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Flapping insects are remarkably agile fliers, adapted to a highly turbulent environment.
We present a series of high-resolution numerical simulations of a bumblebee interacting
with turbulent inflow. We consider both tethered and free flight, the latter with all six
degrees of freedom coupled to the Navier-Stokes equations. To this end, we vary the
characteristics of the turbulent inflow, either changing the turbulence intensity or the
spectral distribution of turbulent kinetic energy. Active control is excluded in order to
quantify the passive response real animals exhibit during their reaction time delay, before
the wing beat can be adapted. Modifying the turbulence intensity shows no significant
impact on the cycle-averaged aerodynamical forces, moments, and power, compared to
laminar inflow conditions. The fluctuations of aerodynamic observables, however, signifi-
cantly grow with increasing turbulence intensity. Changing the integral scale of turbulent
perturbations, while keeping the turbulence intensity fixed, shows that the fluctuation level
of forces and moments is significantly reduced if the integral scale is smaller than the wing
length. Our study shows that the scale-dependent energy distribution in the surrounding
turbulent flow is a relevant factor conditioning how flying insects control their body
orientation.
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I. INTRODUCTION

Insect are fast and agile fliers and stabilize their body posture during flight under a vast variety
of environmental conditions [1,2]. While flight in static air requires little steering and corrective
changes in aerodynamic force production, flight in turbulent air is challenged by unexpected changes
in flow conditions at the body and wings. Little is known about the impact of turbulence on the
aerodynamic performance and energetic cost of flight in insects. In this work, we study how different
kinds of perturbations affect flapping fliers in free flight.

In contrast to laminar flows, turbulent flows are dominated by nonlinear interactions and, as a
result, excite fluctuations on a wide range of scales. After averaging the flow in either ensemble,
time, or space, we identify different length scales characteristic for the turbulent regime. From
large to small, these classical scales are (i) the integral scale � where, on average, the velocity the
strongest and where therefore energy transport is most active, (ii) the Taylor microscale λ where, on
average, the velocity gradients are most intense, and (iii) the Kolomogorov scale η below which, on
average, the flow fluctuations are damped by the fluid viscosity [3].

In nature, unsteady turbulent flow conditions significantly vary depending on the terrain and
weather conditions. The “flight boundary layer,” characterized by conditions favorable for insect
flight, can span up to 1500 m above the ground level in warm weather [4]. Activity such as long-
distance migration is typical of high altitudes while foraging, for example, mainly takes place in the
vegetation layer up to several meters above the ground. This diversity of flow conditions, besides
variation in the temperature, density, and mean wind speed, exposes flying insects to a variety of
turbulent flows, ranging from those dominated by wakes and canopy-layer turbulence at low altitude
[5–7] to the atmospheric turbulence determined by weather and wind systems at high altitude [8,9].

Until now, studies have focused on selected model organisms such as hummingbirds [10], moths
[11,12], and bumblebees [13,14], subject to archetypal air flow conditions such as von Kármán
wakes [12–14] or grid turbulence [15]. In the hawk moths Manduca sexta, for example, yaw
and roll oscillations of the animal body are synchronized with the vortex shedding frequencies
in the wake behind a large cylinder [12]. Vortex shedding in von Kármán wakes, however, differs
from turbulence since, at moderate Reynolds numbers, vortices are shed periodically in time and
the flow has strong spatial correlations. Few numerical [16] and experimental [15,17] studies
addressed flapping flight in turbulent flow and estimated flow conditions at body and wings. In
heavy turbulence, for example, bumblebees are highly prone to changes in roll stability and crash if
roll velocity exceeds a maximum value [15].

High maneuverability in flight is likely key in coping with turbulence, at the cost of low
stability [11,18]. Insects that stabilize their body posture during aerial perturbations thus require
fast feedback responses. These responses may rely on passive and active changes of wing and body
kinematics. Both mechanisms might help to mitigate aerial perturbations. While passive changes
of wing kinematics result from the interplay between wing material properties and inertial and
aerodynamic forces and thus elastic wing deformation [19–24], active control is imposed by the
sensomotor system of the animal and thus changes in flight muscle activation [25]. A complex
passive mechanism has been reported for the fruit fly Drosophila [26]. The latter study suggests that
wing rotation about the wing’ s longitudinal axis [21] behaves like a system composed of a damped
torsion spring. The animal might control wing rotation by actively changing stiffness and damping
coefficients of this spring, as well as the resting feathering angle. In this case, fluid-structure
interaction results from a combination of passive changes via spring deformation and active changes
via modifications of the spring’ s elastic property.

