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Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show

the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic

fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular

momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular

momentum is absent; nevertheless, a weak magnetic field can be observed. The derived evolution

equations for both the angular momentum and angular field yield possible explanations for the observed

behavior.
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The generation of large coherent structures of the size of
the flow domain is a generic feature of two-dimensional
(2D) turbulence. Indeed, due to the inverse energy cascade,
2D flows show a tendency to create space filling structures.
The nature of these structures and the way they are pro-
duced vary from flow to flow. In the context of Navier-
Stokes turbulence, the generation of a large-scale domain-
filling structure was predicted by Kraichnan [1] and ob-
served in the case of forced turbulence in a periodic domain
in which energy condenses at the smallest possible wave
number modes [2,3]. In forced wall-bounded flows, this
was reproduced numerically [4] and experimentally [5],
and it was shown that a large-scale rotating structure
emerges, which dramatically reduces the level of the tur-
bulent fluctuations [6].

A similar observation can be made in fusion plasmas, in
which the dynamics share many features with 2D flows due
to the imposed magnetic field. It is often assumed that in
these plasmas, large-scale poloidal structures, called zonal
flows, are beneficial for the confinement as they suppress
turbulence and shear apart radially extended structures,
which are largely responsible for anomalous transport
[7–9]. The hereby created transport barriers might play a
key role in the transition to an improved confinement state
(H mode) [10]. In the case of MHD turbulence, the role of
rotation was shown to have a similar effect on the flow,
reducing the velocity fluctuations and hereby stabilizing
the magnetic field [11]. In the present Letter, we will
continue the investigation of wall-bounded nonideal
MHD. The generation of zonal flows through the absence
of charge neutrality will not be addressed (charge neutral-
ity being implied by the one-field MHD approximation).
However, MHD allows for an affordable global description
of nonuniform magnetoplasmas [12]. The present work
could be related to the L-H transition through the benefi-
cial effects of large-scale poloidal rotation (which is ob-
served in the present work) on the confinement of the
plasma. The present study is also motivated by the obser-

vation that MHD-equilibria in toroidal geometry imply
finite flow-fields due to the presence of nonzero viscosity
and resistivity [12–14]. In these works, nonideal MHD
steady states were investigated in both the limit of small
and large viscosity. In each case, it was shown that the
steady state contains nonvanishing velocity fields, at odds
with classical static equilibria, on which decades of con-
finement research are based. In the present work, we will
not consider steady states, but we will investigate the full
nonlinear relaxation of nonideal MHD with nontrivial
boundary conditions in two space dimensions. The resis-
tivity and viscosity are nonzero but small, allowing for a
turbulent flow. This approach cannot take into account
toroidal velocities and nonuniform toroidal magnetic fields
and the extension of the present approach to three dimen-
sions constitutes therefore an important direction for fur-
ther research.
In the case of decaying Navier-Stokes turbulence, it is

shown that the self-organization in a periodic domain will
lead to a final state, consisting of two, noninteracting,
counterrotating vortices [15]. This picture changes how-
ever in the presence of no-slip walls. In this case, the flow
relaxes to a state with or without angular momentum,
depending on the shape of the domain [16–18]. Indeed,
in circular domains without initial angular momentum the
flow generally relaxes to a state free from angular momen-
tum [19], whereas as soon as the axisymmetry is broken
the flow relaxes to a state containing a domain filling
structure, containing significant angular momentum [20].
Theoretical progress has been made to explain the phe-
nomenon in the inviscid case, based on a model of inter-
acting vortices [21–23].
In the case of bounded two-dimensional MHD, it is not

known, up to now, to which kind of state the flow relaxes,
and this will be addressed in the present Letter. We inves-
tigate the case in which both the magnetic field and the
velocity field cannot penetrate into the walls. The velocity
field obeys the no-slip condition at the wall, whereas the
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tangential component of the magnetic field can freely
evolve, allowing a net current through the domain. We
will focus however in the present study on the case in
which no net current is initially present.

We start by writing the governing equations. In the
present case, we define two angular momenta: a kinetic
and a magnetic one,

Lu ¼
Z
�
ez � ðr� uÞdA; LB ¼

Z
�
ez � ðr�BÞdA

(1)

in which � is the flow domain, r the position vector with
respect to the center of the domain, and u and B the
velocity and magnetic-field vector, respectively. Through
integration by parts, these quantities can also be expressed
as a function of the stream function c ¼ r�2! and vector
potential a ¼ r�2j, respectively, with j ¼ jez ¼ r� B
the current density and ! ¼ !ez ¼ r� u, the vorticity

Lu ¼ �2
Z
�
c dA; LB ¼ �2

Z
�
adA; (2)

in which a and c are chosen to be zero at the wall.
A large value of the angular momentum can generally be

associated with the presence of a large-scale vortical struc-
ture. By analogy, we can anticipate that a large value of LB

corresponds to a large-scale current density structure, and
we baptize the quantity LB angular field. The evolution
equations for Lu and LB can be derived following the
procedure described in Maassen [24], by time deriving
Eqs. (1) and using the MHD equations

