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a b s t r a c t 

Dynamic mesh adaptation methods require suitable refinement indicators. In the absence of a compre- 

hensive error estimation theory, adaptive mesh refinement (AMR) for nonlinear hyperbolic conservation 

laws, e.g. compressible Euler equations, in practice utilizes mainly heuristic smoothness indicators like 

combinations of scaled gradient criteria. As an alternative, we describe in detail an easy to implement 

and computationally inexpensive criterion built on a two-level wavelet transform that applies projec- 

tion and prediction operators from multiresolution analysis. The core idea is the use of the amplitude 

of the wavelet coefficients as smoothness indicator, as it can be related to the local regularity of the so- 

lution. Implemented within the fully parallelized and structured adaptive mesh refinement (SAMR) soft- 

ware system AMROC (Adaptive Mesh Refinement in Object-oriented C++), the proposed criterion is tested 

and comprehensively compared to results obtained by applying the scaled gradient approach. A rigorous 

quantification technique in terms of numerical adaptation error versus used finite volume cells is devel- 

oped and applied to study typical two- and three-dimensional problems from compressible gas dynamics. 

It is found that the proposed multiresolution approach is considerably more efficient and also identifies –

besides discontinuous shock and contact waves – in particular smooth rarefaction waves and their inter- 

action as well as small-scale disturbances much more reliably. Aside from pathological cases consisting 

solely of planar shock waves, the majority of realistic cases show reductions in the number of used finite 

volume cells between 20 to 40%, while the numerical error remains basically unaltered. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the numerical simulation of inviscid compressible gas dy-

amics, dynamic mesh adaptation based on flow features, espe-

ially shock waves and contact discontinuities, can reduce the

omputing time significantly, while preserving high accuracy of the

umerical solutions. A recent benchmark of mesh adaptation tech-

iques for the Euler equations on Cartesian meshes is given in [1] .

 core finding of this work was that the wavelet-based multires-

lution mesh adaptation approach, which is mathematically rigor-

us, leads to a more reliable mesh adaptation; yet, the block-based

daptation approach – thanks to very effective data structures –
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educes the overall computing time drastically. Hence, we decided

o combine both techniques into a single parallel computer code. 

Multiresolution (MR) analysis, introduced by Mallat and Meyer

2–4] , is intimately related to the theory of discrete wavelets and

he development of the fast wavelet transform. Thus wavelet bases

an be constructed which have some specific desired proprieties,

ike, for instance, (bi-)orthogonality, compact support, local regu-

arity detection and norm equivalences. The idea of multiresolution

nalysis is to represent a function, or a flow field, at different reso-

ution levels, which yield corresponding approximations with a fi-

ite number of mesh points. The approximation spaces are nested

nd can be generated by refinable functions. Wavelets then come

nto play when considering the difference between subsequent res-

lution levels. Computing the differences from the finest down to

he coarsest resolution transforms a single-level representation of a

unction into a multiresolution representation. Mathematical tools

rom approximation theory allow to define adaptive (also called
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u  
nonlinear ) approximations of functions selecting only the most sig-

nificant coefficients of their series representation. Such approxi-

mations are attractive as they reduce the number of coefficients

and in addition provide rigorous estimations of the error to repre-

sent the function discretely, cf [5] . Since the late1980 ′ s such mul-

tiresolution representations have become very popular in a wide

range of applications for data compression, de-noising and more

recently also in adaptive computations of nonlinear partial differ-

ential equations (PDE). A key feature is suitable thresholding of the

wavelet coefficients combined with an adaptation strategy to pre-

dict the set of active wavelet coefficients, which thus allows re-

ducing the computational cost in terms of CPU time and memory

requirements. 

A detailed review of the literature using MR techniques for

adaptive discretizations of PDEs is beyond the scope of the paper

and we refer the interested reader for instance to [6–8] . A first

application of MR techniques to PDEs was given by Harten who

introduced MR analysis as an indicator to control the switch be-

tween cheap and expensive numerical fluxes on static fully refined

grids [9] . Later on, these ideas were also applied to trigger local

grid adaptation for hyperbolic conservation laws with the objective

of automatic approximation error control and CPU time reductions.

Harten’s contributions were considered as seminal in this area too,

with numerous theoretical and practical works carried out in order

to verify the properties and efficiency of that approach, and also its

extension to higher dimensions, cf [10–12] . In the context of Uncer-

tainty Quantification (UQ) for compressible flows MR techniques

have been used in [13] . The main components of Harten’s method

is that the designed MR tool has two local operators to perform

the wavelet transform, namely prediction and projection. These lo-

cal operators can be combined to generate the so-called wavelet

coefficients , which encode the information needed to go from a

coarse to a finer resolution. The amplitudes of the wavelet coef-

ficients can be used as local regularity indicators of the numerical

solution. In regions where their amplitudes are small, the solution

is smooth, while in regions where the amplitudes are large, the

solution needs finer resolution. Hence, the wavelet coefficients are

the basis of a natural refinement indicator and could also be used

for mesh coarsening, if required by the adaptation approach. 

In the context of discontinuous Galerkin (DG) methods mul-

tiresolution techniques have also been developed for grid adapta-

tion in numerous works, for instance [14–16] . For high-order DG

discretizations multi-wavelets have been introduced for grid adap-

tation, which allow for higher-order vanishing moments, while

maintaining local support. Applications of adaptive simulations

have been presented by Gerhard et al. for compressible flows [17] . 

In the framework of semi-Lagrangian methods, multiresolu-

tion analysis has been developed for triggering adaptive meshes

for vortex methods by Rossinelli et al. [18] , including local time

stepping. A multi-code implementation for computing incompress-

ible viscous flows in two space dimensions has been proposed in

the open source package MRAG-I2D [18] . More recently, Tanaka

et al. [19] enhanced a moving particle semi-implicit method using

multiresolution tools and presented verification tests for channel

and free surface flows. 

In our work [1] , a serial two- and three-dimensional implemen-

tation of MR smoothness detection in the cell-based finite volume

code Carmen was compared with the scaled gradient (SG) refine-

ment criterion, as implemented in the AMROC (Adaptive Mesh Re-

finement in Object-oriented C++) framework [20] . Note that AM-

ROC uses a block-structured adaptive mesh refinement approach,

while Carmen refines individual cells. In addition, the employed

numerical fluxes and time integration strategies – while similar

– were not exactly identical. Hence, a direct comparison of re-

finement criteria in terms of numerical error and run-time per-

formance was complicated as not only slightly different finite vol-
me base schemes but also two different refinement algorithms on

astly different data structures were involved. Also, AMROC is fully

arallelized, while the cell-based Carmen code was available in a

erial version only, thereby restricting the comparison to smaller

onfigurations. Still, the main results indicated that the MR ap-

roach presents a better localization of the adaptive solution, while

he AMROC framework was roughly ten times faster than the Car-

en code. 

This motivated incorporation of the MR strategy as a refinement

pproach into AMROC [21] . The aim of the current work is to use

ne framework only, and to this end the multiresolution approach

as been implemented into AMROC as a criterion for mesh re-

nement. Moreover, the fully parallel version of AMROC has been

sed together with block-based grids with hierarchical time step

eduction. The underlying finite volume discretization of the SAMR

nd MR computations is now always identical and allows to as-

ess the relative performance of scaled gradients and multiresolu-

ion based mesh refinement. Then, here, we use the new software

ystem to report about the first comprehensive assessment of the

R approach for various adaptive shock-capturing schemes for Eu-

er equations of compressible gas dynamics that have been previ-

usly implemented in AMROC [20] . 

The paper is organized as follows: Section 2 sketches the prin-

iples of SAMR for the Euler equations, its implementation in the

MROC framework, and especially details the different refinement

ndicators that are evaluated in this work. Then, a large set of two-

s well as three-dimensional numerical experiments are presented

n Section 3 ; conclusions and perspectives of this study are drawn

n Section 4 . In Appendix A a detailed description of the multireso-

ution approach for finite volumes is given; Appendix B lists initial

onditions of Section 3. 

. Structured adaptive mesh refinement 

.1. Governing equations for compressible gas dynamics 

In the solution of nonlinear hyperbolic partial differential equa-

ions, ∂ t q + ∇ · f (q ) = 0 , a multitude of length scales is ubiquitous.

t is well established that for nonlinear flux functions f ( q ) even

ontinuous initial data can develop into discontinuities over a fi-

ite time interval [22] . Here, we consider the three-dimensional

ompressible Euler equations written in conservation form with

ux function f = ( f 1 , f 2 , f 3 ) 
T given by 

f 1 = 

⎡ ⎢ ⎢ ⎣ 

ρv 1 
ρv 2 1 + p 
ρv 1 v 2 
ρv 1 v 3 

(ρE + p) v 1 

⎤ ⎥ ⎥ ⎦ 

, f 2 = 

⎡ ⎢ ⎢ ⎣ 

ρv 2 
ρv 1 v 2 

ρv 2 2 + p 
ρv 2 v 3 

(ρE + p) v 2 

⎤ ⎥ ⎥ ⎦ 

, f 3 = 

⎡ ⎢ ⎢ ⎣ 

ρv 3 
ρv 1 v 3 
ρv 2 v 3 

ρv 2 3 + p 
(ρE + p) v 3 

⎤ ⎥ ⎥ ⎦ 

, 

ith ρ denoting the fluid density, v i are the components of the

elocity vector and E is the energy per unit mass. The hydrody-

amic pressure p for a perfect gas is given by the equation of

tate p = ( γ − 1 ) ρ
(

E − v 2 

2 

)
, with γ denoting the specific heat ra-

io. In the case of Euler equations discontinuous shock and contact

aves can develop. Finite volume shock-capturing methods have

een constructed to handle particularly this behavior in a robust

nd oscillation-free way [23] . Since in practical inviscid problems

uch discontinuities are usually very localized, a local increase of

esh resolution is beneficial to represent these jumps as accu-

ately as possible. 

.2. Block-structured adaptive mesh refinement in AMROC 

A particular important mesh adaptation approach for finite vol-

me methods of hyperbolic conservation laws is the SAMR method



R. Deiterding, M.O. Domingues and K. Schneider / Computers and Fluids 205 (2020) 104583 3 

Fig. 1. Hierarchy of rectangular sub-meshes in the SAMR approach. 
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Algorithm 1 Recursive AMR algorithm. 

