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a b s t r a c t 

Computational magnetohydrodynamics (MHD) for space physics has become an essential area in under- 

standing the multiscale dynamics of geophysical and astrophysical plasma processes, partially motivated 

by the lack of space data. Full MHD simulations are typically very demanding and may require substantial 

computational efforts. In particular, computational space-weather forecasting is an essential long-term 

goal in this area, motivated for instance by the needs of modern satellite communication technology. 

We present a new feature of a recently developed compressible two- and three-dimensional MHD solver, 

which has been successfully implemented into the parallel AMROC (Adaptive Mesh Refinement in Object- 

oriented C++) framework with improvements concerning the mesh adaptation criteria based on wavelet 

techniques. The developments are related to computational efficiency while controlling the precision us- 

ing dynamically adapted meshes in space-time in a fully parallel context. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Space weather forecasting is concerned with predicting distur-

bances in the Earth upper atmosphere and the magnetic field that

can have dramatic consequences for modern technology, especially

satellites and communication electronics. A combination of theo-

retical studies, observations, numerical simulations including data

assimilation, and forecasting is the key for achieving success in

this strategic area [1] . For numerical predictions of space plasma

physics, the considerable range of dynamically active space-time

scales is a major obstacle. Accordingly, fast, robust, and efficient

numerical models that merge physics-based, accurate simulation

with timely observations are of fundamental importance. A par-

ticularly successful computational approach is the magnetohydro-

dynamic model [2] . Roughly speaking, the magnetohydrodynamic

model consists of a system of eight nonlinear partial differential

equations describing the dynamics of a compressible, inviscid, and

perfectly electrically conducting fluid interacting with a magnetic
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eld, combining thus the Euler equations of hydrodynamics with

he Maxwell equations of electrodynamics. The latter yields an

volution equation for the magnetic field, the so-called induction

quation, and an incompressibility constraint of the magnetic field

sing Gauss’s law [3] . Numerical approaches to solve these systems

re computationally costly and a full mesh approach to compute

hem is prohibitive in most cases of interest in space physics [2] .

herefore, adaptive techniques have been combined with on-the-

y mesh refinement [2] . More recently, multiresolution techniques

ave also been used [4,5] . In such approaches, the mesh is refined

ocally just in the regions where structures or discontinuities are

r can be present in short integration time [6] . 

Adaptive techniques reduce the computing time significantly

hile preserving the high accuracy of the numerical solutions. In

 previous article [7] we presented a comparison of these mesh

daptation techniques, which we have recently extended in [8] .

n these works, we used the generic open-source framework for

atch-structured adaptive mesh refinement AMROC [9,10] . A core

nding of these publications is that the multiresolution approach

s mathematically more rigorous and leads to a more faithful mesh

daptation; yet, the patch-based adaptation approach – thanks to

dvantageous data structures – reduces the overall computation

ime drastically. Hence, in this work we present the multiresolu-
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ion approach in our MHD solver [11] within the AMROC frame-

ork. 

The organisation of the remainder of the manuscript is as fol-

ows. In Section 2 , we contextualise the space environment of the

arth and introduce the primary phenomena of interest for sim-

lation test cases. In Section 3 we describe the governing equa-

ions, their discretisation using finite volumes, and outline the

ain ideas of the patch-based adaptive mesh refinement (AMR)

pproach briefly as implemented in AMROC. In Section 4 we de-

elop numerical experiments and discuss the accuracy and effi-

iency of our implementation. Finally, in Section 5 we draw some

onclusions. 

. Earth space environment 

The Sun is the source of several phenomena that affect the

idereal bodies, even the human artefacts, such as interplane-

ary probes, existing in the heliosphere [12] . The three main so-

ar agents are electromagnetic radiation, high energetic corpuscular

adiation, and magnetised plasma structures evolving in the solar

ind. 

As the Earth has an atmosphere and an intrinsic magnetic field,

 particular situation occurs; the solar radiation ionises the upper

tmosphere of the Earth, located above an altitude of 70 km. Also,

 magnetic field of inner origin imprecates the whole atmosphere.

his conjunction of ionisation and magnetic field creates a kind

f shield to the solar plasma displacement, i.e., the fully ionised

nd magnetised solar wind plasma cannot mix with the terrestrial

lasma, which establishes a geomagnetic field domain surrounding

he planet, named magnetosphere. As a consequence, the expand-

ng solar plasma deviates from its original direction involving the

arth’s domain [13] . 

