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In this study, a wavelet-based method for extraction of clusters of inertial particles in
turbulent flows is presented that is based on decomposing Eulerian particle-number-density
fields into the sum of coherent (organized) and incoherent (disorganized) components.
The coherent component is associated with the clusters and is extracted by filtering the
wavelet-transformed particle-number-density field based on an energy threshold. The
method is applied to direct numerical simulations of homogeneous-isotropic turbulence
laden with small Lagrangian particles. The analysis shows that in regimes where the
preferential concentration is important, the coherent component representing the clusters
can be described by just 1.6% of the total number of wavelet coefficients, thereby illustrating
the sparsity of the particle-number-density field. On the other hand, the incoherent portion
is visually structureless and much less correlated than the coherent one. An application of
the method, motivated by particle-laden radiative-heat-transfer simulations, is illustrated
in the form of a grid-adaptation algorithm that results in nonuniform meshes with fine
and coarse elements near and away from particle clusters, respectively. In regimes where
preferential concentration in clusters is important, the grid adaptation leads to a significant
reduction of the number of control volumes by one to two orders of magnitude.
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I. INTRODUCTION

The preferential concentration of inertial particles by turbulent flows is a physical phenomenon
often observed in natural and industrial systems. The interaction of particles with turbulence leads
to nonuniform spatial distribution of particles resulting from their accumulation in clusters [1].
These clusters influence the engineering performance of a broad range of industrial systems such as
liquid-fueled combustors [2] and particle-based solar collectors [3,4]. Specifically, particle clustering
influences the transfer of momentum [5,6] and thermal energy [7]. Although the particles accumulate
in structures that are easily discernible from visualizations of simulations and experiments,
mathematical techniques for the quantitative identification of clusters are rarely reported partly
because of the lack of an unequivocal definition of a cluster that would lend itself to an efficient
mathematical extraction algorithm. For instance, the reader is referred to Refs. [8,9] for reviews of
the state-of-the-art methods for quantifying preferential concentration and particle clusters.

In this study, a technique is proposed to identify clusters of particles in turbulent flows, associating
the presence of a cluster with that of local coherence in the particle-number-density field. The method,
which is referred to as coherent cluster extraction (CCE) in the notation, is based on wavelet filtering
of the number-density field computed from direct numerical simulations (DNS) of Lagrangian
inertial particles laden in one-way-coupled, incompressible homogeneous-isotropic turbulence. The
results include application of the CCE method in the form of a grid-adaptation algorithm that renders
nonuniform meshes clustered around particle clouds. The CCE method is analogous to the coherent
vortex extraction method used in earlier works on single-phase turbulent flows to identify coherent
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structures in the vorticity field [10]. However, some important differences arise here with respect to
the latter that are highlighted below.

The remainder of this paper is organized as follows. The CCE method is described in Sec. II.
The computational setup is outlined in Sec. III. An analysis of the characteristics of the decomposed
particle-number-density fields is reported in Sec. IV. The grid-adaptation algorithm is presented in
Sec. V along with motivating factors related to particle-laden radiative-heat-transfer simulations.
Lastly, conclusions are provided in Sec. VI. An Appendix is included that treats the influences of
the particle grid resolution and mean number density.

II. WAVELET-BASED METHOD OF EXTRACTION OF COHERENT PARTICLE CLUSTERS

The CCE method relies on nonlinear wavelet thresholding of the wavelet coefficients of the
number-density field n(x,t), where x and t denote spatial and time coordinates, respectively. It
consists of the following steps: (1) estimation of the particle-number-density field, (2) computation
of its wavelet transform, (3) filtering of the number density in wavelet space, and (4) inverse wavelet
transformation of the filtered number-density field. These four steps are explained below.

A. Step 1: Estimation of the particle-number-density field

The particle-number-density field n, which is an Eulerian quantity, is a necessary input to the CCE
method. However, the discrete particle positions are the only quantities available when the dispersed
phase is computed using a Lagrangian formulation, as done in this study and illustrated in Fig. 1(a). A
suitable estimate of n based on discrete particle positions is therefore required. Several methodologies
for number-density estimation are available that find extensive applications in the astrophysics and
plasma physics literature [11–13]. Nonetheless, it is unclear to date whether a universal estimation
method for n exists, since each method yields different spectral responses particularly at high
wavenumber (e.g., see Fig. 4 in Ref. [13]). In Eulerian treatments of the dispersed phase, the solution
to moments of a Boltzmann master equation adapted to macroscopic particles naturally provides
the spatiotemporal evolution of the number-density field [14]. However, Eulerian formulations rely
on assumptions of an oftentimes unrealistically large number of particles within each homogenized
elementary volume. Additionally, the integration of the master equation in turbulent flows, where
trajectory crossing may result in singularities of the moment equations, is not exempt from modeling
choices that can lead to significantly different distributions of n [15].

In this study, n is estimated by simply projecting the Lagrangian particles onto the nearest-
neighbor point of the same grid used to solve the carrier-phase hydrodynamics. A snapshot of the
resulting number-density field is shown in Fig. 1(b), which has a strong visual resemblance to
the corresponding discrete particle distribution in Fig. 1(a). Comparisons of the results presented
here with those obtained using different particle-number-density estimation methods are deferred to
future work.