AdvanceLevel( � ) 
Repeat r � times 
Set ghost cells of Q 

� (t) 
If time to regrid 
Regrid( � ) 

UpdateLevel( � ) 
If level � + 1 exists 
Set ghost cells of Q 

� (t + �t � ) 
AdvanceLevel( � + 1 ) 
Average Q 

� +1 (t + �t � ) onto 
Q 

� (t + �t � ) 
Correct Q 

� (t + �t � ) with δF 

n,� +1 

t := t + �t � 

s  

�

 

(  

a  

Q  
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fter Berger and Collela [24–26] . This approach follows a patch-

riented strategy, where non-overlapping rectangular sub-meshes

 � , m 

are employed to cover the domain G � of each level with index

 = 0 , . . . , L as G � := 

⋃ M � 

m =1 
G �,m 

. As the construction of refinement

roceeds recursively, a hierarchy of sub-meshes, successively con-

ained within the next coarser level domain, is created, cf. Fig. 1 .

alues of cells covered by finer sub-meshes are subsequently over-

ritten by averaged fine mesh values, which, in general, would

ead to a loss of conservation on the coarser mesh. A remedy to

his problem is to replace the coarse mesh numerical fluxes at re-

nement boundaries with the sum of fine mesh fluxes along the

orresponding coarse cell boundary, cf. [20,25] . 

The recursive nature of the algorithm allows only the addi-

ion of one new level in each refinement operation. The patch-

ased approach does not require special coarsening operations;

ub-meshes are simply removed from the hierarchy. The coarsest

ossible resolution is thereby restricted to the level � = 0 mesh. The

esolution �x n ,0 and �t 0 of the mesh at � = 0 is specified by the

ser. In AMROC and most other SAMR implementations, all mesh

idths on level � are r � -times finer than on the level � −1 , i.e.

t � = �t � −1 /r � and �x n,� = �x n,� −1 /r � , with r � ∈ N , r � ≥ 2 for � > 0,

hich ensures that a time-explicit finite volume (FV) scheme re-

ains stable under a CFL-type condition on all levels of the hier-

rchy. 

Although AMROC allows arbitrary refinement factors, in order

o stay within the framework of traditional multiresolution anal-

sis, all computations in this paper use dyadic grids with r � = 2

eing used for the refinement of all levels. 

The numerical update is applied on the level � by calling a

ingle-block routine implementing the FV scheme in a loop over all

ub-meshes G � , m 

. The regularity of the input data allows a straight-

orward implementation of the scheme and further permits op-

imization to take advantage of high-level caches, pipelining, etc.

ew refinement meshes are initialized by interpolating the vector

f conservative quantities Q from the next coarser level; data in

ells already refined are copied directly from the previous refine-

ent patches. Ghost cells around each patch are used to decou-

le the sub-meshes computationally. The execution of the numer-

cal loop in UpdateLevel() in Algorithm 1 requires the previ-

us setting of the ghost cell values. Ghost cells outside of the root

omain G 0 are used to implement physical boundary conditions.

host cells in G � have a unique interior cell analogue and are set

y copying the data value from the patch where the interior cell

s contained (synchronization). For � > 0, internal boundaries can

lso be used. If recursive time step refinement is employed, ghost

ells at the internal refinement boundaries on the level � are set by

ime-space interpolation from the two previously calculated time
teps of level � −1 . Otherwise, spatial interpolation from the level

 −1 is sufficient. 

Besides data structures that store the topology of the hierarchy

cf. Fig. 1 ), the SAMR method requires at most two regular arrays

ssigned to each subgrid which contain the discrete vector of state

 for the actual and updated time step. In the Algorithms 1 and

 we denote by Q 

� ( t ) and Q 

� (t + �t � ) the unions of these arrays

lgorithm 2 Regridding procedure. 

egrid( � ) 
For ι = � c Downto l Do 
Flag N 

ι according to Q 

ι(t) 

Generate Ğ ι+1 from N 

ι

Ensure nesting of Ğ � +1 , . . . , Ğ � c +1 

For ι = � + 1 To � c + 1 Do 
Create Q̆ 

ι(t) from Ğ ι

Interpolate Q 

ι−1 (t) onto Q̆ 

ι(t) 

Copy Q 

ι(t) onto Q̆ 

ι(t) 

Set ghost cells of Q̆ 

ι(t) 

Q 

ι(t) := Q̆ 

ι(t) 

n level � . The edge- or face-centered flux correction terms δF n,� +1 

ave to be stored along the boundaries, where a level � > 0 abuts

he next coarser level. Initialization and calculation of the correc-

ion terms can be done efficiently during the loop over all subgrids

n UpdateLevel() . The numerical fluxes F n are necessary only

emporarily. 

New refinement grids on all higher levels are created when

egrid( � ) is called in Algorithm 1 . Level � itself is not modi-

ed. To consider the nesting of the level domains already in the

rid generation, Algorithm 2 starts at the highest refinable level � c ,

here 0 ≤ � c < L . The refinement flags are stored in grid-based inte-

er arrays N 

ι. Central to the block-structured mesh refinement ap-

roach is the utilization of a dedicated algorithm to create blocks

rom individual cells tagged for refinement by any of the criteria

escribed in the next section. We use a recursive algorithm pro-

osed by Bell et al. [27] to create a new block refinement Ğ ι+1 on

asis of N 

ι. This method, inspired by techniques used in image de-

ection, counts the number of flagged cells in each row and col-

mn on the entire domain. The sums ϒ are called signatures . First,

uts into new boxes are placed on all edges where ϒ is equal to

ero. In the second step, cuts are placed at zero crossings of the

iscrete second derivative � = ϒν+1 − 2 ϒν + ϒν−1 . The algorithm

tarts with the steepest zero crossing and uses recursively weaker

nes, until the ratio between flagged and all cells in every new
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Fig. 2. Signatures and second derivatives used for clustering. 
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mesh is above the prescribed threshold value 0 < η ≤ 1. In practice,

values around η = 0 . 80 are used. A buffer zone of one or two cells

is usually added around tagged cells to avoid degradation of results

from interpolation. A depiction of the signatures, second deriva-

tives and resulting blocks is given in Fig. 2 . The upper index to ϒ

and � indicates the respective step of the recursive block genera-

tion procedure. 

The re-initialization of the hierarchical data structures is done

in the second loop of Algorithm 2 utilizing auxiliary data Q̆ 

ι(t) .

Cells in newly refined regions Ğ ι\ G ι are initialized by interpola-

tion, values of cells in Ğ ι ∩ G ι are copied. As interpolation requires

the previous synchronized reorganization of Q 

ι−1 (t) , recomposi-

tion starts on level � + 1 . 

Our AMROC framework [20,28] implements the SAMR method

discretization-independent in one to three space dimensions and is

fully parallelized for distributed memory systems. A rigorous do-

main decomposition strategy is pursued, in which the workload

from all refinement levels is projected onto the level-0 cells be-

fore partitioning. The updated roughly load balancing distribution

is then computed for level 0 only and all higher level subgrids

are possibly split, redistributed across the parallel machine, and

merged where possible, based on the new level-0 partition [29] .

During repartitioning, all inter-processor communication patterns

are updated. Overlapping ghost-cell regions of neighboring patch

blocks are synchronized over processor borders as boundary condi-

tions are applied using a single non-blocking MPI-library-call with

all the ghost cell data between two respective processors. In AM-

ROC, a generalized Hilbert space filling curve algorithm is used

for load-balanced SAMR data distribution. On adaptive Cartesian

meshes, space filling curves provide an effective com promise be-

tween the competing partitioning requirements of balancing the

estimated workload and reducing the partition surface area for

parallel ghost cell synchronization. Space filling curves are also lo-

cality preserving and hence induce only moderate data redistribu-

tion costs as the adaptive mesh is evolving. The present version of

AMROC achieves close to linear scalability in dynamically adaptive

3d simulations on O (10 0 0) processors. 
.3. Standard refinement criteria 

In adaptive mesh refinement methods typically scaled gradient

nd heuristic error estimations are used. For example adaptation

long discontinuities can be easily achieved by evaluating gradients

ultiplied by the step size in all spatial directions. For the sake of

larity we restrict the subsequent description to mainly two space

imensions and thereby flag a cell ( i, j ) for refinement if at least

ne of the relations 

 w (Q i +1 , j ) − w (Q i, j ) | > εw , | w (Q i, j+1 ) − w (Q i, j ) | > εw , 

 w (Q i +1 , j+1 ) − w (Q i, j ) | > εw 

(1)

s satisfied for a scalar quantity w , which is derived from the vector

f state Q 

� ( t ) on level � . The constant εw denotes the prescribed

efinement threshold. 

As an alternative to scaled gradients, AMROC also supports

euristic error estimation by Richardson extrapolation as suggested

riginally by Berger and Oliger [24] . In this technique, the current

olution is integrated forward tentatively by one time step with

t � and coarsened by a factor of 2. Simultaneously, the solution

rom the previous time step is coarsened also by a factor of 2 and

ntegrated one time step with 2 �t � . After this, the local error es-

imation of the scalar quantity w is computed, where for actual

pplications a normalized version of that error with a prescribed

olerance needs to be employed [28] . The error estimation tech-

ique is intended as a refinement indicator in regions where the

olution is smooth and in practice it is generally combined with a

caled gradient criterion, e.g., to capture the shock waves [20] . 

While implementing Richardson extrapolation in an adaptive

ode is rather complex, already our early quantitative comparisons

f criteria, cf [21] ., uncovered significant deficiencies of the Richard-

on error estimation technique in detecting smooth structures in

blique directions to the Cartesian mesh. As a result, Richardson

stimation was found to be a dramatically less efficient adaptation

riterion, even for problems with smooth solution, than the scaled

radient approach. Hence it is not considered here any further. 

.4. Multiresolution as a refinement criterion 

As explained above, the underlying idea of multiresolution tech-

iques for mesh adaptation in numerical schemes is based on

epresenting the numerical solution on different resolution lev-

ls. Compression of the number of mesh points, corresponding to

oarsening the mesh locally, can be obtained by checking what

appens between subsequent mesh resolutions [6–8] . 