Incident upon this obstacle, the solar plasma wind, which

oves with supersonic speed, creates a bow shock involving the

errestrial domain. Immediately after the shock the flux presents

 subsonic speed, thermalised particles, and an intensified in-

erplanetary magnetic field, characterising a region designated as

agnetosheath. The plasma of this region compresses the region

ominated by the geomagnetic field in a process that defines

n interface between the two physical media, the magnetopause.

s a manifestation of a tangential discontinuity, this region is

 surface of total pressure equilibrium between the solar wind-

agnetosheath plasma and the geomagnetic field confined in the

agnetosphere. Inside the magnetosphere, several processes estab-

ish distinct regions of plasma, energetic particle distributions, and

 sophisticated building of electrical current systems. All the fea-

ures of this real scenario are consequences of the electrodynami-

al interaction between the incident solar wind and the Earth at-

osphere [14] . 

An enormous amount of studies provided by experimental, ob-

ervational research, such as the one obtained by satellite data-

et analyses, and theoretical approaches, such as the proposi-

ions of phenomena from the magnetohydrodynamic formalism,

as contributed to an in-depth interpretation of the space envi-

onment [15,16] . The effort s of numerical simulations can signifi-

antly help the scientific concepts under development and provide

ore realistic process descriptions. The comprehensive view and

nderstanding of important space plasma processes and their geo-

ffective events depend on much more realistic performances of

he currently available magnetohydrodynamic models. However, to

e utilised in emerging space weather programs, competitive-in-

ime codes are increasingly demanded nowadays. 

In this work, we aim at developing an up-to-date numerical

ool for modelling magnetohydrodynamics. We address two fun-

amental cases, prominent in the investigation of applied space

ciences. The first case is the Orszag–Tang vortex, originally intro-
uced in [17] for incompressible MHD, a canonical model problem

or testing the transition to supersonic two-dimensional MHD tur-

ulence. The second is the magnetic shock cloud [15,18] , a common

ccurrence evolving superimposed with the solar wind through the

nterplanetary medium. 

.1. GLM-MHD model 

In numerical simulations of the ideal magnetohydrodynamics

quations, including the divergence-free constraint of the magnetic

eld, typical methodologies consider an additional correction term

o facilitate the enforcement of this physical property. There are

ifferent kinds of well-known methods in order to minimise this

ffect, as described in [19] and references therein. In the context

f this study, having in mind the application of the multiresolu-

ion method using explicit time integration, we adopt the approach

roposed in [20] , with the non-dimensional adjustment added by

ignone and Tzeferacos in [21] . Namely, the divergence-free con-

traint is treated by the introduction of a new variable ψ and a

orresponding balance equation is added to the ideal MHD equa-

ions. This process leads to the well-known Generalised Lagrangian

ultiplier (GLM) hyperbolic conservation system 

∂ρ

∂t 
+ ∇ · ( ρu ) = 0 , 

∂ ( ρu ) 

∂t 
+ ∇ ·

[ 
ρuu 

T + I 

(
p + 

B . B 

2 

)
− BB 

T 
] 

= 0 , 

∂B 

∂t 
+ ∇ ·

[
uB 

T − Bu 

T + ψ I 
]

= 0 , 

∂E 

∂t 
+ ∇ ·

[ (
E + p + 

B . B 

2 

)
u − B ( u . B ) 

] 
= 0 , 

∂ψ 

∂t 
+ c 2 h ∇ · B = − c 2 

h 

c 2 p 

ψ, (1) 

here ρ represents density, p is the pressure, u is the fluid

elocity vector, B is the magnetic field vector, I is the iden-

ity tensor of order 2, and the superscript symbol T indicates

he transposed matrix. The parameter c h is defined as c h =
ax 

[
ν �h 

�t 
, max 

(| u i | ± c f 
)]

, where �h is the minimal value of the

esh sizes in each direction, ν the Courant number, u i is the ve-

ocity of the i -th component, and c f is the fast magneto-acoustic

ave of the MHD model. The c p value is defined in terms of the

arameter αp = �h 
c h 

c 2 p 

, where αp ∈ [0, 1], as described in [21] . The

otal energy density E is given by the constitutive law 

 = 

p 

γ − 1 

+ ρ
u · u 

2 

+ 

B · B 

2 

, (2) 

n which γ is the adiabatic constant with γ > 1. Moreover, the

bove MHD system is completed by suitable initial and bound-

ry conditions as presented in the numerical experiments section.

hese equations have been rewritten in non-dimensional form

uch that the magnetic permeability yields the identity, i.e., μ = 1 .

e also consider the divergence control parameter αp = . 4 , and

 ≡ 0 in the initial conditions. 