The number of particles Np is chosen such that the mean number density is n0 = 〈n〉 = Np/

(N�)3 = 5/�3, where 〈·〉 denotes spatial averaging, N is the number of grid points per direction,
and � is the grid spacing. If the particles were randomly distributed in space, the ratio of the mean
interparticle volume to the grid cell volume would be of order 1/5, which would lead to a reasonably
homogenized description of the particle concentration. However, turbulence alters the distribution
of particles by preferentially concentrating them in clusters and creating regions in the flow that
are devoid of particles as a result of the locally high values of vorticity [16]. These regions are
typically much larger than the mean interparticle distance, as can be observed in Figs. 1(a) and 1(b).
Therefore, even if Np is large enough to warrant a homogenized description in a hypothetical state
where the particles are randomly distributed in space, hydrodynamic effects invariably come into
play that segregate the particles and degrade the homogenized character of the dispersed phase.

A plausible, yet erroneous approach to palliate this issue and increase the number of particles per
homogenized elementary volume would be to increase the homogenization length by coarsening the
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FIG. 1. (a) Instantaneous spatial distribution of particles (dots) contained in a x3 slice of thickness equal
to one Kolmogorov length �k and (b) corresponding slice of the particle-number-density field, both panels
computed for particles with Stokes number Stk = 1. Also shown are (c) spherically averaged Fourier energy
spectra of the number-density fluctuations obtained from an artificially imposed, random spatial distribution
particles (lines with symbols), and from preferentially concentrated particles obtained from DNS (lines).
The arrows indicate the variations of the curves with increasing number of particles. Further details of the
computational setup are given in Sec. III.

grid used for projection up to scales larger than the size of the hydrodynamically created regions
devoid of particles. This would be detrimental for the statistics of the resulting number-density
field, whose clusters, which are induced by the small eddies in the present configuration, would
be hidden in the subgrid scales, thereby leading to an artificially smoothed spatial distribution
of particles. Conversely, if the grid used for projection is refined down to scales similar to the
interparticle distance within the clusters, the number-density field would display a checkerboard
pattern in those regions that would lead to short-wavelength unphysical noise. This indicates that
n is a scale-dependent quantity that in principle depends on the grid employed for projection.
There is, however, a compromise between the two aforementioned limiting situations in which the
number-density field does not show significant variability with respect to that grid. Such condition
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simultaneously involves two requirements for the projection grid, namely, that the grid resolution is
comparable to the characteristic hydrodynamic scales responsible for the clustering dynamics and
that the grid spacing is larger than the minimum interparticle distance within the clusters.

Closely related to the considerations given above, an additional aspect worthy of discussion is
the effect of varying the number of particles in the computation of n. This is illustrated in Fig. 1(c),
which shows the effects on the radial Fourier energy spectra of the number-density fluctuations En

obtained from an artificially imposed, random spatial distribution of particles that follows a Poisson
probability distribution function (PDF) with mean and variance equal to n0 and from a distribution of
preferentially concentrated particles computed using DNS of particle-laden homogeneous-isotropic
turbulence (see Sec. III for details about the computational setup). The Fourier spectrum can be
interpreted as a decomposition of the total particle-number-density field variance into single radial
wavenumber contributions. Specifically, Fig. 1(c) shows that, as Np (or equivalently, n0) is decreased,
the high-wavenumber range of En increasingly resembles that of a random distribution of particles
with the same mean n0. This behavior is an artifact caused by the lack of a sufficient number of
particles, which introduces short-wavelength noise in n. As a result, Np must be large enough to
ensure that the numerical noise induced by the finite number of particles is much less energetic than
the fluctuations of n associated with the hydrodynamic mechanisms that cause the accumulation. The
attainment of this limit is illustrated in Fig. 1(c). For n0 = 0.1/�3, which corresponds to small Np , the
numerical noise is responsible for 80% of the value of the spectrum at small scales. That percentage
drops to 50% when n0 = 0.5/�3 and becomes negligible when n0 = 5/�3, the latter being the
nominal condition used in the present study. Specifically, for n0 = 5/�3, the relative contribution
to En from the numerical noise resulting from spatially binning the particles is negligible at this
Stokes number. It is worth noting that the aforementioned requirement that the number of particles
be large enough so that the induced numerical noise is negligible is desired in the present study
since one objective is to obtain physical insights about particle clustering, although in principle it is
not necessary for achieving the target decomposition described in Sec. II C. Further considerations
about possible effects caused by an insufficient number of particles on results obtained from the
CCE method are provided in Sec. IV and the Appendix.

B. Step 2: Wavelet transformation of the particle-number-density field

The wavelet transform of n is given by

ň(s,d)(xs) = 〈n(x)ψ (s,d)(x − xs)〉, (1)

where ψ (s,d)(x − xs) are wavelet basis functions that are here taken to be tensor products of
orthonormal one-dimensional Coifman-12 wavelets with four vanishing moments, commonly used
for wavelet-based studies of turbulent flows [10,17]. The results and conclusions presented below
do not change significantly when a lower-order wavelet such as Haar is used (results not shown here
for brevity). The time coordinate t has been omitted for brevity in the formulation above. A fast
periodic wavelet multiresolution transform algorithm is employed to compute the N3 − 1 discrete
wavelet coefficients ň(s,d) [18]. For in-depth explanations of wavelet methods and details regarding
the rationale behind choosing a wavelet family, the reader is referred to Refs. [10,17,19–21].