We consider a discrete solution of a FV discretization as initial

ell average data Q 

� +1 at level � + 1 . The principle of the cell aver-

ge MR methods is the transformation of these data Q 

� +1 into an

quivalent multiscale representation. For instance, in one decom-

osition level we have 

here the set d 

� +1 contains the information between the two con-

ecutive levels � and � + 1 , and Q 

� stores a smoothed version of

he original numerical solution Q 

� +1 . The data at the highest reso-

ution level are transformed into a set of coarser scale approxima-

ions plus a series of prediction errors corresponding to wavelet

oefficients d 

� . These coefficients describe the information differ-

nce between subsequent resolutions. In order to perform the MR

ethod with finite volume data, operations for projection and pre-

iction are required, where the cell values are local averages. These

ocal averages correspond in the wavelet language to the scaling

unctions using the Haar basis (cf. Appendix A ). 

A coarser cell 
� 
i, j 

has its value estimated using the finer level

alues and a unique projection operator P � +1 → � : Q 

� +1 
→ Q 

� . For
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he two-dimensional case [30] , the projection is performed by 

 

� 
i, j = 

1 

4 

(
Q 

� +1 
2 i, 2 j 

+ Q 

� +1 
2 i, 2 j+1 

+ Q 

� +1 
2 i +1 , 2 j 

+ Q 

� +1 
2 i +1 , 2 j+1 

)
, (2) 

here Q 

� 
i, j 

is the average value of the cell 
� 
i, j 

. Conversely, the pre-

iction operators P � → � +1 
i, j 

: Q 

� 
→ Q 

� +1 yield a non-unique approx-

mation of Q 

� +1 
i, j 

by interpolation. Following the line of argumen-

ation of Appendix A , the two-dimensional operators using tensor

roducts for m, n ∈ {0, 1} read ̂ Q 

� +1 
2 i + m, 2 j+ n = Q 

� 
i, j 

+ 

1 
8 

[
(−1) m 

(
Q 

� 
i +1 , j 

− Q 

� 
i −1 , j 

)
+ (−1) n 

(
Q 

� 
i, j+1 

− Q 

� 
i, j−1 

)]
+ 

1 
64 

[
(−1) mn 

(
Q 

� 
i +1 , j+1 

− Q 

� 
i +1 , j−1 

− Q 

� 
i −1 , j+1 

+ Q 

� 
i −1 , j−1 

)]
, 

(3) 

here the cell ̂ Q 

� +1 
i, j 

is an approximation of the value Q 

� 
i, j 

and its

ight nearest cells Q 

� 
i ±1 , j±1 

. With this choice, the operators satisfy

he properties of locality and consistency. 

Following Eq. (A.9) , the prediction operator is used to obtain

he wavelet coefficients d 

� +1 
2 i, 2 j+1 

, d 

� +1 
2 i +1 , 2 j 

and d 

� +1 
2 i +1 , 2 j+1 

, of the finer

ells. The coefficients are given by the approximation error of the

rediction operator as 

d 

� +1 
2 i, 2 j+1 

= Q 

� +1 
2 i, 2 j+1 

− ̂ Q 

� +1 
2 i, 2 j+1 

, d 

� +1 
2 i +1 , 2 j 

= Q 

� +1 
2 i +1 , 2 j 

− ̂ Q 

� +1 
2 i +1 , 2 j 

, 

 

� +1 
2 i +1 , 2 j+1 

= Q 

� +1 
2 i +1 , 2 j+1 

− ̂ Q 

� +1 
2 i +1 , 2 j+1 

. (4) 

rom wavelet theory it is known that the decay of the wavelet

oefficients also estimates the local regularity of a function, and

n our case, of the computed numerical solution [10] . Hence, it is

atural to utilize the wavelet coefficients to determine dynamic re-

nement as they indicate regions of steep gradients or discontinu-

ties. Since the objective of a refinement indicator is the creation

f level � + 1 from level � , the criterion needs to be evaluated on

 and we thereby have to shift Eq. (4) one level downward. Conse-

uently, ̂ Q 

� 
i, j 

is obtained as the averaged projection onto the next

oarser level � − 1 , which is interpolated again back onto level � ,

.e., we evaluate the wavelet coefficients d 

� 
i, j 

= Q 

� 
i, j 

− ̂ Q 

� 
i, j 

in fact as

 

� 
i, j = Q 

� 
i, j − P � −1 → � 

0 / 1 P � → � −1 (Q 

� 
i, j ) . (5)

Comparing a suitable norm of the local wavelet coefficient with

 user-specified regularity threshold, | d 

� 
i, j 

| > ε, then marks cells at

evel � for refinement at the next finer level. 

Based on the considered norm for the error estimate and de-

ending on the space dimensions, there are different possible

hoices for the threshold, which allow identifying the retained

arge wavelet coefficients. In the context of finite volumes, in order

o control the L 1 -norm, Harten’s thresholding strategy is primarily

sed, i.e, 

� = 

ε

| 
| 2 

d ( � +1 −L ) , 0 ≤ � < L, (6)

here L is the finest scale level, the dimension parameter d = 2 or

 according to the dimension used, and | 
| is the cell area. It is

lso possible to use a constant threshold value ε for all levels. For

nstance, in [31] it was found that for multiresolution techniques

pplied for UQ using a truncation and encode approach threshold-

ng with constant values could be more efficient than the level de-

endent choice, proposed by Harten [32] . In the context of adap-

ive stochastic problems Abgrall et al. [33] used however a level

ependent threshold. In Domingues et al. [34] we analyzed the

hoice of the threshold for the compressible Euler equations and

ound that level (and dimension) dependent values yield better re-

ults considering the MR category that combines a time adaptive

trategy with a controlled time-stepping. 

In some of the numerical experiments we use different thresh-

ld values to verify the influence of the perturbation error. In prac-
ical applications the threshold should be chosen such that pertur-

ation (thresholding) and discretization errors are of the same or-

er. One possible option for determining the order of the threshold

alue is to perform a series of computations on a coarser mesh.

or linear advection and advection-diffusion equations a theoret-

cal error estimate has been provided in [12,35] , however a con-

tant needs to be estimated which also requires test computations,

s discussed in [12] . 

While it seems natural to use a vector norm, e.g., the Euclidean

orm, to compute | d 

� 
i, j 

| for the entire state vector in each cell, this

sually requires very careful rescaling to ensure an equal consider-

tion of all vector components in the refinement indicator. In prac-

ice, the application of multiple scalar refinement indicators with

ndividual threshold values is generally easier to use. Since all flow

eatures inherent to the Euler equations can be well detected in

he density field, we have opted in this investigation to apply the

ew multiresolution criterion as well as the scalar gradient crite-

ion to ρ only. Just the benchmark of Section 3.3 used scalar crite-

ia for ρ and p in combination. 

The extension of the described criterion to three space dimen-

ions is done in a canonical manner. First, the projection opera-

ion P � +1 → � is formulated as the algebraic average of eight fine

rid cells. Secondly, the interpolation operations P � → � +1 
i, j,k 

: Q 

� 
→
 

� +1 are constructed as tensor products. For the computations

f Section 3.3 we have used the polynomial prediction operators

iven in [12] , which reads for m, n, p ∈ {0, 1} 

̂ Q 

� +1 
2 i + m, 2 j+ n, 2 k + p = Q 

� 
i, j,k 

+ 

1 
8 

[
(−1) m 

(
Q 

� 
i +1 , j,k 

− Q 

� 
i −1 , j,k 

)
+ (−1) n 

(
Q 

� 
i, j+1 ,k 

− Q 

� 
i, j−1 ,k 

)
+ (−1) p 

(
Q 

� 
i, j,k +1 

− Q 

� 
i, j,k −1 

)]
+ 

1 
64 

[
(−1) mn 

(
Q 

� 
i +1 , j+1 ,k 

− Q 

� 
i +1 , j−1 ,k 

− Q 

� 
i −1 , j+1 ,k 

+ Q 

� 
i −1 , j−1 ,k 

)
(−1) np 

(
Q 

� 
i, j+1 ,k +1 

− Q 

� 
i, j−1 ,k +1 

− Q 

� 
i, j+1 ,k −1 

+ Q 

� 
i, j−1 ,k −1 

)
(−1) mp 

(
Q 

� 
i +1 , j,k +1 

− Q 

� 
i −1 , j,k +1 

− Q 

� 
i +1 , j,k −1 

+ Q 

� 
i −1 , j,k −1 

)]
+ 

1 
512 

[
Q 

� 
i +1 , j+1 ,k +1 

− Q 

� 
i +1 , j+1 ,k −1 

− Q 

� 
i +1 , j−1 ,k +1 

− Q 

� 
i −1 , j+1 ,k +1 

+ 

Q 

� 
i +1 , j−1 ,k −1 

+ Q 

� 
i −1 , j+1 ,k −1 

+ Q 

� 
i −1 , j−1 ,k +1 

− Q 

� 
i −1 , j−1 ,k −1 

]
. 

(7) 

inally, the extension of Eq. (5) to three dimensions defines seven

avelet coefficients 

d 

� +1 
2 i, 2 j+1 , 2 k 

= Q 

� +1 
2 i, 2 j+1 , 2 k 

− ̂ Q 

� +1 
2 i, 2 j+1 , 2 k 

, 

d 

� +1 
2 i +1 , 2 j, 2 k 

= Q 

� +1 
2 i +1 , 2 j, 2 k 

− ̂ Q 

� +1 
2 i +1 , 2 j, 2 k 

, 

. . . 

 

� +1 
2 i +1 , 2 j+1 , 2 k +1 

= Q 

� +1 
2 i +1 , 2 j+1 , 2 k +1 

− ̂ Q 

� +1 
2 i +1 , 2 j+1 , 2 k +1 

. (8) 

In AMROC, we compute the dimension-dependent version of

q. (5) on a per-block basis using temporary auxiliary data coars-

ned by a factor of two. It is apparent that all computations are

trictly local and thereby no additional parallelization effort or

enalty is involved. 