In near Earth space, the governing equations of MHD modelling

an in particular develop discontinuities, i.e., shocks and contact

aves. Therefore, we use finite volume shock-capturing methods

hat are constructed to properly handle this behaviour in a robust

nd oscillation-free way, as discussed in detail in [22] . Moreover,

e are interested in studying the development of MHD instabil-

ties that are very local and can present complex local multiscale

ehaviour. For this reason, it can be undoubtedly beneficial to have

n economical, accurate, and efficient mesh representation of these

eatures. 
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Fig. 1. Scheme of the projection (restriction) and prediction (prolongation) opera- 

tors for the quantity vector Q̄ . 
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3. Numerical discretisation 

As reference discretisation for these equations in the conserva-

tion form, the numerical solution is represented by the quantity

vector Q of the approximated cell averages on a uniform mesh

of the computation domain. For space discretisation, a finite vol-

ume method is chosen, which results in a system of ordinary

differential equations with a vector of numerical flux function

differences with respect to each cell. In all numerical schemes

throughout this paper enhanced numerical flux functions with

comparable second-order-accurate reconstruction and flux limiting

are used. For time integration, we adopt an explicit second order

Runge–Kutta scheme. 

The adaptive mesh refinement method (AMR) [23–25] follows a

patch-oriented refinement approach, where non-overlapping rect-

angular submeshes G 	 , m 

define the domain G 	 := 

⋃ M 	 

m =1 
G 	,m 

of an

entire level 	 = 0 , . . . , L . As the construction of refinement pro-

ceeds recursively, a hierarchy of submeshes successively contained

within the next coarser level domain is created. The recursive

nature of the algorithm only allows the addition of one new

level in each refinement operation. The patch-based approach does

not require special coarsening operations; submeshes are simply

removed from the hierarchy. The coarsest possible resolution is

thereby restricted to the level 0 mesh. Typically, it is assumed that

all mesh widths on level 	 are r 	 -times finer than on the level

	 − 1 , i.e. , �t 	 = �t 	 −1 /r 	 and �x n,	 = �x n,	 −1 /r 	 , with r 	 ∈ N , r 	 ≥
2 for 	 > 0 and r 0 = 1 . This ensures that a time-explicit finite vol-

ume scheme remains stable under a CFL-type condition on all lev-

els of the hierarchy. In our MR implementations we always use

r 	 = 2 here. 

The numerical update is applied on the level 	 by calling a

single-mesh routine implementing the finite volume scheme in

a loop over all the submeshes G 	 , m 

. The regularity of the input

data allows a straightforward implementation of the scheme and

furthermore permits optimisation to take advantage of high-level

caches, pipelining, etc. New refinement meshes are initialised by

interpolating the vector of conservative quantities Q from the next

coarser level. However, data in an already refined cell are copied

directly from the previous refinement patches. Ghost cells around

each patch are used to decouple the submeshes computationally.

Ghost cells outside of the root domain G 0 are used to implement

physical boundary conditions. Ghost cells in G 	 have a unique in-

terior cell analogue and are set by copying the data value from

the patch where the interior cell is contained (synchronisation).

For 	 > 0, internal boundaries can also be used. If recursive time

step refinement is employed, ghost cells at the internal refinement

boundaries on the level 	 are set by time-space interpolation from

the two previously calculated time steps of level 	 − 1 . Otherwise,

spatial interpolation from the level 	 − 1 is sufficient. 

One feature of the AMR algorithm is that refinement patches

overlay coarser mesh data structures instead of being embedded,

again preventing data fragmentation. Values of cells covered by

finer submeshes are subsequently overwritten by averaged fine

mesh values, which, in general, would lead to a loss of conserva-

tion on the coarser mesh. A remedy to this problem is to replace

the coarse mesh numerical fluxes at refinement boundaries with

the sum of fine mesh fluxes along the corresponding coarse cell

boundary. 