In Eq. (1), s = (1,2, . . . ,S) are scale exponents, with S = log2 N being the number of resolution
levels allowed by the grid. The rest of the notation includes xs = 2s−1(i�,j�,k�), which
is a scale-dependent wavelet grid of (N/2s)3 elements where the wavelets are centered, with
{i,j,k} = (1,3,5, . . . ,N/2s−1 − 1) and � the grid size, along with a wavelet-directionality index
d = (1,2, . . . ,7). Wavelets can be ascribed to a representative wavenumber

κ = κ02−s2π/�, (2)

where κ0 = 0.77 is the normalized centroid wavenumber of the Coifman-12 wavelet. Using Eq. (2),
the wavenumber κ and the scale exponent s can be conveniently interchanged.
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C. Step 3: Filtering of the particle-number-density field in wavelet space

In analogy to the coherent-vortex-extraction technique proposed in Ref. [10], the CCE method
decomposes n as

n = nC + nI , (3)

where nC and nI correspond to the coherent and incoherent components, respectively. By
construction, these two components are not spatially cross-correlated, as implied by the orthogonality
of the wavelets and by the filtering operation described below. The coherent component nC is related
to sufficiently energetic spectral modes of n and can be obtained by using wavelet filtering in the
following manner. In their work, Donoho and Johnstone [22] described a wavelet-based algorithm
that is optimal for achieving the target decomposition, since it minimizes the maximumL2-estimation
error of nC . In the present notation, their work implies that the best estimate for nC is obtained by
retaining only the wavelet coefficients ň(s,d) whose absolute values satisfy

ň
(s,d)
C (xs) =

{
ň(s,d)(xs) if |ň(s,d)(xs)| � T ,

0 otherwise,
(4)

for all scales s, positions xs, and directions d. In Eq. (4), T is a threshold defined as

T =
√

2σ 2
nI

ln N3, (5)

which is written in terms of the unknown variance σ 2
nI

of the incoherent component nI . For Eq. (5)
to hold, the incoherent component must be assumed to be additive, white, and Gaussian [22]. In this
study, the iterative method of Azzalini et al. [23] is employed, which converges to T starting from a
first iteration where σ 2

nI
in Eq. (5) is substituted by the variance σ 2

n of the total field n. The iterative
method is deemed as converged when the relative variation in the estimated threshold T is less
than 0.1% across consecutive iterations. A maximum of ten iterations were required to obtain the
results presented below. This iterative procedure does not introduce any significant computational
overhead, since only one wavelet transform is required independently of the number of iterations.

Note that the energy-based, spatially local filter outlined above is fundamentally different from
Fourier-based spectral filtering, in that the latter is a scale-sharp filter that acts globally in physical
space and does not allow the discrimination of localized, energetic structures. Additionally, unlike
Fourier-based filters, the present method does not require periodicity.

D. Step 4: Inverse wavelet transformation of the filtered number-density field

Once the wavelet coefficients of the coherent component of the particle-number-density field are
computed, as described above, its physical-space representation is obtained by the inverse wavelet
transform

nC(x) = n0 +
S∑

s=1

∑
xs

7∑
d=1

ň
(s,d)
C (xs)ψ

(s,d)(x − xs). (6)

The incoherent portion is readily obtained from Eq. (3) as the difference between n and nC . This
definition of the coherent field is analogous to that of the incoherent component of the vorticity in
the technique of coherent vortex extraction in turbulent flows [10]. Further discussions about the
implications of the present definition are provided in Sec. IV. In the remainder of this article, the
steps 1–4 explained above are illustrated in decomposing number-density fields obtained from DNS
of particle-laden turbulence.
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III. COMPUTATIONAL SETUP

The linearly forced Navier-Stokes (NS) equations

∂ui

∂xi

= 0,
∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

+ Aui, (7)

are integrated numerically for the carrier phase in a triply periodic cubic domain of side length
L = N�, where ρ is the density, ν is the kinematic viscosity, p is the hydrodynamic pressure,
and ui denotes velocity components. The explicit form of the forcing coefficient A is provided in
a separate study (see Eq. (10) in Ref. [24]). In particular, the forcing yields a constant turbulent
dissipation ε = 〈ν(∂ui/∂xj )(∂ui/∂xj )〉 equal to an imposed value ε∞. This forcing method leads to
small temporal fluctuations of the turbulence spectra in the high-wavenumber range [24].

The Lagrangian formulation of the dispersed phase consists of the trajectory equation

dxp,i

dt
= up,i (8)

for the particle position xp,i , where the particle velocity up,i is obtained from the equation of motion

4

3
πρpa3 dup,i

dt
= 6πρνa(ui − up,i), (9)

where ui is the local fluid velocity obtained from a trilinear interpolation at the particle position.
In this formulation, the dispersed phase is assumed to be composed of small particles of diameter
2a � �k and density ρp � ρ, where �k = (ν3/ε∞)1/4 is the Kolmogorov length.

