ref. 14 at low Reynolds number, persists
at higher Reynolds numbers and becomes more pronounced.
The generation of the magnetic equivalent of the angular
momentum becomes much weaker at higher Reynolds num-
bers. The first effect, the kinetic spin-up, can be enhanced by
increasing the magnetic fluctuations. It is therefore clearly
related to the pressure term p*. The generation of angular
fields in our simulation was shown to have a numerical ori-
gin. The effect was argued to be related to the current density
leaking into the domain and can therefore be physically rel-
evant if the walls are not assumed to be insulated. Indeed, the
influence of other boundary conditions constitutes an inter-
esting objective. The main objective remains however the
investigation of the effect in fully three-dimensional un-
steady MHD simulations.
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