3.1. MR refinement indicator 

The principle of MR methods is the transformation of the cell

averages given by the finite volume discretisation into a multiscale

representation. A detailed review can be found in [26,27] and refer-

ences therein. We consider a discrete solution of the discretisation

as initial cell average data Q̄ 

	 +1 at level 	 + 1 . Then for instance,
n one decomposition level a two-level MR transformation can be

ritten as follows, 

¯
 

	 +1 
projection 

�
prediction 

Q̄ 

	 +1 
MR 

= { ̄Q 

	 } ∪ { d 	 } , 

here d 	 contains the information between the two consecutive

evels 	 and 	 + 1 ; and Q̄ 

	 stores a smooth version of the origi-

al numerical solution Q̄ 

	 +1 . These ideas are a natural extension

f the work [28,29] . The numerical solution at the finest resolu-

ion level is transformed into a set of coarser scale approximations

lus a series of prediction errors corresponding to wavelet coef-

cients. These coefficients describe the difference between subse-

uent resolutions. The main principle is then to use the decay of

he wavelet coefficients to estimate the local regularity of the so-

ution [30,31] . In regions where the solution is smooth these co-

fficients are small, while they have large magnitude in regions of

teep gradients or discontinuities. 

In order to perform the MR method, some operations for pro-

ection and prediction are required. For the MR scheme with finite

olumes, where the cell values are local averages, a coarser cell 
	 
i 

as its value estimated using the smaller scale values and a unique

rojection operator P 	 +1 → 	 : Q̄ 

	 +1 	→ Q̄ 

	 . In this scheme, the pro-

ection operator to obtain the solution on a coarser cell is given by

he average value of its children. For the one-dimensional case (cf.

ig. 1 , top), the projection is performed by 

¯
 

	 
i = P 	 +1 → 	 

(
Q̄ 

	 +1 
2 i 

, Q̄ 

	 +1 
2 i +1 

)
= 

1 

2 

(
Q̄ 

	 +1 
2 i 

+ Q̄ 

	 +1 
2 i +1 

)
, (3)

here Q̄ 

	 
i 

is the average value of the cell 
	 
i 
. 

The prediction operators are used to perform the opposite path

f the projection operators and allow to obtain the values of the

ner cells using the values of the coarser ones (cf. Fig. 1 , bot-

om). For each child cell i to be predicted, there is a different pre-

iction operator represented by P i 
	 → 	 +1 

: Q̄ 

	 	→ Q̄ 

	 +1 for the one-

imensional case. These operators yield a non-unique approxima-

ion of Q̄ 

	 +1 
i 

by interpolation. 

We use polynomial interpolation of second degree on the cell-

verages as proposed by Harten [28] , which yields third-order ac-
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Fig. 2. Illustration of the clustering algorithm in three steps for rows and columns, 

with the respective notation ϒ
step 

row/col 
and �

step 
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uracy. For the one-dimensional case, it follows that 

˜ 
 

	 +1 
2 i 

= P 0 	 → 	 +1 

(
Q̄ 

	 
i −1 , Q̄ 

	 
i , Q̄ 

	 
i +1 

)
= Q̄ 

	 
i −

1 

8 

( ̄Q 

	 
i +1 − Q̄ 

	 
i −1 ) (4)

˜ 
 

	 +1 
2 i +1 

= P 1 	 → 	 +1 

(
Q̄ 

	 
i −1 , Q̄ 

	 
i , Q̄ 

	 
i +1 

)
= Q̄ 

	 
i + 

1 

8 

( ̄Q 

	 
i +1 − Q̄ 

	 
i −1 ) , (5)

here ˜ Q 

	 
i 

is an approximation of the value Q̄ 

	 
i 
. With this choice,

he operator satisfies the locality and the consistency properties,

amely: the interpolation into a child cell is computed from the

ell-averages of its parent and its nearest uncle cells in each di-

ection; and prediction and projection operator are consistent, i.e.

 	 +1 → 	 ◦ P 	 → 	 +1 = Identity . 

The prediction operator is used to obtain the wavelet coeffi-

ients d 	 
i 

of the finer cells. The wavelet coefficients are then given

y the difference between the values on the finer level and the

redicted values as 

 

	 
i = Q̄ 

	 
i − ˜ Q 

	 
i . (6) 

he values d 	 
i 

are also used for reconstructing the finest levels

ithout errors due to their property of being the interpolation er-

or. Their norm yields the local approximation error. Moreover, the

nformation of the cell-average value of the two children is equiv-

lent to the knowledge of the cell-average value of the parent and

ne independent detail. 