@u

@t
þ ðu � rÞu ¼ �rpþ j� Bþ �r2u (3)

@B

@t
¼ r� ðu� BÞ þ �r2B (4)

together with r � u ¼ 0 and r �B ¼ 0. The pressure is
denoted by p, and � and � are the kinematic viscosity and
magnetic diffusivity, respectively. If we write the Lorentz
force in the form

j � B ¼ � 1

2
rB2 þ ðB � rÞB; (5)

we can absorb the first term into the pressure term of the
Navier-Stokes equations by introducing the modified pres-
sure p� ¼ pþ B2=2. The ðB � rÞB term does not induce
new terms in the equation for Lu. It vanishes in a similar
way as the nonlinear term ðu � rÞu does, using r � B ¼ 0
and B � nj@� ¼ 0. The equation for Lu becomes

dLu

dt
¼ �

I
@�

!ðr � nÞdsþ
I
@�

p�r � ds: (6)

The only difference with respect to the hydrodynamic case
[18] is the pressure which is now replaced by the modified
pressure p�. In most fusion plasmas, the quantity � ¼
p=B2 � 1 to insure confinement, which means that the
magnetic part of the pressure dominates. It is important to

note that the pressure term in Eq. (6) vanishes in axisym-
metric domains. In this work, we therefore consider both a
circular and a square domain to analyze the influence of
this term.
The derivation of the equation for LB is analogous to the

derivation for Lu. The resulting equation is

dLB

dt
¼ �

I
@�

jðr � nÞds� 2�I: (7)

We observe that there is a term involving the net current I
through the domain defined by I ¼ R

� jezdA. This term is

the equivalent of the circulation in the hydrodynamic case,
which is zero due to the no-slip walls. The net current is
however not imperatively zero as the tangential magnetic
field does not vanish at the wall. Nevertheless, a net current
will not be generated if it is initially zero, which is the case
in the present work.
We performed computations in two different geome-

tries: a square of size D ¼ 2 and a circular geometry
with a diameter D ¼ 2:24. A description of the generation
of the initial conditions and the numerical scheme, a spec-
tral method with volume penalization, are given in [25].
The initial velocity and magnetic field consist of correlated
Gaussian noise with vanishing cross-helicity

R
� u �BdA.

The magnetic Prandtl number, �=� is equal to one. The
initial Reynolds number, based on the domain size, isffiffiffiffiffiffiffiffiffi
2Eu

p
D=� and yields 1960. The ratio of the magnetic and

kinetic energy EB=Eu ¼ 2:3, with Eu ¼ 1
2

R
� juj2dA and

EB ¼ 1
2

R
� jBj2dA. The resolution of the simulations is

5122 Fourier modes. In each geometry, 10 runs were
performed starting from different statistical realizations
with the same initial parameters. The numerical value of
a and c is not automatically zero at the domain boundary.
This is accomplished a posteriori by substracting a con-
stant value at each point in the domain.
In Fig. 1, snapshots of the stream function and vector

potential are shown at t� ¼ 0:75, 3, 12 with t� ¼
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Euðt ¼ 0Þp

=D. It can be inferred from (2) that these
quantities should give a good visual interpretation of the
presence of angular momentum and field. At time-instant
t� ¼ 0:75, in which inertial effects are dominant over
viscous effects, it is well visible that the velocity field
self-organizes into a large domain-filling structure in the
square geometry, whereas in the circular geometry, several
structures are observed. At t� ¼ 3, a large structure appears
also in the magnetic field in the square geometry. At t� ¼
12, the large-scale velocity and magnetic structures in the
square domain are (anti-)aligned. In the circular domain,
the tendency to create domain-filling structures is weaker,
even though the magnetic field in the circular domain
shows some evidence of the formation of a large current
structure at t� ¼ 12. To characterize the relaxation of the
flows in both geometries, we also show in Fig. 1 the decay
of the kinetic and magnetic energy in both domains, as well
as the absolute value of the cosine of the alignment angle.
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A continuous decrease of kinetic and magnetic energy is
observed and a continuous increase of global alignment.

At this moderate Reynolds number, spin-up, i.e., sponta-
neous generation of angular momentum, does not occur in
every flow realization. Also, the criterion what is strong or
weak spin-up is rather arbitrary. We therefore focus first on
mean quantities to illustrate the general tendency to spin-
up. In Fig. 2, we show the absolute value of the angular
momentum, averaged over 10 runs. We take the absolute
value because there is no preferential direction of the
spin-up so that an average of the angular momentum
would yield values close to zero for all cases. The time
evolution of hjLuji and hjLBji is shown for both the square
and the circular geometry. h�i denotes the average over 10
realizations. The quantities are normalized by Luð0Þ ¼
krk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hEuðt ¼ 0Þip

and LBð0Þ ¼ krk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih2EBðt ¼ 0Þip

,
with krk2 the Euclidean norm of r. The quantity LuðtÞ
corresponds to the value of the angular momentum of a
flow in solid-body rotation with kinetic energy hEuðtÞi,
which is the flow which optimizes the value of the angular
momentum for a given kinetic energy. By analogy,LBðtÞ is
used to normalize the angular field. The following is
observed: at short times Lu rapidly increases in the square,
but does not increase in the circular geometry. The value of
LB also increases in the square, but delayed with respect to
Lu. In the circular geometry, an increase of LB is also
observed. In the inset, the values of hjLuji and hjLBji are
plotted normalized byLuðtÞ andLBðtÞ. This normalization
has the advantage to correct for the decay of the kinetic and
magnetic energy but has the disadvantage that it is sensitive
to selective decay [26] so that at long times, we observe
generation of angular momentum in each case even if its
absolute value might be small. In the following, we will
give, where possible, an explanation for the 4 curves in
Fig. 2.