.5. Evaluation of the adaptation error 

In order to compare different refinement criteria quantitatively,

t is necessary to evaluate the numerical error of an adaptive com-

utation with respect to the error of the same computation on a

niform mesh of the same maximal resolution. Here, we evaluate

he numerical error primarily in the discrete L 1 norm, which is in-

roduced for the error on level � on a level-wise domain G � as 

 1 (Q 

� , G � ) = 

∑ 

i, j 

| Q 

� 
i, j − q (x i , y j ) | �x � �y � , (9)

ith q ( x i , y j ) and i, j ∈ Z denoting the exact solution evaluated

oint-wise in the respective cell centers of a two-dimensional
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Cartesian grid. If the entire problem domain – that is G 0 in the

SAMR approach – is refined at the maximal level L , we obtain the

conventional numerical error of the numerical method on a uni-

form mesh with resolutions �x L and �y L , 

L 1 ,uni (Q 

L , G 0 ) = 

∑ 

i, j 

| Q 

L 
i, j − q (x i , y j ) | �x L �y L , (10)

which we denote just by L 1, uni ( Q ). In the adaptive case, however,

the error on G 0 is given as the sum of the L 1 -errors computed on

those parts of G � that have no higher refinement, that is, 

L 1 (Q ) = L 1 (Q 

L , G L ) + 

L −1 ∑ 

� =0 

L 1 (Q 

� , G � \ G � +1 ) . (11)

In addition, we introduce the level-wise adaptation error L 1, AMR ( Q 

� ,

G � ) that is defined as 

L 1 ,AMR (Q 

� , G � ) = 

∑ 

i, j 

| Q 

� 
i, j − Q 

r 
i, j | �x � �y � , (12)

where Q 

r 
i, j 

corresponds to a solution computed on a uniform mesh

with step sizes corresponding to the finest adaptive resolution at

level L and averaged onto the actual level � , in case its resolu-

tion is coarser. Finally, the adaptation error on the entire domain,

L 1, AMR ( Q ), is defined from Eq. (12) in analogy to L 1 ( Q ) from Eq. (11) .

In these notations, obviously the relation 

L 1 (Q ) ≤ L 1 ,AMR (Q ) + L 1 ,uni (Q ) (13)

holds true, yielding 

L 1 (Q ) − L 1 ,uni (Q ) ≤ L 1 ,AMR (Q ) . (14)

Since L 1, uni ( Q ) is the error of the finite volume scheme itself and in-

dependent of any mesh refinement procedure, i.e. a constant when

varying the refinement criterion, monotone behavior in L 1, AMR ( Q )

will equally be preserved in L 1 ( Q ). 

In the following we will use primarily L 
ρ
1 ,AMR 

:= L 1 ,AMR (ρ) to

measure the accuracy and suitability of dynamically generated re-

finement at a defined point in simulated time. The solution on the

adapted mesh is compared to a reference solution computed at

the maximal resolution following (12) , where ρr on coarser levels

is generated from the density field of the uniform reference solu-

tion by simple averaging of higher level cell values, Eq. (2) , as it is

consistent with the finite volume approach. A post-processing tool

has been written to carry out the required norm calculations using

only AMROC output files. 

3. Computational experiments 

3.1. Moving GAUSSIAN bump 

In order to demonstrate the quantitative analysis approach, we

first consider a simple two-dimensional test case with analytic so-

lution. A Gaussian bump in density is advected with constant ve-

locity and at constant pressure along the diagonal x 1 = x 2 . Periodic

boundary conditions are used, which ensures that after exactly one

propagation period, the exact solution does agree identically with

the initial conditions, allowing easy evaluation of error norms. Fur-

ther, this smooth test case will retain the maximal order of accu-

racy of any FV scheme, while the varying gradients of the solution

lead to distinctively different adaptation patterns when the mesh

refinement indicator is varied. The initial conditions read 

ρ(x 1 , x 2 ) = 1 + exp 

(
−x 2 1 + x 2 2 

R 

2 

)
(15)

with R = 1 / 4 and v 1 = v 2 ≡ 1 , p ≡ 1. The domain size is [ −1 , 1] ×
[ −1 , 1] with periodic boundary conditions at all sides and the

result is analyzed for a final time of t = 2 . A base mesh of
end 
0 × 80 is used and three additional levels all refined by a fac-

or 2 are applied. The used finite volume scheme is the van Leer

ux-vector splitting within a second-order-accurate MUSCL slope-

imiting method combined with dimensional splitting. See [36] for

etails on these numerical techniques. The clustering efficiency is

lways η = 0 . 95 . 

In Fig. 3 , we present the final refinement regions (depicted by

ray scales) created by the scaled gradient criterion and the MR

riterion applied in ρ only with and without hierarchical thresh-

ld for an error L 
ρ
1 

≈ 0 . 44 · 10 −3 and 3 · 10 −5 < L 
ρ
1 ,AMR 

< 6 · 10 −5 in

ll three cases. Fig. 4 visualizes the total cell count of the computa-

ions from Fig. 3 over time. Despite yielding a slightly larger error,

he SG computation uses a larger cell number of cells effectively

hroughout the entire computation. For all three cases the number

f cells in general increases throughout the computation, which is

ue to the Gaussian bump spreading from the numerical diffusion

f the scheme and the mesh adapting accordingly. The MR crite-

ia exhibit marginally larger variations in cell count than the SG

alculation; however, all criteria provide reliable and stable mesh

daptation. It is interesting to note that the MR criteria create a

onsiderable smaller higher level refinement based on the initial

onditions. For these criteria, the cell count at level 2 plateaus af-

er one to two level-0 time steps and remains roughly constant on

evel 3 only after the fourth level-0 time step. 

Figs. 5 and 6 plot the L 
ρ
1 

and L 
ρ
1 ,AMR 

errors respectively, for the

efinement criteria applied to the density as the threshold value

s varied. Displayed are the number of the cells on the finest level

ersus the error, as a measure for efficiency of the used refinement.

he two figures show that the MR criteria are more efficient than

he scaled gradient criterion, as the MR curves are always below

he respective scaled gradient curve. 

This monotonicity is clearly visible in L 
ρ
1 ,AMR 

and – following

he argument from Section 2.5 – is even more apparent in L 
ρ
1 

. Al-

eady this simple test demonstrates the excellent performance of

he MR criteria. In subsequent tests, we will use primarily L 
ρ
1 ,AMR 

o quantify criteria performance. This is because the studied test

ases do not have a known analytic solution and L 
ρ
1 

cannot easily

e approximated. The test case of the moving Gaussian bump also

llustrates that L 
ρ
1 ,AMR 

is a reliable and unambiguous measure for

daptation accuracy. 

Each curve of Fig. 6 corresponds to a discrete mapping

 

τ1 , . . . , τM 

} 
→ { N 1 , . . . , N M 

} involving M computational experi-

ents, where τ = log 10 (L 
ρ
1 ,AMR 

) is introduced as the decadic log-

rithm of the measured numerical error value and N is a suitable

ount of the cells used. In order to establish quantitative measures

or comparing such maps, we denote as g ( τ ) the continuous func-

ion defined piecewise by 

 i : τ 
→ N i + (τ − τi ) 
N i +1 − N i 

τi +1 − τi 

for τ ∈ [ τi , τi +1 [ (16)

or all i ∈ { 1 , . . . , M − 1 } . We compare the respective functions,

.g., for SG and MR criterion, g SG ( τ ) and g MR ( τ ), only within that

nterval [ τ s , τ e ], in which both functions are defined, i.e. τs =
ax 

{
τ SG 

1 
, τMR 

1 

}
and τe = min 

{
τ SG 

M 

, τMR 
M 

}
. Using these definitions,

e define a measure for the average cell count saving of the MR

riteria versus SG as 

N = 

1 

τe − τs 

∫ τe 

τs 

[ g SG (ζ ) − g MR (ζ ) ] dζ . (17)

he average efficiency of the MR criteria relative to the SG criterion

s defined as 

 = 

1 

τe − τs 

∫ τe 

τs 

g SG (ζ ) − g MR (ζ ) 

g SG (ζ ) 
dζ . (18)

 straightforward Python script has been written to compute

qs. (17) and (18) from tabulated data. Using this tool, we obtain
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Fig. 3. Advection of a Gaussian density bump refined with the different criteria after one period. Shown are isolines of density on regions of different refinement (depicted 

by different gray scales). 

Fig. 4. Total cell count over time for the cases from Fig. 3 . 

Fig. 5. Cells on finest level versus L 
ρ
1 

error after one period. 
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Fig. 6. Cells on finest level vs. L 
ρ
1 ,AMR 

error after one period. 
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or the data of Fig. 6 �N = 6088 and E = 5 . 7% when comparing the

R criterion with constant threshold value to the SG criterion, and

N = 12645 and E = 10 . 4% for MR with hierarchical thresholding.

he latter result means that for this problem the MR criterion with

ierarchical thresholding will obtain a similar numerical accuracy

s the SG criterion on finest meshes that are about 10% smaller in

ell count. 
.2. Two-dimensional LAX–LIU RIEMANN problems 

As comprehensive test cases for realistic gas dynamics, we em-

loy the above defined measures to compare the MR criterion with

ierarchical thresholding to the SG approach for the 19 classical

wo-dimensional Riemann problems for Euler equations described

y Lax & Liu in [37] , as described in Appendix B . Depending on the

nitial values, planar waves can develop into complex 2d patterns

hat give a good representation for a variety of flow phenomena

ntrinsic to the multi-dimensional Euler equations. For instance,

he computational domain and the initial values for the configu-

ations are presented in Fig. B.21 and Table B.4 , respectively. The

nal simulated times are the same as reported by Lax & Liu [37] ,

f. Table B.3 . 

In all computations the CFL number is kept roughly constant

t 0.5 and the adiabatic exponent is set to the value γ = 1 . 4 .

he main investigations use a standard unsplit shock-capturing

USCL scheme with Minmod-limiter and Roe numerical flux func-

ion [36,38] , which employs the MUSCL-Hancock approach for time

ntegration, yielding an overall second-order-accurate numerical 

ethod [36] . For comparison, some calculations are in addition

epeated with a WENO scheme with Roe flux function, which is

hird-order-accurate in space. This method uses a storage efficient

xplicit 3-stage Runge–Kutta scheme for time integration, yielding

n overall third-order-accurate numerical scheme [39] . 