The same idea can be extended to higher-dimensional cases. For

nstance, for two dimensions the information of the cell-averages

f four children is equivalent to the knowledge of three wavelet

oefficients in the different directions and the nodal value on the

oarser mesh. 

In the process to obtain the adaptive meshes, we flag all cells

n which the associate wavelet coefficients d 	 are larger than a

hreshold. We can select d 	 for only a scalar value from the MHD

uantities or adopt other combinations between the variables. For

he examples presented below we consider only a scalar value for

ensity or pressure. 

.1.1. Choice of the threshold 

There are different possible choices for the threshold, which

nable the identification of the retained wavelet coefficients hav-

ng magnitude above the threshold. In practice, its value should be

hosen such that the perturbation related to the thresholding and

he discretisation errors is of the same order. Moreover, it is possi-

le, for instance, to use a constant threshold value ε for all levels.

owever, in the context of finite volumes, and based on our own

xperiences, [5,32] , we usually follow Harten’s thresholding strat-

gy, i.e, 

	 = 

ε

| 
| 2 

d ( 	 −L ) , 1 ≤ 	 ≤ L , (7)

n order to control the L 1 -norm. In this case, L is the finest scale

evel added to the base mesh level in AMROC, the dimension pa-

ameter is d = 2 or 3 according to the dimension used, and | 
| is

he cell area. 

.2. Clustering algorithm 

After evaluating the refinement indicators and flagging cells

or refinement, a special clustering algorithm [25] is used to cre-

te new refinement patches until the ratio between all cells and

agged ones in every new submesh is above a prescribed value

 < η ≤ 1. Central to the patch-based mesh refinement approach

s the utilisation of a dedicated algorithm to create blocks (or

atches) from individual cells tagged for refinement by any of

he above criteria. We use a recursive algorithm proposed by Bell
t al. [33] . This method, inspired by techniques used in image de-

ection, counts the number of flagged cells in each row and col-

mn on the entire domain. The sums ϒ are called signatures . First,

uts into new boxes are placed on all edges where ϒ is equal to

ero. In the second step, cuts are placed at zero crossings of the

iscrete second derivative � = ϒν+1 − 2 ϒν + ϒν−1 . The algorithm

tarts with the steepest zero crossing and uses recursively weaker

nes, until the ratio between all cells and flagged ones in every

ew mesh are above the prescribed value η. An illustration of the

eneral clustering procedure is given in Fig. 2 . 

. Computational experiments and discussions 

In order to compare and assess different refinement criteria

uantitatively, we compute the L 1 error between the adaptive so-

ution and its corresponding uniform mesh solution related to the

ame maximal resolution used in the adaptive computation, as dis-

ussed in [8] . We denote this error by L 1,AMR . 

Computations are run in parallel on nodes of a recent

NU/LINUX compute cluster that provides 20 cores with shared

emory per node. The AMROC system is parallelised through the

PI library with dynamic re-partitioning. Load balancing is carried

ut after each level-0 time step in the adaptive cases. AMROC is

ursuing a rigorous domain decomposition strategy, in which the

ncreased computational expense on higher refinement levels in

he patch-based AMR algorithm is considered in evaluating parallel

orkload; however, only units of smallest resolution corresponding

o a cell on level zero are utilised [34] . This approach simplifies the

mplementation and reduces the expense of the partitioning algo-

ithm, but it can lead to slight load imbalances on deep hierarchies.

he algorithm used for partitioning is always a multi-dimensional

pace filling curve [9,10] . 

In all experiments we use a Cartesian mesh with HLLD numer-

cal flux introduced in [35] and a MinMod limiter as discussed

n [36] . 
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Table 1 

MR and SG: Accuracy and number of cells. 