Equations (7)–(9) are solved using an energy-conserving finite-difference formulation with
second-order central spatial discretizations and fourth-order Runge-Kutta time integration [25].
The input parameters are L = 2π , ν = 0.05 and ε∞ = 5.6×103, all quantities being expressed
in arbitrary yet consistent units leading to a Taylor-Reynolds number Reλ = 81. The calculations
are conducted on a staggered, uniform Cartesian grid of N3 = 5123 points, which translates into
a resolution κmax�k = π , where κmax = π/� is the largest resolved wavenumber. Note that with
this grid resolution the effective homogenization length for computing the particle-number-density
field equals the Kolmogorov length, � = �k . After the turbulence has reached a statistically steady
state, Np = 5N3 ∼ 670 million monodisperse inertial particles are randomly seeded according to a
Poisson distribution under kinematic equilibrium with the carrier phase. The resulting mean number
density is n0 = 5/�3. After sufficiently long times compared to the particle acceleration time
ta = (2/9)(ρp/ρ)(a2/ν) have passed, 10 solution snapshots are recorded for ensemble averaging
during a period 15t�, where t� = (2k∞/3)/ε∞ is the integral time based on the mean kinetic energy
k∞ = 〈uiui/2〉.

In addition to the Taylor-Reynolds number, the solution of the problem depends on the Stokes
number

Stk = ta/tk, (10)

where tk = �2
k/ν is the Kolmogorov eddy-turnover time. Results are provided below that consider

Stokes numbers in the range 0.1–40, with Stk ∼ 1 leading to maximum preferential-concentration
effects.

IV. NUMERICAL RESULTS

Instantaneous, three-dimensional, and planar projections of the total, coherent, and incoherent
components of the particle-number-density resulting from the CCE method are shown in Fig. 2
for Stk = 1. The preferential-concentration effect is clearly visible in the left panel in the form
of ligament-like structures characterized by large number-density values. The coherent component
shown in the center panel remarkably resembles the same shape and density of structures with
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FIG. 2. Instantaneous isosurfaces of total (left), coherent (center), and incoherent (right) components of
the particle-number-density field for Stk = 1. The values of the isosurfaces are n = 7σn, nC = 7σnC

, and
nI = (7/3)σnI

. The upper panel shows three-dimensional views of the entire computational domain. The lower
panels show the corresponding 2D projections along the square domain denoted by dashed lines in the upper
panels.

slightly sharper edges. On the contrary, the incoherent component of the number density leads to
indiscernible structures. The incoherent field homogeneously fills the entire physical domain and
does not show significant spatial correlation.

The qualitative visual inspection of the decomposed number-density field made in Fig. 2 suggests
that its spatial structure is well captured by the coherent portion. Remarkably, the total compression
ratio, defined as the number of nonzero wavelet coefficients NC of the coherent portion divided
by the total number of wavelet coefficients N3 − 1, is always smaller than 1.6%, as shown in
Fig. 3(a). This illustrates the sparsity of the particle-number-density field, in that its structures are
well represented by very few wavelet coefficients, even in the regime Stk ∼ 1, where the compression
ratio is maximum as a result of the increased coherence enabled by the preferential-concentration
effect. This regime requires the largest number of wavelet coefficients to adequately represent the
spatially intermittent organization of particles in coherent clusters [see also Fig. 4(b) and discussion
associated with flatness values below]. Additionally, Fig. 3(a) includes a sensitivity analysis to the
number of particles Np for Stk = 1. If Np is not sufficiently large, the particle-number-density field
exhibits small-scale fluctuations that result in a spatially delocalized unphysical numerical noise,
thereby resulting in a decrease of the total compression ratio [see also Fig. 1(c) and discussion in
Sec. II A]. As Np is increased, the compression ratio is observed to converge to 1.6%.

The scale repartition of the compression ratio is provided in Fig. 3(b), which shows the variations
with the wavenumber of the ratio of the number of nonzero wavelet coefficients NC,s that contribute
to the coherent number-density field at a given scale, to the total number of wavelet coefficients
Ns = 7(N/2s)3 at that scale. The depth of penetration of the coherent component into the small
scales is maximum at Stk = 1, thus suggesting an increasing degree of small-scale organization in
the number-density field in conditions where the preferential-concentration effects are important.
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FIG. 3. (a) Global and (b) scale-dependent compression ratios of the total, coherent, and incoherent
components of the particle-number-density field.