The base resolution of all computations is 64 × 64 cells and four

dditional levels, each refined by a factor 2, are used. The adap-

ation criteria are again applied just in density ρ . For computing

he adaptation error L 
ρ
1 ,AMR 

we consider a reference solution on
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Fig. 7. Average cells savings of MR versus SG with respect to the uniform case �N /N uni for the 19 Lax–Liu configurations; MUSCL scheme used. 

Fig. 8. Average efficiency E of MR with respect to the SG criterion for the 19 Lax–Liu configurations; MUSCL scheme used. 

Fig. 9. Used cells in the adaptive MUSCL computations vs. L 
ρ
1 

and L 
ρ
1 ,AMR 

error. 
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Fig. 10. Time evolution of the used cells for the adaptive MUSCL computations listed in Table 1 . 
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o  
he uniform mesh 1024 × 1024. We have tested the cluster param-

ters η = 0 . 75 , 0 . 80 , and 0.99, and we also computed a distribu-

ion of M = 12 threshold parameters for each adaptation criterion.

or all configurations, we use MR with hierarchical threshold con-

idering L = 5 . Since the compression results obtained with these

luster parameters show very similar trends, we present here just

he results for η = 0 . 80 . 

In general, both criteria identify the essential flow features and

ead to sensibly adapted meshes; however, notable differences be-

ween the 19 differences configurations can be observed. Using the

umber of cells on all SAMR levels and throughout all time steps

s cell metric N , we have evaluated the average cell count saving,

q. (17) , and the average efficiency, Eq. (18) , of MR versus SG for all

9 cases. Fig. 7 shows in percent the ratio �N /N uni for the MUSCL

cheme; Fig. 8 displays the average efficiency E of the MR criterion

ompared to the SG criterion directly. From Fig. 7 one deduces that

n absolute values, MR presents clear benefits for 12 configurations

where six of them achieve > 4% of savings compared to the uni-

orm case), is comparable to SG in five cases, and performs notably

orse for just two configurations. In relative terms, Fig. 8 shows 11

verage efficiencies around and larger than 20% in favour of the MR

riterion and five cases with values smaller than −20% , for which

he SG approach performs more effectively. 

A closer analysis of the occurring flow patterns uncovers that

he MR criterion obtains its highest efficiencies for cases domi-

ated by widespread rarefaction waves (Configs. #1 and #2). In

hese configurations more than 7% of the cells on the whole uni-

orm mesh are saved. In Configs. #6 −10 there are rarefaction

aves interacting with shear layers, i.e. contact discontinuities

ith different transverse velocities. For these cases the MR criteria

lso perform consistently and considerably better than SG, captur-

ng all relevant flow structures reliably and efficiently. 
In situations in which shock waves in addition interact with

arefaction waves and/or contact lines (like Configs. #14 −17 and

19 ), the MR criterion still leads to savings, however the benefit is

educed. In configurations involving primarily strong shock waves

nd shear layers, both strategies lead to adaptive meshes of similar

ell count, particularly Configs. #11 −13 and #18 . In the few Lax–

iu cases, that are dominated by strong and global shock waves

like #3 and #4 ), the SG criterion easily identifies the shock re-

ions and leads to an adaptation with a minimal number of cells. 

To better understand the observed differences in criteria per-

ormance, we take a closer look into configurations 3, 6, and 10.

he used number of cells over all time steps versus the absolute

rror L 
ρ
1 

and the adaptation error L 
ρ
1 ,AMR 

for both criteria is visu-

lized in Fig. 9 . For illustration, the evolution of the number of

ells over time for the adaptive MUSCL computation cases listed

n Table 1 are displayed in Fig. 10 . In these cases the absolute er-

or L 
ρ
1 

is approximated by using a reference solution evaluated on

 highly resolved uniform mesh of 4096 × 4096 cells. Compared to

igs. 5 and 6 the behavior is clearly more complex; however, it

s eminent that the monotonicity of L 
ρ
1 ,AMR 

is preserved in L 
ρ
1 

and

he curves are basically just shifted by the constant value L 
ρ
1 ,uni 

.

wo cases from each configuration are selected that exhibit a close

daptation error. Characteristic quantities for these cases are listed

n Table 1 . Unsurprisingly, the time evolution of the number of

ells reflect the behavior expressed in the snapshot of the final

ime in each case described, where the largest growth of number

f cells occurs in the shock configuration, while in the rarefaction

aves and contacts the MR cases present a much lower growth of

he number of cells than the SG cases, even tending to a constant

n Config. #10. 

In addition to the average number of cells updated through-

ut the respective computation relative to the uniform 1024 × 1024
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Fig. 11. Lax–Liu Config. # 3: density contours for the SG and MR computations of Table 1 superimposed on refinement levels (in gray scales) at final time t end = 0 . 3 . 

Table 1 

Characteristic adaptation quantities for selected cases with similar L 
ρ
1 ,AMR 

error for configurations 3, 6, and 

10. 

MUSCL WENO3 

LL# ερ L 
ρ
1 

L 
ρ
1 ,AMR 

Av. cells Final cells L 
ρ
1 ,AMR 

Av. cells Final cells 

(10 −3 ) ( 10 −4 ) ( 10 −4 ) (%) (%) ( 10 −4 ) (%) (%) 

3 SG 2.50 35.76 2.06 10.0 19.1 2.63 12.5 21.8 

MR 0.50 35.95 2.08 12.6 26.7 2.52 12.4 24.1 

6 SG 5.00 95.19 7.56 31.0 81.6 5.15 31.2 76.8 

MR 0.25 93.38 7.68 22.3 45.5 6.69 24.1 47.3 

10 SG 10.00 70.93 3.39 10.0 18.0 3.65 10.6 19.0 

MR 1.00 72.28 3.44 4.41 9.4 4.49 5.40 10.6 
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case, the relative coverage of cells in the last time step is also

listed. For comparison, the results for the same refinement thresh-

old values for the WENO3 method are also given, where we have

refrained from approximating L 
ρ
1 

for this method because of its

very high computational expense. The mesh adaptation situation

for the three cases at the final time is discussed below. 

Lax–Liu configuration #3 This test case is dominated primar-

ily by two sharp quasi-one-dimensional shock fronts that propa-

gate almost planar throughout the entire domain, with minor in-

teractions with weak rarefaction waves. The global numerical er-

ror varies little as long as the planar shocks are reliably adapted,

which can be accomplished with a small number of refinement

cells. When the main shocks do interact, a growing rectangu-
ar shock and rarefaction pattern is formed; however, its contri-

ution to the global error is comparably small. This somewhat

athological scenario is favorable for the SG criterion, which de-

ects strong shocks very efficiently, as illustrated particularly in

he left graphic of Fig. 11 . On the other hand, the wavelet ba-

is of the MR criteria is very sensitive to small-scale perturba-

ions of the multi-dimensional shock interaction that are due to

he MUSCL scheme. The corresponding WENO3 adaptation pattern

lower, right) is free of these artefacts and hence the average MR

fficiency for this configuration is with E W ENO 3 = −52 . 8% improved

ompared to E MUSCL = −65 . 5% (cf. Fig. 8 ), albeit still negative. How-

ver, note that in absolute values, cf. Fig. 7 , this effect is much less

ronounced than in relative terms, cf. Fig. 8 , and thereby the re-
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Fig. 12. Lax–Liu Config. # 3: Local error | ρ� 
i, j 

− ρr 
i, j 

| (upper row) and L 
ρ
1 ,AMR 

-norm contribution | ρ� 
i, j 

− ρr 
i, j 

| �x � �y � (lower row) in gray scales for the SG and MR computations 

of Fig. 11 with WENO3 at final time t end = 0 . 3 .. 
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uction in computational performance will be less obvious for a

ser of the AMROC software. 

While for this specific test case the benefit of the MR criterion

s not apparent in the global error and number of cells, the advan-

ages become obvious when visualizing the local contributions to

 

ρ
1 ,AMR 

according to the summation in Eq. (12) . The upper row of

ig. 12 displays the local difference | ρ� 
i, j 

− ρr 
i, j 

| for the SG and MR

omputations of Fig. 11 with the WENO3 method; the lower row

isualizes the term | ρ� 
i, j 

− ρr 
i, j 

| �x � �y � , highlighting the fact that a

arge error in coarse cells can have a significant influence on an

ntegral norm like L 1 . Comparing Fig. 12 with the refinement pat-

erns in the lower row of Fig. 11 , one can discern that large lo-

al errors are visible for the SG computation especially along sec-

ndary waves that are not refined. On the other hand, the MR

riterion captures these waves more gradually and reliably on the

econd or third mesh adaptation level. As a consequence, the local

rror (upper row of Fig. 12 ) shows a much smoother distribution

or the MR computation and is free of the perturbations visible in

he corresponding plot for the SG calculation, which are a result of

uctuating and insufficient refinement. 

Lax–Liu configuration #6 In this configuration a rotational veloc-

ty field with clockwise orientation leads to the creation of swirling

hear layers. This effect can clearly be seen in Fig. 13 for both

V schemes. We can observe in the left images of this figure that

c  
he SG criterion dramatically over-refines the vortex-like structure

lus resulting rarefaction waves to the highest level, while the MR

riterion achieves a much better adaptation of density variations

f different magnitude. Consequently, the MR criterion achieves

 sizable reduction in used cells and a very large reduction in

nal cells versus SG for all but very small threshold values, cf.

ig. 9 and Table 1 . The higher accuracy of the WENO3 method pre-

erves minor vortex and shock structures better, which are accord-

ngly refined by the MR criterion; see right images of Fig. 13 . This

ields generally smaller L 
ρ
1 ,AMR 

errors for the WENO3 scheme for

he same threshold choices (cf. Table 1 ) but also leads to an aver-

ge MR efficiency that, with E W ENO 3 = 18 . 1% , is slightly lower than

 MUSCL = 25 . 6% . 