Method ε L 1,AMR # of cells 

SG 0.20 2.30 411,392 

MR 0.05 2.15 333,064 
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Fig. 3. Orszag–Tang vortex: mass density at final time t e = π . (a) uniform mesh 

with max value 6.16, in blue, and min value 1.1 in white, (b, and c) adaptive meshes 

(pseudo-colour: white coarsest level 2, grey finest level 5) using SG, and MR criteria, 

respectively. The panels in the right column represent the data distribution in the 

40 processors indicated by colours. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Orszag–Tang vortex: flag cells and MR threshold at t e = π as a function of 

the L 1,AMR error of the mass density. 
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4.1. Orszag–Tang vortex 

Nowadays, this classical experiment is also used to test how

robust a compressible MHD code is at handling the formation

of MHD shocks [37] , shock-shock interactions, discontinuities, and

other structure formations, as presented in [38] . Therefore, this test

is also frequently used for code verification and comparison, and it

can also demonstrate how significant magnetic monopoles, i.e the

∇ · B = 0 condition, affect the numerical solution, as discussed in

[39] and references therein. Here we use this test to verify how the

wavelet-based criteria handle shock formations. We also present a

comparison with the Scaled Gradient (SG) refinement criteria al-

ready implemented in the AMROC framework [8,10,40] . For SG cri-

teria in two-dimensions, a cell at a position ( j, k ) is flagged for

refinement if at least one of the following relations is satisfied for

mass density, for instance, 

| ρ j+1 , k − ρ j, k | > ε ρ, | ρ j, k +1 − ρ j, k | > ε ρ, | ρ j+1 , k +1 − ρ j, k | > ε ρ

where the constant ε ρ denotes the prescribed refinement limit;

in subsequent parts we simply denote it by ε = ε ρ . 

4.1.1. Computational set-up 

We consider as initial conditions the density ρ = γ 2 , the pres-

sure p = γ , and the periodic velocities with u x = − sin (y ) , and

u y = sin (x ) together with the magnetic field B x = − sin (y ) , B y =
sin (2 x ) , using the parameters γ = 5 / 3 and CFL ν = 0 . 3 . The com-

putational domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with periodic boundary

conditions. This magnetic field is constructed using a periodic vec-

tor potential to guarantee vanishing divergence of the magnetic

field. 

4.1.2. Numerical results 

In this experiment we have observed that the wavelet-based

MR criteria detect the shock formations reproducing the expected

structures. Moreover, we have found that it produces less refine-

ment of additional features at the maximal level compared to the

gradient criterion and additionally stronger coarsening. Therefore,

MR prevents unnecessary over-refinement while preventing im-

proper coarsening. These representative effects are the reason why

the MR criterion with hierarchical thresholding achieves a smaller

error than the SG criterion. An example of these effects is pre-

sented in Fig. 3 (b, and c, in the right panel). The adaptive mass

density solution is presented in Panel (a) for the uniform mesh

and it is represented by isolines. Pseudo-colours are used to iden-

tify the levels. These results are computed for L = 5 maximum re-

finement level, coarsest mesh 32 2 , i.e., corresponding to a uniform

mesh of 512 2 cells, at final time t e = π . To compare the number

of cells we have used in Table 1 the value η = 0 . 80 and threshold

parameters which lead to similar errors for SG and MR. Therefore,

even with slightly smaller errors, MR needs less cells to obtain the

expected representation, resulting in a gain of 1.3 considering the

ratio between the number of cells and the error. 

This result is highlighted in panels (b) and (c) on the right

of Fig. 3 . The SG method presents refinement from levels 2 −5 ,

whereas the MR method from 3 −5 . We have also observed that SG

uses much more refinement at the highest level. On the left panel,

we present the processor distribution for the three cases. All show

a good distribution on the processors. Especially for the adaptive

cases, the distribution pattern follows the data organisation on the
evel refinements. As the MR case has less blocks in the highest

evel and more regions at the same level, its distribution is slightly

ess fragmented than for the SG one. 

The accuracy of the adaptive solution depends on the choice of

he MR threshold parameter with a computational cost determined

y the number of cells used in the representation. In our case the

umber of cells is directly related to the CPU time. Fig. 4 illustrates
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Fig. 5. Adaptive computations of the pressure solution for the magnetic cloudy test 

case related to a 1, 024 2 uniform mesh. (a) Carmen-MHD code, (b) AMROC frame- 

work with η = 0 . 99 and 16 2 base mesh with L = 7 . Left columns show the adaptive 

meshes, red colour corresponds to the most refined level for Carmen-MHD, and 

dark-blue for AMROC. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 2 

Comparison of the CPU time (s) for the two-dimensional mag- 

netic cloudy test case corresponding to a refined mesh 1, 024 2 , 

ε = 0 . 01 , η = 0 . 80 , and base mesh 16 2 . 