Besides passive changes, insects also possess a large variety of active control mechanisms for
body stabilization and flight heading control. Studies on flight control highlighted several unique
mechanisms of wing motion modulation in insects (see Ref. [27] for a recent review). These
mechanisms include changes in stroke amplitude, stroke frequency, stroke plane, the wing’s angle of
attack, and timing of wing rotation at the end of each half stroke [15,28]. Freely flying bumblebees,
for example, stabilize body roll by changes of the relative difference between left and right stroke
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amplitude [17]. Insects also actively change body shape that modifies their inertia tensor during
flight. Fruit flies [29], hawk moths [30], and chestnut tiger butterflies [31], for example, change and
stabilize their flight heading by changing the angle between thorax and abdomen.

Previous studies considered the body roll axis of an animal to be most susceptible for aero-
dynamic perturbations, owing to its small moment of inertia compared to yaw and pitch. Flying
through turbulence thus produces largest fluctuations about the roll axis in insects [13]. To minimize
these changes, some insects laterally extend their hind legs, which increases the roll moment of
inertia [15]. Although this behavior has been found in orchid bees, smaller insects such as the
fruit fly benefit only little from this mechanism owing to their small legs [29]. Since the hind
legs of orchid bees are atypically large compared to other insect species, it is less likely that the
latter mechanism represents a common mechanism for roll control in insect flight [29]. A most
significant mechanism to cope with air turbulence is aerodynamic damping, resulting from the
flapping wing motion. It is termed flapping countertorque [11,18,32] and primarily acts in the
direction perpendicular to the stroke plane. In a horizontal stroke plane, roll damping only occurs
if left and right wings flap at different angle of attack [33]. In an inclined stroke plane, the moment
vector is deflected from the vertical and contributes to roll dynamics, even during symmetrical
motion of both wings. The concept of flapping countertorque in insects was extended to damping
coefficients for all six degrees of freedom of body motion [34].

To understand body posture control of insects flying in turbulent air, we here present a
numerical study. Our study models and compares flight of both tethered and freely flying insects
(bumblebees). We consider different turbulent flows and vary their turbulence intensity as well as
their characteristic length scales, e.g., the integral scale. Under free flight conditions, the model
insect is allowed to translate along and rotate about all three body axes, in response to aerodynamic,
inertial, and gravitational forces and moments. However, we exclude any active control in this work.

Our previous study [16] showed that in tethered flight even strong inflow turbulence has little
effect on mean force production and moments and thus on aerodynamic mechanisms. Building on
this finding, we here explore the effects of turbulent length scales on a freely flying insect model
and demonstrate the effect of turbulence on body posture in free flight. The approach allows body
motion but ignores any passive deformation, of both body and wing, and also active steering. Our
study investigates if and how the scale-dependent energy distribution is relevant for body orientation
control in flying insects.

The complicated time-dependent geometry and the resulting complex flow topology challenge
numerical simulations of insect flight. There are two major numerical approaches for this problem:
(i) overset grids [35–37], which allow strong refinement near surfaces, but consideration of inflow
turbulence is practically excluded because of difficulties in parallelization and hence limited
resolution, and (ii) immersed boundary methods (IBM), which disconnect the flapping motion
from the grid and thus simplify the discretization. For flapping flight, finite volume [38,39] or
lattice-Boltzmann-type simulations [40,41] are successful numerical methods combined with IBM.
Here, we use the volume penalization method combined with a Fourier pseudospectral solver
[42]. This numerical method is characterized by the absence of numerical dissipation, its high
efficiency on massively parallel computers due to the optimized implementation of FFTs [43], and
the possibility to impose turbulent inflow.

The remainder of the paper is organized as follows: The computational setup is illustrated in
Sec. II A and the characteristics of inflow turbulence are described in Sec. II B. Section II C presents
the bumblebee model and Sec. II D recalls the governing equations and briefly outlines the numerical
method. The results and discussion in Sec. III present first tethered flight simulations and then
different free flight cases. Finally, conclusions are drawn in Sec. IV and some possible directions
for future work are proposed.
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FIG. 1. Setup used in present work. (a) Numerical wind tunnel, with tethered or freely flying insects.
Turbulent inflow is imposed in the upstream gray area; a vorticity sponge in the downstream green area
damps vortices and thus minimizes their upstream influence. The turbulent inlet imposes a slice of an isotropic
turbulence field (b), which has been precomputed in a separate simulation. The turbulence field has been
upsampled (c) to match the resolution of the numerical wind tunnel and rescaled preserving dynamic similarity.
The gray slice in panel (c) moves through the periodic field u′(x, y, z) at constant speed u∞. In some
simulations with larger integral scale �, four identical insects are computed (d) in one simulation, as explained
in Sec. II B.