Lax–Liu configuration # 10 

Configuration #10 is a mixed situation consisting of a shear

ayer between quadrants 1/2 and 3/4 and Riemann problems with

eaker shock and strong rarefactions between 2/3 and 1/4. Very

eak secondary shocks or rarefactions are formed in addition due

o the interaction of the primary phenomena. As can be seen in the

ower row of Fig. 14 the SG criterion struggles considerably to de-

ect these signals of different strength reliably in the density. The

R criterion however captures all of them reliably and on a level

f resolution commensurate to the signal gradient. The upper right

raphic of Fig. 14 displays the absolute value of wavelet coefficients

omputed in density alone and all features (highlighted in the up-
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Fig. 13. Lax–Liu Config. # 6: density contours for the SG and MR computations of Table 1 superimposed on refinement levels (in gray scales) at final time t end = 0 . 3 . 
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W  
per left graphic by showing the temperature) can be clearly dis-

cerned. The larger absolute values of the wavelet coefficients are

along the central contact discontinuities; intermediate values de-

tect the regions related to the rarefaction and shock waves and re-

liably identify the regularity of the numerical solution. In the lower

row are again shown the refinement levels generated by the SG

and MR criteria with similar L 
ρ
1 ,AMR 

error, cf. Table 1 . The SG crite-

rion over-refines the upper right strong rarefaction but misses en-

tire weaker waves. As a result, for this case and the MUSCL scheme

the SG criterion will lead to 2.27 times more used cells than the

MR criterion to achieve a similar L 
ρ
1 ,AMR 

error. With an average MR

efficiency of E W ENO 3 = 28 . 4% versus E MUSCL = 34 . 4% the results for

both methods are very similar and the WENO3 results are omitted

in Fig. 14 for brevity. However, in Fig. 15 is shown the local inte-

gral error contribution | ρ� 
i, j 

− ρr 
i, j 

| �x � �y � for the WENO3 scheme.

The graphics highlight that large local errors are again created es-

pecially along those secondary waves in the lower left quadrant of

the domain, which are missed in their entirety by the SG criterion.

Hence, the MR criterion achieves a much more homogeneous local

error distribution. 

3.3. Three-dimensional ellipsoidally expanding shock wave 

As an example for a gas dynamical problem of larger computa-

tional expense, we consider the expansion of an ellipsoidal shock
ave in three space dimensions. The Euler equations are solved

n the computational domain 
 = [ −2 , 2] 3 until the final simula-

ion time t end = 0 . 8 . Outflow boundary conditions are applied at

ll sides of the domain. Initial conditions in density ρ and energy

ensity ρE are set as 

= 

{
0 . 125 , r < r c , 
1 . 00 , r ≥ r c , 

ρE = 

{
0 . 25 , r < r c , 
2 . 50 , r ≥ r c , 

(19)

ith r c = 

3 
5 , while the velocity vector is initially zero, i.e. v 1 = v 2 =

 3 = 0 everywhere. The initial ellipsoid is specified by 

 = 

√ (
x 1 r 
a 

)2 

+ 

(
x 2 r 
b 

)2 

+ 

(
x 3 r 
c 

)2 

, (20)

here 

 1 r = x 1 cos (θ ) − x 2 sin (θ ) , 

 2 r = ( x 1 sin (θ ) + x 2 cos (θ ) ) cos (φ) − x 3 sin (φ) , 

 3 r = ( x 1 sin (θ ) + x 2 cos (θ ) ) sin (φ) + x 3 cos (φ) , 

ith stretching and rotational parameters a = 

1 
3 , b = 1 , c = 3 , θ =

π
3 , and φ = 

π
4 . 

The numerical method used is the fully multi-dimensional

ave Propagation Method for Euler equations [23] . In this finite
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Fig. 14. Lax–Liu Config. #10 : Schlieren plot of temperature (top, left), gray scale plots of wavelet coefficients (top, right) and refinement levels (bottom) at final time 

t end = 0 . 15 . 

Fig. 15. Lax–Liu Config. # 10: Local L 
ρ
1 ,AMR 

-norm contribution | ρ� 
i, j 

− ρr 
i, j 

| �x � �y � in gray scales for the SG and MR computations of Fig. 14 with WENO3 at final time 

t end = 0 . 15 .. 



14 R. Deiterding, M.O. Domingues and K. Schneider / Computers and Fluids 205 (2020) 104583 

Fig. 16. Contours of density shown on levels of mesh refinement in 3d (left) for MR with ε ρ,p = 0 . 05 at t end = 0 . 8 . The right graphic indicates by color the distribution to 

20 processors at this time. 

Fig. 17. Adaptation for the 3d shock-wave case at the time t end = 0 . 8 . Isolines of 

two-dimensional cuts of density for the SG and MR computation superimposed on 

domain of refinement (in gray scales). From top to bottom: y − z-plane at x = 0 , 

x − z-plane at y = 0 , x − y -plane z = 0 . 
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olume method, the approximate Riemann solver of Roe in flux

ifference splitting form is used in face normal direction. Second-

rder accuracy is achieved by reconstruction and limiting in char-

cteristic variables and blending with the Lax–Wendroff scheme.

n addition, a “transverse” Riemann solver of Roe-type is used

o approximate cross-derivative fluctuations to second-order ac-

uracy. Here, the complete three-dimensional method is applied.

his compute-intensive, but very accurate method approximates

hree Riemann problems in the normal direction and 36 trans-

erse Riemann problems [40] . Albeit coded in FORTRAN 77, AMROC

upports the full wave propagation method as block-based update

cheme, including conservative flux correction at coarse-fine inter-

aces, cf [20] . 

For this test, we use a base mesh of 32 3 cells that can be re-

ned by up to four additional levels with refinement factor 2. This

orresponds to a solution on a 512 3 cell mesh in the uniform case.

he cluster parameter is always set to η = 0 . 90 and one buffer

ell is added around tagged cells to avoid degradation of results

rom interpolation. Fixed time steps of �t = 0 . 04 are employed on

he coarsest level and time step refinement by factor 2 is equally

pplied throughout all levels, leading to 320 time steps on the

nest level as well as in the uniform run. Throughout the compu-

ations, the CFL number declines continuously from initially ∼ 0.95

o ∼ 0.53. Adaptation is based on evaluating the SG and MR crite-

ia (with hierarchical threshold) in density ρ as well as pressure

 , where for this problem in non-dimensional quantities the same

hreshold values are applied to both. 

All computations are run in parallel on a single node of a recent

inux compute cluster that provides 20 cores with shared mem-

ry. Note however that parallelization in AMROC is through the

PI library. In case of the adaptive computations, dynamic repar-

itioning to maintain load balance is carried out after each level-0

ime step. Computing the uniform solution required 379 min, while

he expense of the adaptive computations varies from 4 to 71 min.

wo typical computations with similar L 
ρ
1 ,AMR 

error for MR and SG

riteria are visualized in Figs. 16 and 17 . Comparing the cuts in

ig. 17 one notices that the weakening expanding shock and subse-

uent rarefaction is resolved reliably on the second finest level for

R, while the SG computation alternates between finest and sec-

nd finest level. On the other hand, the MR criteria pick up com-

lex flow features near the origin that are missed entirely by the

G criteria. Visualizing the wavelet coefficients of the MR computa-

ion in Fig. 18 in density and pressure allows us to classify the cen-

ermost features as contact discontinuities (as they show no pres-
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Fig. 18. Visualization of wavelet coefficients in x -plane at t = 0 . 72 in density (left) and pressure (right). 

Fig. 19. Used cells in the adaptive 3d computations versus L 
ρ
1 ,AMR 

error at the time 

t e = 0 . 8 . 

Table 2 

Characteristic adaptation quantities for two selected cases with similar L 
ρ
1 ,AMR 

error for the 3d configuration. 

ερ ,p L 
ρ
1 ,AMR 

Used cells Final time CPU time 

(10 −2 ) ( 10 −2 ) (10 9 ) cells (%) # blocks (min) 

SG 3.75 1.46 4.90 15.5 10,963 43.5 

MR 5.00 1.42 4.02 16.7 9701 39.0 
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ure variation) surrounded by shock and/or rarefaction waves. The

esulting improved efficiency of the adaptive computation can be

een in Table 2 , which shows a benefit of MR in used cells of 18%

nd an improvement in actual runtime by 10.4%. This slight differ-

nce is due to an increased number of refinement blocks in the

R computations, which raises the overhead in the SAMR method.

easured time spent in the wave propagation scheme is 69% for

he MR and 73.5% for the SG run. In both computations the evalu-

tion of the criteria themselves is a negligible cost factor. 

Finally, Fig. 19 depicts the number of used cells throughout the

ntire computation versus the L 
ρ
1 ,AMR 

error for SG and MR. Ex-

ept for very small threshold values, which corresponds to very

ense over-refinement, the MR approach always achieves a simi-

ar adaptation error with less cells. The average efficiency of MR

ersus SG, Eq. (18) , for Fig. 19 is computed as E = 44 . 1% , while

N /N = 1 . 73% . 
uni 
. Conclusions 

A multiresolution-based mesh adaptation criterion has been im-

lemented in the parallel SAMR framework AMROC. A comprehen-

ive approach has been developed to quantitatively compare the

daptive simulations using the new criterion in terms of numerical

rror from mesh adaptation and number of cells used with conven-

ional adaptive computations. Here, we have tested the MR criteria

or numerous configurations encountered in gas dynamics solving

he compressible Euler equations and compared directly to compu-

ations using scaled gradient criteria. 

It is found that – besides somewhat pathological cases – the

R strategy is far superior to the SG approach. Beside discontin-

ous shock and contact waves, the MR criteria identify in partic-

lar smooth rarefaction waves and their interaction reliably. The

R approach is also extremely robust in detecting even small-scale

ow disturbances. In the majority of complex test cases consid-

red, the greater mathematical sophistication of the MR criterion

eads to smaller approximation errors from dynamic mesh adap-

ation, while the number of employed cells is reduced, in many

ealistic cases in 2d as well as 3d by more than 40%. Yet, the

omprehensive investigation in 2d uncovered that cases dominated

olely by strong shock waves can also be adapted very efficiently

y the SG approach. In such technically less relevant scenarios,

oth approaches easily identify the shock waves. However, due to

he wider reaching stencil of the proposed MR criterion a slightly

arger refinement region is invariably produced. Nevertheless, this

ffect will not increase the absolute number of cells considerably

nd thereby users of adaptive codes will hardly notice it. 