The second and fourth moments of the PDFs of the total, coherent, and incoherent components
of the particle-number-density field are provided in Fig. 4 as a function of the Stokes number.
Because of the orthogonality property of the wavelets, the sum of the variances of the coherent (σ 2

nC
)

and incoherent (σ 2
nI

) components equals the variance of the total field (σ 2
n ). The variance of the

coherent field, which is equivalent to the cumulative sum of the corresponding spectral fluctuation
energy shown in Fig. 5, represents 80% of the total one at order-unity Stokes numbers and decreases
rapidly at smaller or larger Stokes numbers. In those extrema, the incoherent component prevails, as
suggested from the intuitive fact that the particles are much less preferentially concentrated. The total
number density exhibits maximum flatness under preferential concentration as shown in Fig. 4(b).
This result is consistent with the observation that in that regime the particles predominantly interact
with intermittent small-scale vortical and straining motions. However, the coherent portion displays
slightly larger flatness factors than the total number-density field, which finds visual justification in
the slightly sharper edges of the nC structures shown in Fig. 2 as a result of this filtering approach.
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FIG. 4. (a) Relative contributions of the coherent and incoherent particle-number-density fields to the total
variance. The legend for the symbols is the same as in Fig. 3. (b) Flatness factor of the total, coherent, and
incoherent particle-number-density fields.
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(d () e)

(c)(a () b)

FIG. 5. Fourier energy spectra of the total, coherent, and incoherent particle-number-density fields for (a)
Stk = 0.3, (b) Stk = 1, (c) Stk = 2, (d) Stk = 0.1, and (e) Stk = 10. The solid lines with symbols correspond
to a random distribution of particles with the same mean n0. In Fig. 5(b), the circles correspond to n0�

3 = 10,
while all other curves correspond to n0�

3 = 5.

The spectral characteristics of each component of the particle-number-density field are shown
in Fig. 5 in terms of the Fourier energy spectra of their fluctuations. In all cases, the spectra of
the coherent component tends to follow those of the total field until a Stokes-number-dependent
wavenumber beyond which a faster decay is observed in the coherent portion, which ceases to be
energetic at the smallest scales due to the lack of clear spatial organization of the particles. Similarly
to the observations made on Fig. 3(b) for the scale-dependent compression ratio, the spectral energy
associated with the coherent component increasingly pervades the high-wavenumber range and
remains energetically relevant there as the preferential concentration regime Stk ∼ 1 is approached,
as shown in Fig. 5(b). In regimes where preferential concentration is not as important, the coherent
component becomes energetically irrelevant in the small scales while the incoherent portion does
the opposite, as observed in Figs. 5(a), 5(d), and 5(e). In all cases, the slope of the spectra of the
incoherent component is not far from 2, which corresponds to that of white noise as prescribed by
the equipartition of energy between all wavenumber. This is consistent with the observation made
in Fig. 2 that the incoherent number density is visually structureless. However, it should be noted
that the slope, which in actuality is closer to 3, shows that the incoherent number density is not
entirely decorrelated. This is in contrast with results obtained when the present method is applied
to turbulent vorticity fields where the slope of the incoherent-component spectra is sometimes best
approximated by 2, although similar cubic slopes such as the one described above can be found in
that context depending on the source (see, for instance, Fig. 1 in Ref. [10]).

The exact origin of the incoherent component has no straightforward explanation, since it can be
significantly influenced by the short-wavelength noise caused by an insufficient number of particles.
To understand this, consider first the cases Stk = 0.1 and 10, shown in Figs. 5(d) and 5(e). In those,
the upturn in the spectra of the total component of n at high wavenumber is caused by the incoherent
one, which is much more energetic than the coherent portion there. However, the spectra of the
incoherent component are observed to collapse on those of a random distribution, thus resembling
the same characteristics of the artificial noise analyzed in Sec. II A and Fig. 1(c), which is caused by
the insufficient number of particles. Since a decrease in Np shifts upward the random-distribution
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spectra, the incoherent portion in Figs. 5(d) and 5(e) would be expected to follow that upward shift and
become increasingly energetic in the high-wavenumber range. The opposite trend is expected when
Np is increased, in such a way that the coherent component could be ascribed to a filtered noise-free
number density that would have been obtained if a larger number of particles were used [11,26,27].
In all cases, the collapse of the spectra of the incoherent component on the random-distribution
spectra occurs only near the maximum grid wavenumber, while the incoherent portion remains more
energetic than the random distribution everywhere else. In principle, no clear physical origin can be
ascribed to the incoherent part with the number of particles Np used to obtain these results. However,
additional calculations provided in the Appendix at lower Reynolds numbers, which enabled the
incrementation of Np with a reasonable computational cost, indicate that the incoherent portion
at Stk = 0.1 saturates and does not vanish as Np is increased (i.e., see top-right panel in Fig. 8),
thereby suggesting that this component of the number density may bear some of the small-scale flow
randomness when the particles are quasitracers.

At intermediate Stokes numbers, as in Figs. 5(a)–5(c), no clear upturns are observed in the energy
spectra of the total number density, with the random-distribution spectra remaining much smaller
at the nominal condition n0 = 5/�3. In these conditions, the spectrum of the incoherent portion
is insensitive to doubling the number of particles, as shown in Fig. 5(b). In contradistinction, the
random-distribution spectrum is shifted downward if the number of particles is doubled. These
observations suggest that, at intermediate Stokes numbers, the incoherent portion might have a
physical origin related to the intrinsic lack of organization at small scales as a result of the finite
inertia of the particles.