II. FLOW CONFIGURATION AND NUMERICAL METHOD

A. Numerical wind tunnel

We illustrate the computational setup and the flow configuration in Fig. 1. Simulations are
performed in a 6R×4R×4R large virtual wind tunnel [Fig. 1(a)], where R is the wing length
of the insect (see Sec. II C). We initially place the insect at xcntr = (2R, 2R, 2R)T and either
allow it to move freely as dictated by the fluid forces or tether it to that position. The resolution
in space is 1152×768×768 equidistant grid points, and thus the lattice spacing is � = 5.2×10−3R.
The mean flow velocity is set to u∞ = (1.246 Rf, 0, 0)T , where f is the wing beat frequency.
It compensates for the cruising speed of the insect in laminar flow. We initialize the simulation
with unperturbed, laminar flow, u(x, t = 0) = u∞. At the outlet, a vorticity sponge [44] minimizes
the upstream influence of the periodicity of the computational domain. In the inlet region, which
covers the first 48 grid points, the velocity is set to us = u∞ + u′ , where u′ are velocity fluctuations
obtained from a precomputed, homogeneous isotropic turbulence (HIT) velocity field [Fig. 1(b)].
The properties of this field are discussed in Sec. II B.
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FIG. 2. Snapshot of a simulation. The virtual bumblebee is tethered in the virtual wind tunnel; the mean
flow u∞ in the x (g) direction compensates for the cruising speed of the insect. Reference frames shown
are the global (g) and body fixed (b). The flow field is visualized by the vorticity magnitude at an early
instant (t = 0.4T ) before the laminar-turbulent interface reaches the insect. The parameters are I = 0.99 and
� = 0.77R.

We rescale the HIT velocity field to insect dimensions preserving dynamic similarity, as HIT
simulations are typically performed in a dimensionless manner. The field is then upsampled using
zero padding in Fourier space to match the resolution of the numerical wind tunnel [Fig. 1(c)].
Note that the resolution requirement for the bumblebee is larger than for the HIT simulations in
all considered cases, as required by the detailed geometry of the bumblebee. In cases with larger
integral scale, we compute four identical bumblebees in one simulation with doubled lateral domain
size and the same resolution [Fig. 1(d)], for reasons explained below.

Figure 2 shows an example computation. Inside the inlet layer, the HIT field is frozen,
i.e., not dynamically evolving. Further downstream the turbulent flow evolves dynamically, and
decays similarly to what is observed in grid turbulence. The imposed constant mean flow u∞
transports the turbulent-laminar interface, as illustrated in Fig. 2. It reaches the insect’s head
at t/T = 0.95 and its tail at t/T = 1.95. Thus, all wing beats after the second one take place
in turbulence and are used to compute the statistics. After t/T = 3.21, the periodic HIT field
repeats, owing to the spatial periodicity of the precomputed field. For each statistical state of inflow
turbulence, we compute a number of realizations NR to be able to perform ensemble averaging. All
simulations are identical except for the turbulent inflow field. For more technical details, we refer to
Ref. [16, Suppl. Mat.].

B. Inflow turbulence

Flying animals encounter a considerable variety of aerial perturbations while foraging, ranging
from no perturbation in almost quiescent air when the weather is calm, to fully turbulent, with
intermittent gusts and vortices generated by obstacles, such as flowers, trees, or buildings. The
type of perturbation also depends on behavioral patterns in animals. Bees, for example, forage
on flowers and thus regularly perform landing maneuvers which force them to fly in the flower’s
wake. Owing to this huge variability in turbulent perturbations, we first reduce the parameter space.
Therefore, we define a typical turbulent flow and choose homogeneous isotropic turbulence (HIT)
for the upstream perturbations because it is the most widely used. It is also realized in experimental
work, e.g., generated by a grid in a wind tunnel [17]. HIT is characterized by its turbulent kinetic
energy E = 3u2

RMS/2, or equivalently the turbulence intensity I = uRMS/u∞, the Reynolds number
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FIG. 3. Spectra of turbulent kinetic energy for HIT fields averaged over several eddy turnover times. Left:
series A with constant � and variable I ; right: series B for I = 0.33 and � variable. Markers are the wave
numbers associated with �, λ, and η (from left to right on each spectrum).

Reλ = uRMSλ/ν, based on the Taylor microscale λ = √
15νuRMS/ε, and the integral length scale

� = π

2u2
RMS

∫ ∞

k>0
k−1E(k) dk .