A potential next step might be the utilization of the multireso-

ution prediction as inter-level interpolation in the SAMR method.

he present computations used a first-order accurate interpolation

ethod that genuinely avoids over- or undershoots with respect

o the coarse level data and therefore remains consistent with the

VD (total variation diminishing) and WENO (weighted essentially

on-oscillatory) concepts upon which the shock-capturing methods

sed in here have been constructed, cf [23,36] . The wavelet-based

rediction operators do not satisfy such important properties and

hereby will have to be combined with a limiting operation to en-

ure stable numerical results. 

In summary, this very promising study motivates future more

ophisticated applications of the new class of MR-based mesh re-

nement indicators, especially in more complex situations. Scenar-

os, in which simple refinement indicators typically struggle are,

or instance, highly perturbed turbulent flow fields interacting with
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weak shock waves or chemically reactive flow, in which gradual

combustion is difficult to identify. 
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Appendix A. Cell-average multiresolution and wavelets 

The aim of this appendix is to highlight the equivalence be-

tween Harten’s discrete MR and continuous biorthogonal wavelets,

which is revealing for the readers and not so well-known outside

the wavelet community. The cell-average multiresolution represen-

tation introduced by Harten [9,32] for finite volume discretizations
Fig. A.20. Biorthogonal scaling functions φ and ˜ φ (left, top and bottom),
f hyperbolic conservation laws is directly related to biorthogo-

al wavelets. In the following we briefly summarize the concept

f multiresolution analysis, its relation to orthogonal and then

iorthogonal wavelets. Then we detail the connection between

ell-average MR and biorthognal wavelets using the Haar basis. For

ase of presentation we choose the one-dimensional scalar-valued

ase. The extension to higher dimensions using tensor products is

iven at the end of this section and also how vector-valued data

re treated. 

1. Orthogonal wavelets 

Multiresolution analysis introduced by Mallat and Meyer [2–

] corresponds to a sequence of embedded subspaces, typically de-

oted by V 

� for � ∈ N , which belong to the Hilbert space of square-

ntegrable functions L 2 (R ) . The required inner product reads 

 f (u ) , g(u ) 〉 = 

∫ ∞ 

−∞ 

f (u ) g(u ) du 

nd the corresponding norm || f || 2 = 〈 f, f 〉 1 / 2 . 
The spaces V 

� have several characteristic properties, in par-

icular they are nested V � ⊂ V � +1 , and a function q ∈ L 2 (R ) with

 ( x ) ∈ V 

� satisfies q (2 x ) ∈ V � +1 , which corresponds to contracting

he function by a factor two and thus changing the scale. The

ubspaces V 

� are generated by translated scaling functions φ( x )

hich are required to exist. Therewith, we have V � = span { φ� 
i 
}

here φ� 
i 
(x ) = 2 �/ 2 φ(2 � x − i ) . The nestedness of the subspaces im-

lies that the scaling functions satisfy a refinement equation, 

(x ) = 

∑ 

i ∈ Z 
h i φ(2 x − i ) . (A.1)

n the case that φ has compact support, the filter coefficients h i (a

ow pass filter) have only a finite number of non-vanishing coeffi-

ients. Note that typically a factor 
√ 

2 is used in front of the sum

or L 2 normalization, which is omitted in Eqs. (A.1) and (A.3) . 
 and wavelet functions ψ and ˜ ψ (right, top and bottom) for r = 3 . 

https://doi.org/10.13039/501100000739
https://doi.org/10.13039/501100005288
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1 Note that we denote the cell average by Q 
� 

i instead of Q � 
i 

in this appendix as 

it is consistent with our previous work and the notation typically used in the MR 

community. 
In the case of the Haar basis, the scaling function is the charac-

eristic function of the interval [0,1[, 

(x ) = χ[0 , 1[ (x ) = 

{
1 for 0 ≤ x < 1 , 

0 elsewhere , 
(A.2)

nd the filter coefficients are, following the relation 

(x ) = φ(2 x ) + φ(2 x − 1) , 

iven by h 0 = h 1 = 1 and h i = 0 elsewhere. This basis function is

erfectly adapted to finite volume discretizations as it generates

paces of piecewise constant functions which represent finite vol-

me solutions. Moreover, the Haar scaling function is orthonormal,

.e. 〈 φ� 
i 
, φ� 

k 
〉 = δi,k , and its L 2 -norm yields one, || φ� 

i 
|| 2 = 1 . Thus,

unctions φ� 
i 

form an orthonormal basis of V 

� . 

The nested subspaces can be considered as finite volume ap-

roximations at different levels � associated to the scales 2 � .

avelets can then be introduced by defining complement spaces

 

� with V � +1 = V � � W 

� . Analogously to V 

� , which are spanned by

he scaling functions φ� 
i 
, the complement spaces W 

� are spanned

y wavelet functions ψ 

� 
i 

with ψ 

� 
i 
(x ) = 2 �/ 2 ψ(2 � x − i ) . The wavelet

lso fulfills a refinement equation, 

(x ) = 

∑ 

i ∈ Z 
g i φ(2 x − i ) (A.3)

ith filter coefficients g i (a high pass filter). For the Haar wavelet

(x ) = χ(2 x ) − χ(2 x − 1) = 

{ 

1 for 0 ≤ x < 1 / 2 , 

−1 for 1 / 2 ≤ x < 1 , 

0 elsewhere , 

(A.4) 

e have g 0 = −g 1 = 1 and g i = 0 else, according to 

(x ) = φ(2 x ) − φ(2 x − 1) . 

he Haar wavelets are orthonormal and thus satisfy 

 ψ 

� 
i , ψ 

� ′ 
k 〉 = δ�,� ′ δi,k . 

Applying the decomposition V � +1 = V � � W 

� recursively yields

 multiresolution analysis of L 2 (R ) = V 0 
⊕ ∞ 

� =0 W 

� . A function q ∈
 

2 (R ) can thus be represented as an orthogonal wavelet series, 

 (x ) = 

∑ 

i ∈ Z 
〈 q, φ0 

i 〉 φ0 
i (x ) + 

∞ ∑ 

� =0 

∑ 

i ∈ Z 
〈 q, ψ 

� 
i 〉 ψ 

� 
i (x ) , (A.5)

ith the scaling coefficients 〈 q, φ0 
i 
〉 and the wavelet coefficients

 q, ψ 

� 
i 
〉 . 

2. Biorthogonal wavelets 

Relaxing the orthogonality condition of scaling functions and

avelets implies increased flexibility (in terms of symmetry, num-

er of vanishing moments, filter length, etc.), which is obtained

ith biorthogonal wavelets [41] . In addition to the scaling func-

ion φ there exists a dual scaling function 

˜ φ which is also refinable

ith filter coefficients ̃  h i . Both functions are biorthogonal to each

ther, i.e., 〈 φ(x − i ) , ̃  φ(x − j) 〉 = δi, j ∀ i, j ∈ Z . A dual wavelet ˜ ψ is

lso required to exist, which fulfills likewise a refinement equation

ith filter coefficients ̃  g i and which is biorthogonal to the wavelets

. The filter coefficients are mutually related to each other via

 i = (−1) i ˜ h 1 −i and ̃

 g i = (−1) i h 1 −i . 

The biorthogonal wavelet expansion of a function q ∈ L 2 (R )

hus reads 

 (x ) = 

∑ 

i ∈ Z 
〈 q, ̃  φ0 

i 〉 φ0 
i (x ) + 

∞ ∑ 

� =0 

∑ 

i ∈ Z 
〈 q, ˜ ψ 

� 
i 〉 ψ 

� 
i (x ) , (A.6)
nd the special case of an orthogonal representation is recovered

or ˜ φ = φ and 

˜ ψ = ψ . Note that for a given primary scaling func-

ion φ different dual scaling functions ˜ φ can be constructed (and

ice versa) and thus the choice is not unique. 

For the cell-average multiresolution analysis, which is well

dapted to finite volumes, the scaling coefficients 〈 q, ̃  φ� 
i 
〉 corre-

pond to the scaled cell average of the cell 
� 
i 
. Hence the dual

caling function 

˜ φ is the rescaled Haar scaling function ˜ 

�,i = χ
� 
i 
/ 
√ | 
� 

i 
| . (A.7) 

e introduce the cell average 1 of the cell 
� 
i 

which is defined

s Q 

� 

i = 〈 q, ˜ φ�,i 〉 / 
√ | 
� 

i 
| . Consequently, we can use the polynomial

rediction operator, as the one presented in Eq. (3) and described

n [12] , to obtain 

̂ 

 

� +1 
2 i 

= 

s ∑ 

n = −s 

λn 〈 q, ̃  φ� 
i 〉 . (A.8)

here the details can be computed as 

 

� +1 
2 i 

= Q 

� +1 

2 i − ̂ Q 

� +1 
2 i 

= Q 

� +1 

2 i −
s ∑ 

n = −s 

λn Q 

� 

i + n (A.9) 

= 〈 q, ˜ ψ 

� 
i 〉 / 

√ | 
� 
i 
| , 

he dual wavelet ˜ ψ 

� 
i 

is given by a linear combination of dual scal- 

ng functions 

˜ 

 

� 
i = 

˜ φ� +1 
2 i 

−
s ∑ 

n = −s 

λn ̃
 φ� 
i + n . (A.10) 

etails for odd indices d � +1 
2 i +1 

are redundant and equal to −d � +1 
2 i 

.

n Harten’s MR analysis based on prediction and reconstruction in

he discrete framework, wavelet coefficients are determined as lin-

ar combinations of prediction errors, whereas in the continuous

avelet context, these coefficients are defined as inner products

f the underlying function with the wavelets. The connection be-

ween these ideas is presented in Eq. A.9 . 