Number of processors 

2D 1 2 4 8 16 

Carmen-MHD 17,520 – – – –

AMROC 1,889 1021 635 478 447 

Table 3 

AMROC 3D adaptive computations of the magnetic cloudy test 

case corresponding to ε = 0 . 025 , η = 0 . 80 , and base mesh 32 2 . 

Corresponding refined mesh 

256 3 512 3 1, 024 3 

# cells 5, 917, 288 27, 444, 592 122,076,544 

% cells 35.3 20.4 11.4 

# blocks 148 894 2,502 

CPU time (s) 1,468 11, 350 117,731 
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v  
he accuracy behaviour measured by the L 1,AMR error, which is re-

ated to the choice of the threshold (vertical axis at right). There-

ore, we can estimate roughly the error when choosing the thresh-

ld based on this behaviour. On the left vertical axis, we present

he number of cells. The number of cells in the adaptive mesh in-

reases as the error decreases. Again, we can deduce a rough esti-

ator how to proceed for choosing a certain threshold to obtain a

ertain number of cells based on the desired accuracy. 

.2. Magnetic shock cloud 

This experiment models a disruption of a high-density magnetic

loud by a strong shock wave, as described in [41] . The initial con-

ition of this Riemann problem defines a region of the advancing

lasma – which causes the shock – and a stationary state where

he shock advances. We also define a spherical magnetic cloud as

 high density region, like a plasmoid, in hydrostatic equilibrium

ith the surrounding plasma. 

We compare the performance obtained with the serial

ultiresolution Carmen-MHD code [4,5,42,43] , which is the

rototype solver we had implemented initially during this devel-

pment project. The detailed software design aspects of both soft-

are systems are discussed in [8] . This experiment also provides

he performance of the wavelet patch-based method when dealing

ith high speed flows. 

.2.1. Computational set-up 

The cloud region has its centre at (0.25,0.5,0.5) and radius

 0 = 0 . 15 with density ρ = 10 inside the cloud and ρ = 1 other-

ise. We have adopted outlet boundaries and these regions are

imited by the domain boundaries and a plane parallel to the yz

lane at x = 0 . 05 . The advancing plasma initial condition is given

y ρ = 3 . 86859 , p = 167 . 345 , u x = 11 . 2536 , u y = u z = B x = 0 , B y =
 . 1826182 , and B z = −B y , with a stationary state given by p = 1 ,

 = 0 , B y = B z = 0 . 56418958 . The computational domain is [0, 1] d ,

here d = 2 or 3 respectively stand for the two- and the three-

imensional case. We use the following parameters: CFL ν = 0 . 3 ,

= 5 / 3 , the MR threshold is applied to the pressure variable and

e run the simulations until the final time t e = 0 . 06 . 

.2.2. Numerical results 

For two-dimensional simulations the wavelet-based adaptive

olutions present similar behaviour for both Carmen-MHD and

MROC solvers. Both capture well all the expected relevant phys-

cal structures, especially the bow shock, and moreover the sym-

etry of the solution is almost perfectly preserved. 

Fig. 5 presents pressure solutions and their respective adaptive

eshes at t e for both environments. In the Carmen-MHD code, the

ell-based structure requires many less cells in the representation

han in the patch-based one used in the AMROC framework. At the

nal time t e , AMROC needs 311,612 cells clustered in 528 blocks

ith η = 0 . 99 and Carmen-MHD 40, 329 cells. On the other hand,

e obtain an improvement in CPU time of about 9 times in AM-

OC compared to Carmen-MHD, considering mono-processor runs.

imilar results were obtained for the hydrodynamic Euler solvers

n both environments [8] . 

With the additional parallelisation in the AMROC framework,

he improvement becomes even larger, with a speed-up of 39 us-

ng 16 processors, as reflected in the CPU times in Table 2 . AM-

OC simulations are performed with seven refinement levels over

 base mesh 16 2 , using 2 n processors with n from one to four. We

bserve that in these experiments the maximum AMROC scalabil-

ty is near 1.8 for one to two processors and it reduces to a factor

f around 1.3 for the four and eight processor cases. Considering

ight and sixteen processors, this factor is smaller due to a reduc-

ion of the problem size, as expected. 
Considering the 3D case with computations using one proces-

or and a MR threshold ε = 0 . 01 until time t e , the Carmen-MHD

ode with a corresponding 128 3 refined mesh needs a CPU time

f 16,816 seconds, while AMROC needs only 2,620 s considering a

ase mesh 32 2 , and η = 0 . 80 . Therefore, we achieve a speed-up of

 factor 6. Furthermore, if 60 processors are considered, the speed-

p increases to around 84, as this AMROC computation uses only

01 s, in this case with ε = 0 . 025 and the same η = 0 . 80 . 