The results described here show that a coherent component of the particle-number-density field
can be extracted using wavelet filters and that this component bears structurally the clusters caused
by preferential concentration. On the other hand, an incoherent component can be isolated that at
intermediate Stokes numbers becomes mostly insensitive to the number of particles and that suggests
a certain degree of randomness in the small-scale particle concentration caused by the interaction
with the hydrodynamics. The same conclusion is obtained in the Appendix at small Stokes numbers
when a larger number of particle is used in a lower Reynolds-number flow. Conversely, the incoherent
portion bears mostly numerical noise when the amount of particles seeded in the flow is small.

Based on these observations, there are some restrictive aspects of this work that are absent from
the study in Ref. [10] on coherent vorticity extraction in single-phase turbulent flows and that
deserve further discussion. The first one is the aforementioned influences of the insufficient number
of particles in triggering artificial noise that floods the incoherent component of the number density,
which represents a shortfall of the CCE method that is germane to the Lagrangian description
employed for the dispersed phase. The second aspect is related to the lack of strict positivity of
the coherent and incoherent number-density components, as shown in Fig. 6 and directly implied
by the formulation in Sec. II C. Wavelets are not strictly positive since they have zero mean and
therefore do not guarantee that the filtered physical-space fields remain positive. As a result, the
positive intermittent peaks of the number density tend to get intensified in the clusters detected
by the coherent component, this being quantitatively illustrated in Fig. 4(b) by the increase of the
coherent-component flatness above that of the total number-density field. These positive overshoots
are mirrored by unphysical, small negative concentration values in both coherent and incoherent fields
in order to satisfy Eq. (3) and preserve the first and second moments of the total number-density
PDF. Although clipping may be exercised in order to remove the negative concentrations, this
procedure is artificial and and repels the moment conservation properties of this wavelet filtering
method. It should, however, be mentioned that it is possible to transform n into a nearly Gaussian
variable and filter it using wavelets as done above [11,26,28], but the antitransformed incoherent
component becomes spatially correlated with the coherent portion, which makes the meaning of
nI even more unclear (results not shown here for brevity). The third aspect is related to the nearly
cubic slope of the spectra of the incoherent number density found in this study, which suggests
that this component is not entirely decorrelated even though it appears to be visually structureless.
Additional work, including more appropriate characterizations of the incoherent field, are required
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FIG. 6. [(a)–(c)] Ensemble-averaged PDFs of the total, coherent, and incoherent particle number-density
fields. [(d), (e)] Corresponding instantaneous one-dimensional profiles of number density along the intersection
of the planes x2 = L/2 and x3 = L/2.

to clarify these issues. Special emphasis should be made on the fact that the grid adaptation algorithm
formulated in Sec. V does not suffer from the limitations described above, since it does not require
antitransformation of the coherent and incoherent wavelet components into physical space.

V. WAVELET-BASED GRID ADAPTATION AROUND PARTICLE CLUSTERS

In this section, the steps 1–3 of the CCE method described in Secs. II A–C are used in the form of
a grid-adaptation algorithm. The result is a grid adapted around the clusters of particles, with control
volumes being refined there down to scales where the particles cease to be organized.

A. Grid-adaptation algorithm

This algorithm works as follows. The number density field n is first wavelet transformed as
described in Sec. II B. Note that large wavelet coefficients are associated with large fluctuations
within the corresponding control volume of the scale-dependent wavelet grid xs, these being markers
of underlying coherent (organized) structures within their control volumes. As an illustration, the
wavelet coefficients of a one-dimensional version of n are schematically represented in Fig. 7(a) in
a scale (s) versus position (xs) binary tree discretized using 16 collocation points (note that in three
dimensions the binary tree becomes an octree). The tagged elements of the tree, which are denoted
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(a)

1 1 1 1 1 1 1 1

2 2 2 2

3 3

4

Original grid

Adapted grid
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Position (xs)

(c)(b) (d)

FIG. 7. (a) Schematics of the grid adaptation algorithm using a binary tree for a signal with 16 collocation
points (left panel), along with the resulting adapted grid (right panel). Examples of adapted grids obtained by
applying the current algorithm to DNS of particle-laden turbulence at [(b), (c)] Stk = 1 and (d) Stk = 10. The
panels show a 1/32th of the total spatial extension of the adapted grid.

by solid red lines, correspond to those with absolute values larger than the threshold T described in
Sec. II C, and therefore correspond to the coherent component of n.

In the three-dimensional, practical case, tagging is applied if at least one of the 7 wavelet
coefficients of n per location is larger than the threshold. Additional tagging by dashed red lines is
done to wavelet coefficients that are smaller than the threshold T but which correspond to a spatial
region that contains at least one tagged wavelet coefficient at smaller scales. This tagging procedure
ensures that even if particles are randomly distributed at a given scale s but not at a smaller scale
s − 1, the wavelet coefficient corresponding to scale s at that location will be tagged, therefore
triggering local grid refinement at level s.