The filter coefficients of the biorthogonal multiresolution can

hus be directly computed and we find ̃

 h 0 = ̃

 h 1 = 1 and ̃

 h i = 0 else-

here, corresponding to the Haar scaling function. Using the rela-

ion with the filter coefficients of g we find g 0 = −g 1 = 1 and g i = 0

lsewhere. Choosing the prediction operator with r = 2 s + 1 = 3

nd the values λ−1 = −λ1 = −1 / 8 , λ0 = 0 we obtain the filter co-

fficients h 0 = h 1 = 1 , h −1 = h 2 = 1 / 8 , h −2 = h 3 = −1 / 8 and h i = 0

lsewhere. Correspondingly, we find for ˜ g 0 = 1 , ̃  g 1 = −1 , ̃  g 2 = ̃

 g 3 =
 / 8 , ̃  g −1 = ̃

 g −2 = −1 / 8 and 

˜ g i = 0 elsewhere. Plots of the corre-

ponding biorthogonal scaling and wavelet functions are presented

n Fig. A.20 . 

Vanishing moments or polynomial cancellation proprieties of

avelets A wavelet function has p vanishing moments if and only if

ts related scaling function can generate polynomials up to degree

p − 1 . Therefore, the wavelet coefficients are zero for polynomials

f degree at most p − 1 , so that the scaling functions alone can

e used to represent the function. More vanishing moments of the

avelet function imply that its related scaling function can repre-

ent more complex functions and that the wavelet representation

s sparser, as many wavelet coefficients vanish. In Fourier space

his property is equivalent to say that the first p derivatives of the

ourier transform of the wavelet function of the wavelet function

anish at frequency zero. The cancellation property of wavelets is

n essential ingredient to obtain a sparse representation of func-

ions which are locally smooth. This motivates the thresholding
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Fig. B.21. Initial domain partition for the Lax-Liu configurations. 
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procedure and justifies that the MR criteria can be considered as

a shock detector. 

Boundary conditions. Harten’s MR analysis for cell averages is

adapted to bounded domains, as the analyzing scaling function

does correspond to the indicator function and is thus adapted to

the interval. Hence no special care is required to take into account

boundary conditions on Cartesian domains. 

Extensions for high space dimension. Extensions are obtained

by tensor product, cf. Appendix A of [12] . In two dimensions the

spaces V 

� are constructed via V 

� = V � � V � . Using V � = V � −1 
�

 

� −1 , we thus obtain V 

� = 

(
V � −1 

� W 

� −1 
)

�

(
V � −1 

� W 

� −1 
)

=
 

� −1 
� V � −1 

� W 

� −1 
� V � −1 

� V � −1 
� W 

� −1 
� W 

� −1 
� W 

� −1 = 

V 

� −1 
� W 

� −1 , where W 

� −1 corresponds to three wavelet spaces in

the horizontal, vertical and diagonal directions. The procedure in

three dimensions is analogous and yields seven directions. The

construction of the corresponding biorthogonal wavelet basis in

2d and 3d is likewise obtained by tensor product and the resulting

wavelets have consequently three and seven directions in 2d and

3d, respectively. For details we refer to [42] . 

Vector-valued functions. The biorthogonal wavelet expansion is

applied to each component of the vector and thus a vector-valued

wavelet series is obtained as the coefficients become vector-valued,

but not the basis functions. 
Table B.3 

Final time used in the Lax-Liu simulations. 

Lax Liu configurations 

Number 1 2 3 4 5 

t end 0.20 0.20 0.30 0.25 0.30

Number 11 12 13 14 15 

t end 0.30 0.25 0.30 0.10 0.0
ppendix B. Lax-Liu configurations 

The Lax–Liu benchmarks, in [37] , are classical 2d Riemann prob-

ems of gas dynamics. The computational domain is a square 
 =
0 , 1] 2 and the initial condition is constant within the four quad-

ants denoted by 1, 2, 3, and 4, as illustrated in Fig. B.21 . For

he sake of comparison with our results and those by others, we

lso use the same final times described in [37] , cf. Table B.3 .

n Table B.4 we display in a more systematic form the ini-

ial conditions used on these sub-domains. We also indicate for

ach configuration the formation of Rarefaction waves (R), Contact
6 7 8 9 10 

 0.30 0.25 0.25 0.30 0.15 

16 17 18 19 

2 0.20 0.30 0.20 0.30 
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Table B.4 

Initial conditions for Lax–Liu configurations #1 − 19 . 

Q Configuration Domain position Configuration Domain position 

1 2 3 4 1 2 3 4 

ρ Number 1 1.0000 0.5197 0.1072 0.2579 Number 11 1.0000 0.5313 0.8000 0.5313 

p 
→ 

R 21 1.0000 0.4000 0.0439 0.1500 
← 

S 21 1.0000 0.4000 0.4000 0.4000 

v 1 
→ 

R 32 

→ 

R 41 0.0000 -0.7259 -0.7259 0.0000 J + 
32 

← 

S 41 0.1000 0.8276 0.1000 0.1000 

v 2 
→ 

R 34 0.0000 0.0000 -1.4045 -1.4045 J + 
34 

0.0000 0.0000 0.0000 0.7276 

ρ Number 2 1.0000 0.5197 1.0000 0.5197 Number 12 0.5313 1.0000 0.8000 1.0000 

p 
→ 

R 21 1.0000 0.4000 1.0000 0.4000 
→ 

S 21 1.0000 0.4000 0.4000 0.4000 

v 1 
← 

R 32 

→ 

R 41 0.0000 -0.7259 -0.7259 0.0000 J + 
32 

→ 

S 41 0.0000 0.7276 0.0000 0.0000 

v 2 
← 

R 34 0.0000 0.0000 -0.7259 -0.7259 J + 
34 

0.0000 0.0000 0.0000 0.7276 

ρ Number 3 1.5000 0.5323 0.1380 0.5323 Number 13 1.0000 2.0000 1.0625 0.5313 

p 
← 

S 21 1.5000 0.3000 0.0290 0.3000 J −
21 

1.0000 1.0000 0.4000 0.4000 

v 1 
← 

S 32 

← 

S 41 0.0000 1.2060 1.2060 0.0000 
← 

S 32 

← 

S 41 0.0000 0.0000 0.0000 0.0000 

v 2 
← 

S 34 0.0000 0.0000 1.2060 1.2060 J −
34 

-0.3000 0.3000 0.8145 0.4276 

ρ Number 4 1.1000 0.5065 1.1000 0.5065 Number 14 2.0000 1.0000 0.4736 0.9474 

p 
← 

S 21 1.1000 0.3500 1.1000 0.3500 J + 
21 

8.0000 8.0000 2.6667 2.6667 

v 1 
→ 

S 32 

← 

S 41 0.0000 0.8939 0.8939 0.0000 
← 

S 32 

← 

S 41 -0.5606 -1.2172 1.2172 1.1606 

v 2 
→ 

S 34 0.0000 0.0000 0.8939 0.8939 J −
34 

-0.3000 0.3000 0.8145 0.4276 

ρ Number 5 1.0000 2.0000 1.0000 3.0000 Number 15 1.0000 0.5197 0.8000 0.5313 

p J −
21 

1.0000 1.0000 1.0000 1.0000 
→ 

R 21 1.0000 0.4000 0.4000 0.4000 

v 1 J −
32 

J −
41 

-0.7500 -0.7500 0.7500 0.7500 J −
32 

← 

S 41 0.1000 -0.6259 0.1000 0.1000 

v 2 J −
34 

-0.5000 0.5000 0.5000 -0.5000 J + 
34 

-0.3000 -0.3000 -0.3000 0.4276 

ρ Number 6 1.0000 2.0000 1.0000 3.0000 Number 16 0.5313 1.0222 0.8000 1.000 

p J −
21 

1.0000 1.0000 1.0000 1.0000 
← 

R 21 0.4000 1.0000 1.0000 1.0000 

v 1 J + 
32 

J + 
41 

0.7500 0.7500 -0.7500 -0.7500 J −
32 

→ 

S 41 0.1000 -0.6179 0.1000 0.1000 

v 2 J −
34 

-0.5000 0.5000 0.5000 -0.5000 J + 
34 

0.1000 0.1000 0.1000 0.8276 

ρ Number 7 1.0000 0.5197 0.8000 0.5197 Number 17 1.000 2.0000 1.0625 0.5197 

p 
→ 

R 21 1.0000 0.4000 0.4000 0.4000 J −
21 

1.0000 1.0000 0.4000 0.4000 

v 1 J −
32 

→ 

R 41 0.1000 -0.6259 0.1000 0.1000 
← 

S 32 

→ 

S 41 0.0000 0.0000 0.0000 0.0000 

v 2 J −
34 

0.1000 0.1000 0.1000 -0.6259 J −
34 

-0.4000 -0.3000 0.2145 -1.1259 

ρ Number 8 0.5197 1.0000 0.8000 1.0000 Number 18 1.000 2.0000 1.0625 0.5197 

p 
→ 

R 21 0.4000 1.0000 1.0000 1.0000 J + 
21 

1.0000 1.0000 0.4000 0.4000 

v 1 J −
32 

← 

R 41 0.1000 -0.6259 0.1000 0.1000 
← 

S 32 

→ 

S 41 0.0000 0.0000 0.0000 0.0000 

v 2 J −
34 

0.1000 0.1000 0.1000 -0.6259 J + 
34 

1.0000 -0.3000 0.2145 0.2741 

ρ Number 9 1.0000 2.0000 1.0390 0.5197 Number 19 1.000 2.0000 1.0625 0.5197 

p J + 
21 

1.0000 1.0000 0.4000 0.4000 J + 
21 

1.0000 1.0000 0.4000 0.4000 

v 1 
→ 

R 32 

→ 

R 41 0.0000 0.000 0.0000 0.0000 
← 

S 32 

→ 

S 41 0.0000 0.0000 0.0000 0.0000 

v 2 J + 
34 

0.3000 -0.3000 -0.8133 -0.4259 J −
34 

0.3000 -0.3000 0.0000 0.0000 

ρ Number 10 1.0000 0.5000 0.2281 0.4562 

p J −
21 

1.0000 1.0000 0.3333 0.3333 

v 1 
→ 

R 32 

→ 

R 41 0.0000 0.0000 0.0000 0.1000 

v 2 J + 
34 

0.4297 0.6076 -0.6076 -0.4297 

D  

T  

b

R
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iscontinuities (J), and Shocks (S) that arise in the fluid interfaces.

he arrow direction ( → , ← ) and the inclinations (with the sym-

ols ± ) complement the flow structure developed. 
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