First, in the square geometry, a strong spin-up of the
velocity field is observed. In the hydrodynamic case, it was
argued in [18,20] that the pressure term triggers the spin-up
in the square geometry. The magnetic field enhances the
pressure term through the magnetic pressure (p� ¼ pþ
B2=2). If in the present case it is also the pressure term in

(6) which triggers the spin-up, the effect could be enhanced
by increasing the magnetic fluctuation strength B2. This is
illustrated in Fig. 2 (bottom). For one run in which spin-up
was observed, the initial magnetic fluctuations are in-
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FIG. 2 (color online). Top: Time evolution of the absolute
value of the angular momentum and angular field, averaged
over all realizations, normalized by Luð0Þ and LBð0Þ, respec-
tively. In the inset, the same quantities are given, normalized by
LuðtÞ and LBðtÞ (defined in the text). Bottom: time dependence
of the angular momentum Lu in the square and circular geome-
try, normalized byLuð0Þ. The influence of the magnetic pressure
on the spin-up in the square container is illustrated by changing
the ratio EB=Eu, while keeping Eu fixed.
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FIG. 1 (color online). Visualizations of the stream-function c and the vector-potential a for both geometries. Figures for c are
normalized by the maximum of jc j (and maxðjajÞ for a). The values of maxðjc jÞ are from left to right 0.1, 0.05, 0.03; 0.06, 0.03, 0.01;
and for maxðjajÞ 0.08, 0.06, 0.04; 0.04, 0.03, 0.01. Right: time evolution of the kinetic and magnetic energy in both geometries. In the
inset, the evolution of the absolute value of the relative cross helicity hj cosð�Þji, illustrates the global alignment of the velocity and
magnetic field in both geometries. Solid (red) line: square geometry; dashed (green) line: circular geometry.
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creased from EB=Eu ¼ 2:3 up to EB=Eu ¼ 10 and 16.7,
while keeping the initial Eu fixed. The resulting spin-up is
significantly stronger.

Second, for Lu in the circular geometry, like in the
hydrodynamic case [19], no spontaneous spin-up is ob-
served. Increasing the magnetic-field strength does only
weakly influence this result (Fig. 2, bottom).

Third, the interpretation of the generation of the angular
field in the square geometry is less straightforward, as
Eq. (7) does not contain a pressure term. The tendency to
create large-scale magnetic structures can be attributed to
the selective decay mechanism [27], which was recently
shown to persist in bounded geometries [25]. This does
however not explain the symmetry breaking or angular
momentum generation, which is the main issue of the
present work. A possible trigger for the spin-up could be
alignment. It is well known that the magnetic field and the
velocity field tend to align so that the nonlinear term in the
equation for j (or B) vanishes. Hence, the magnetic field
tends to an alignment with the velocity field which ac-
quired angular momentum through the modified pressure
term. It is therefore expected that the magnetic spin-up
follows the hydrodynamic spin-up after a time scale cor-
responding to the alignment. Indeed, LB spins-up shortly
after Lu. The cosine of the angle between u and B, mea-
suring the global alignment, is plotted in the inset of
Fig. 1 (right). A tendency towards global alignment is
observed for long times.

Fourth, in the circular geometry, the weak spin-up of the
magnetic field is surprising. Higher resolution simulations
are needed to clarify whether this is a viscous effect and/or
a statistically more probable (maximum entropy) state. In
this context we can refer to [23], where, based on point-
vortices, it was shown that two types of most probable
states exist in a circular domain: a double vortex, free from
angular momentum and an axisymmetric flow, with finite
angular momentum. This work neglected the influence of
viscosity so that it is not clear how the angular momentum
is acquired in the circular geometry.

We now resume our findings. Rapid generation of angu-
lar momentum takes place in bounded MHD turbulence, as
long as the geometry is nonaxisymmetric. The effect is
enhanced by the magnetic pressure. On a slower time scale
also, magnetic spin-up is observed in both geometries. It is
not clear how this angular field is created. Both alignment
and selective decay could be possible explanations.

We want to stress the implications of the present study
for confinement research. Fusion plasmas are wall bounded
and not axisymmetric so that even in the case of charge
neutrality the plasma might have a tendency to create zonal
flows and zonal fields, depending on the geometry of the
cross-section of the plasma and the strength of the mag-
netic fluctuations. The present work opens several perspec-
tives for future research, such as the influence of Prm, Re,
and, in particular, the extension to three dimensions in

which the effects of imposed magnetic fields, currents,
and toroidal velocities can be taken into account.
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