Starting from the coarsest possible wavelet grid xs = xS that contains just one control volume,
this algorithm adapts the grid in the following manner. If the wavelet coefficient corresponding to a
control volume has been tagged, then that control volume is split into two control volumes, which
locally refines the grid. The algorithm is stopped otherwise. The same recursive loop is then applied
to the refined control volumes. The final configuration of the adapted computational grid is obtained
when either none of the wavelet coefficients in any the control volumes are tagged (i.e., none of
the wavelet coefficients belong to the coherent component of n) or the same resolution as the one
used in the grid for computing the carrier-phase hydrodynamics is reached [see right-side panel in
Fig. 7(a) for a schematics of a grid-adaptation sequence].

The results obtained from this algorithm are illustrated in Figs. 7(b)–7(d), which show
visualizations of portions of grids adapted using DNS snapshots of particle-number-density fields
using the same numerical setup as described in Sec. III. For the case Stk = 1, in which preferential
concentration is important, the adapted grid is highly nonuniform and clustered around the particle
clouds, where the maximum resolution given by the reference grid used to solve the carrier-phase
hydrodynamics is attained. The grid elements are much coarser in regions where the particle
concentration is lower. Remarkably, the adapted grid has 12 million elements, which corresponds to
8.9% of the total number of control volumes of the reference grid. By way of contrast, utilization
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of this algorithm for the case Stk = 10 leads to a coarser and more uniform grid since there is
no significant particle clustering. In this case, the adapted grid has 1 million elements, which
corresponds to 0.7% of the total number of control volumes of the reference grid. In the present
study, the threshold was set exactly to the theoretical value described in Sec. II C, although there
are no obstacles for relaxing this constraint and varying it depending on the target accuracy of the
radiation solver. Analyses of the impact of the choice of the threshold value on the accuracy of the
numerical discretization of commonly encountered physical conservation equations on the adapted
grid will be the subject of future work.

B. Potential applications

The utilization of adapted grids resulting from this algorithm may be of some interest for relieving
the computational cost of a number of multiphase flow problems that involve physical processes that
predominantly occur near particle clusters, such as interphase coupling effects, since the adaptation
procedure benefits from the fast O(N3) wavelet-transform algorithm [18]. For instance, one of
these problems could be the phenomenon of autoignition of fuel sprays, which tends to develop in
fuel-droplet clouds [2,29].

Another problem of interest for this grid-adaptation algorithm, which lays within the overarching
context of solar-power receivers [3,4], is that of a gas laden with solid particles receiving thermal
radiation from a hot external source. Specifically, the numerical solution of this problem involves
integration of the radiative heat-transfer equation, whose formulation involves the local values
of the spectral emissivity, absorptivity, and scattering coefficients. For a transparent fluid laden
with a large number of randomly dispersed small particles, the absorptivity coefficient is given
by σa(x) = n(x)Ap in each control volume, with Ap = πa2 as the particle cross-sectional area.
However, in the presence of clouds of preferentially concentrated particles, the numerical solution of
the radiative transfer equation subject to the above approximation provides inaccurate values of the
radiation-intensity attenuation partly because the particles are no longer randomly distributed [30,31].
The requirement of randomness in the particle spatial distribution, which is necessary for using the
above closure of the absorptivity coefficient, poses a strong constraint on the grid resolution employed
to solve the constitutive equations of radiation transport. In a preferentially concentrated field of
particles, such as the one shown in Fig. 1(a), a random distribution within each control volume
would only be recovered when the projection grid is sufficiently fine. The underlying reason for
this limitation is that preferential concentration is induced by small-scale turbulence structures in
the types of homogeneous flows addressed here. One alternative is to use a coarse grid along with
a subgrid-scale model that accounts for the subgrid clustering of particles. A different approach,
which does not require modeling, is to use the CCE method to dynamically identify and locate the
presence of clusters and nonuniformly adapt the grid with the algorithm described above, in such
a way that the resulting distribution of particles is random within all grid cells. The corresponding
number density n for the computation of σa is then computed by projecting the particles on the
adapted grid.

The approach described here is reminiscent of existing wavelet-optimized adaptive methods
based on vorticity—rather than particle concentration—wavelet coefficients that trigger local mesh
refinement around eddies in single-phase flows [21]. An aspect worthy of further investigation is
the quantification of the extent to which the coherent fields of vorticity and number density may be
related in particle-laden turbulent flows.

VI. SUMMARY AND CONCLUSIONS

This study presents a method for coherent cluster extraction (CCE) that decomposes an
Eulerian particle-number-density field into the sum of a coherent (organized) and an incoherent
(disorganized) components. The coherent component is computed using wavelet filtering. The
incoherent component is defined as the remainder. The CCE method is applied to snapshots
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of number-density fields obtained from DNS of homogeneous-isotropic turbulence laden with
Lagrangian inertial particles. The coherent component structurally bears the clusters of particles at a
strikingly low compression ratio of 1.6%, indicating that the number-density field is extremely sparse
in regimes where preferential concentration prevails. On the contrary, the incoherent component tends
to homogeneously fill the space and visually shows no clear structure, even though a detailed analysis
of its spectrum suggests some degree of spatial correlation, as revealed by a nearly cubic slope.