Two-dimensional cuts of the pressure solution on the adap-

ive mesh at time t e = 0 . 06 are presented in Fig. 6 (left panel),

or ε = 0 . 025 , η = 0 . 80 , base mesh 32 2 , and corresponding fine

esh 1024 3 . We can again observe that the symmetry is al-

ost perfectly preserved and the adaptive mesh refines all

elevant structures, particularly the bow shock, the front cap, and

he internal structures. Additionally, new features could be de-

eloped in the three-dimensional scenario, especially, in the tail,
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Fig. 6. Adaptation for the 3D magnetic cloud test case at time t e = 0 . 06 . AMROC 

computation related to a uniform mesh 1, 024 3 with base mesh 32 3 , 6 refinement 

levels, ε = 0 . 025 , and η = 0 . 80 . Left column: 2D cuts of pressure in different planes 

( y − z plane at x = 0 . 5 , x − z plane with y = 0 . 5 , and x − y plane with z = 0 . 5 ). Right 

column: Refinement levels, dark blue is the maximum refinement level L . In all pan- 

els, the orientations of the axes are according to the right-hand rule. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Processor distribution for the 3D magnetic cloud test case at time t e = 0 . 06 . 

AMROC computation related to a uniform mesh 1, 024 3 with ε = 0 . 025 and 60 pro- 

cessors. 2D cuts in different planes ( y − z plane at x = 0 . 5 , and x − y plane with 

z = 0 . 5 ). Colours indicate the data distribution in the processors at the cuts. 
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and in front of the cloudy structure. Conjointly, the mesh adapta-

tion at time t e = 0 . 06 fits very well the main features of the so-

lution ( Fig. 6 , right panel). Furthermore, the adaptive mesh dis-

tribution is well balanced considering the difference in computa-

tional costs required by the adaptive meshes ( Fig. 6 , right panel),

as it can be observed in the 2D cuts in Fig. 7 . The processor dis-

tribution (not shown) of the x − z plane presents similar results as

for the x − y plane. Using Table 3 , we show the 3D performance

of AMROC related to three corresponding locally refined meshes,

and 60 processors (distributed on 3 nodes) at time t e = 0 . 06 . We

observe that the adaptation rises proportionally with the mesh

size as we expand the corresponding refined mesh by a factor of

two. Basically, a factor of 10 increases the CPU time as we ex-

pand by a factor 2 3 the fully refined mesh. However, the effective

number of cells on the adaptive mesh growths only by a factor

of 5. 

5. Conclusions 

We presented and benchmarked a parallel solver with dy-

namic mesh adaptation for magnetohydrodynamics, implemented

into the MPI-parallel distributed memory framework AMROC. The
 0
LM-MHD model is discretised using finite volumes in two- and

hree-dimensional Cartesian geometries with explicit time integra-

ion. MR criteria are employed for triggering the mesh refinement.

e considered two classical MHD benchmarks, the Orszag–Tong

ortex and the magnetic shock cloud configuration. The accuracy

nd CPU time of the developed code were assessed and paralleli-

ation issues including load balancing were analysed. We showed

hat in comparison with the scaled gradient criterion the new

R implementation yields much better results in terms of accu-

acy and memory compression. Moreover, our implementation pre-

ented a significant improvement compared to its MR-MHD base

erial code. 

This improvement is in agreement with the conclusions drawn

n [8] for hydrodynamic problems where the total CPU time was

he primary concern and it was found that patch-based hierar-

hical data structures yield a better choice. These data structures

reserve some memory coherence on the computing data and us-

ng auxiliary data avoids repeated generation of topological and

umerical procedures. However, this advantage comes at the cost

f a more complex implementation. Yet, by using AMROC, in-

luding the verified patch-based AMR algorithm implementation

lus parallelisation [10] , and incorporating the MHD-GLM method

s a patch integrator and implementing MR mesh adaptation as

 refinement criterion, a performance enhanced two- and three-

imensional adaptive parallel MHD solver based on multiresolution

rinciples has been realised in minimal time. 
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