An application of the CCE method is illustrated in the form of a grid-adaptation algorithm, which
results in nonuniform grids whose cells contain none of the significant fluctuations of the number
density encountered in clustered clouds, in such a way that the particles within each control volume
follow an approximate random spatial distribution. This, for instance, is one of the conditions required
for the validity of simplifying assumptions of the radiative-transfer equation that oftentimes finds
difficult justification in turbulent flows laden with absorbing particles that preferentially concentrate
in clusters. The adaptation algorithm reduces the grid size by one to two orders of magnitude.

The present study deals with homogeneous-isotropic turbulence, which favors the use of periodic
boundary conditions. However, as mentioned in Sec. II C, periodicity is not required in the CCE
method. This could motivate, for instance, the characterization of particle clusters in turbulent
channel flows [32].
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APPENDIX: INFLUENCES OF THE PARTICLE GRID RESOLUTION
AND MEAN NUMBER DENSITY

This Appendix addresses the effects of varying the mean number density of particles n0 and the
resolution of the grid employed to project the particles and create the Eulerian field n. The resolution
of the projection grid is denoted here by the symbol �p, as opposed to �, which represents the DNS
grid spacing. In order to vary these characteristic parameters by two orders of magnitude around
their nominal values n0�

3 = O(10) and �p/� = 1 while keeping the flow resolution at κmax�k = π

and limiting the computational cost, a setup similar to that described in Sec. III is employed but
subject to a smaller Taylor-Reynolds number Reλ = 49 instead. The corresponding input parameters
are L = 2π , ν = 0.05, and ε∞ = 3.5 × 102. The reference grid used to solve the conservation
equations has 2563 elements. Three classes of particles with Stk = 0.1, 1, and 10 are considered.
The mean number of particles per computational volume is varied from n0�

3 = 0.8 to n0�
3 = 80,

the latter corresponding to approximately Np = 1.3 billion particles. Particle-number-density fields
are computed on a uniform Cartesian grid with grid resolution �p ranging from �/2 to 2�.

Table I reports the resulting global compression ratio for different values of �p and mean number
densities. In all cases, the compression ratio increases as the number of particles is increased. This
is a signature of the decrease in the relative contribution of the numerical noise caused by the finite
number of particles to the incoherent wavelet coefficients, which results in an increased number
of coherent wavelet coefficients. Note, however, that the rate of increase of the compression ratio
decreases with increasing number of particles, thereby suggesting that the compression ratio may be
converging to a small number independent of it. As observed for the Stk = 1 case, the more coherent
the total number-density field is, the smaller is the proportional change in the compression ratio
as the number of particles is varied. This is in contrast to the large or small Stokes number cases,
whose number-density fields have smaller fluctuation energies at small scales and therefore require
a larger number of particles to devise any signs of probable convergence. For Stk = 0.1 and 10, the
compression ratio decreases with decreasing �p, since that is equivalent to adding a noisy signal
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TABLE I. Effects of the particle projection-grid resolution and particle mean number density on the global
compression ratio in percentage.

NC/(N 3 − 1) × 100 Stk = 0.1 Stk = 1 Stk = 10
��������p/�

n0�
3

0.8 8 80 0.8 8 80 0.8 8 80

2.0 0.40 0.89 1.02 1.29 1.42 1.43 0.38 1.24 1.96
1.0 0.09 0.52 0.97 1.20 1.87 2.01 0.06 0.27 0.95
0.5 0.02 0.13 0.56 0.73 1.61 2.37 0.01 0.04 0.19

caused by the deficit of particles in constructing the Eulerian field. On the other hand, at Stk = 1
and n0�

3 = 80, when the number-density spectra appear to be converged (see discussion below),
decreasing �p results in an increased compression ratio, although the corresponding increase occurs
at a smaller rate than the decrease observed at Stk = 0.1 and 10.

The sensitivity of the incoherent number-density component is further investigated by considering
the effect of the number of particles on the Fourier energy spectra of the fluctuations of n at a fixed
projection-grid resolution �p = �, as shown in Fig. 8. As previously noted in Secs. II and IV, for
Stk = 1 the spectra become independent of the number of particles when a sufficiently large number

St
k

=
0.

1
St

k
=

1
St

k
=

10

n0Δ3 = 0.8 n0Δ3 = 8 n0Δ3 = 80

FIG. 8. Effect of the particle mean number density on the Fourier energy spectra of the total, coherent,
and incoherent particle-number-density fields for (top row) Stk = 0.1, (center row) Stk = 1, and (bottom row)
Stk = 10. The solid lines with symbols correspond to a random distribution of particles with the same mean
n0. The particle grid resolution is �p = �.
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of particles is employed. This was shown in Fig. 1(c) for the main computations and in this Appendix
in the center row in Fig. 8 for the lower-Reλ simulations. Specifically, the spectra in the center and
right panels for Stk = 1 in Fig. 8, which correspond to nominal and increased number of particles,
respectively, are identical except for the expected downward shift of the spectrum associated with
a random distribution of particles, whose contribution to the number-density field is negligible. A
similar convergence process is observed for Stk = 0.1 in Fig. 8, whereas the large-wavenumber
range of the spectra in the case Stk = 10 continues to undergo large variations as the number of
particles is increased.
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