Here, ν is the kinematic viscosity, ε is the dissipation rate, k is the wave number, and E(k) is the
energy spectrum integrated over wave-number shells. Note that for spatially periodic velocity fields,
the integral reduces to a sum, as only integer wave numbers k ∈ N exist. We precompute the HIT
velocity fields in a separate direct numerical simulation. In this computation, energy is injected
at a given wave number kf to compensate for the loss due to viscous dissipation. Forced wave
numbers in the shell kf − 0.5 � |k| � kf + 2.5 are multiplied with a factor c(t ) to keep the overall
energy constant in time. This approach is known as negative viscosity forcing [45,46]. In all HIT
computations, we resolve the Kolmogorov scale η = (ν3/ε)1/4, and hence kmaxη � 1. We start the
HIT simulations with a random initial condition with prescribed spectrum [47]. After the statistically
steady state has been reached, we save velocity fields for later use as inflow perturbations. The
saving interval is at least 10 eddy turnover times to assure that the fields are uncorrelated in time.
By modifying kf at constant E and ν, we vary the spectral distribution of energy.

We generate two series of HIT simulations with turbulent kinetic energy spectra shown in Fig. 3.
In series A, we vary the intensity I from mildly (I = 0.16) to extremely (I = 0.99) turbulent while
keeping the integral length scale � = 0.77R fixed (Fig. 3 left). In series B, we fix I = 0.33 and vary
� = {0.32R, 0.77R, 1.54R} (Fig. 3 right). Turbulence properties are summarized in Table I. The
first series allows us to evaluate the impact of turbulence intensity, while the second series allows
us to investigate the influence of � on the insect. Note that the eddy turnover time T0 = �/uRMS

decreases, as expected, with increasing I (series A) and, likewise, with decreasing � (series B). We
vary the energy distribution via the forcing wave number kf in the HIT simulation. Note that in
the � = 0.77R case the forcing wave number was kf = 1; thus, we cannot reduce it any further in
order to increase �. Therefore, in order to increase � to 1.54R, we double the lateral domain size
to Ly = Lz = 8R in the insect simulation, which then allows kf = 1 to result in a larger integral
scale. With the larger domain, we then compute four identical insects in one simulation [Fig. 1(d)],
to reduce the computational cost.

Figure 4 illustrates two individual HIT fields from the B series by showing the isosurface of
vorticity |ω| = 4σ (ω), where σ is the corresponding standard deviation. The energy E of both fields
is the same, but the integral scales are � = 1.54R and 0.32R, respectively. Visibly, the � = 0.32R

case features smaller scale vortices which are more densely distributed in the periodic box.
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TABLE I. Properties of the homogeneous isotropic turbulence fields (time averaged over several eddy-
turnover times) used as inflow perturbations for the insect. The rightmost column shows the number of
realizations NR used in tethered and free flight simulations. Here, I is the turbulence intensity, which is
equivalent to the turbulent kinetic energy, � is the integral scale, λ is the Taylor microscale, η is the Kolmogorov
scale, and T0 is the eddy turnover time. All quantities are given in units of wing length R and wing beat
duration T .

NR

Series I � [R] λ [R] η [R] T0 [T ] Reλ kmaxη Tethered Free

A 0.16 0.77 0.25 0.013 3.67 90 1.72 4 3
0.33 0.77 0.18 0.008 0.19 129 1.07 5 16
0.60 0.76 0.13 0.005 0.98 177 0.99 9 9
0.99 0.76 0.11 0.004 0.62 227 0.94 27 6

B 0.33 1.54 0.26 0.01 3.62 186 1.32 10a –
0.33 0.77 0.18 0.008 1.91 129 1.07 5 16
0.33 0.32 0.11 0.006 0.77 82 1.70 5 15

aWe computed two runs with four insects and an additional two runs with only one and two additional runs
with only one insect.

C. Bumblebee model

In our numerical simulations, we use a model bumblebee in forward flight at u∞ = 2.5 m/s
as archetype for medium-sized insects. The Reynolds number is Re = U tipcm/νair = 2060, where
U tip = 2�Rf = 8.05 m/s is the mean wing-tip velocity, cm = 4.012 mm is the mean chord length,
νair = 1.568×10−5 m2/s is the kinematic viscosity of air, R = 1.32×10−2 m is the wing length,
f = 152 Hz (T = 1/f = 6.6 ms) is the wing-beat frequency (T is duration), and � = 115◦ is
the wing-beat amplitude. The model is described in greater detail elsewhere [16, Suppl. Mat.].
The mass of the insect is m = 175 mg, the gravitational acceleration g = 9.81 m/s2, and the
moments of inertia of the body are J

(b)
roll = 1.14×10−9 kg m2, J (b)

yaw = 4.33×10−9 kg m2, and J
(b)
pitch =

4.18×10−9 kg m2. We use the superscript (b) when referring to the body reference frame.
We perform two types of simulations, one where the insect is anchored to the virtual wind tunnel

(tethered flight) and one where its motion is computed from fluid forces and moments (free flight)
as well as gravity. The governing equation for the free flight case is Newton’s second law of motion

FIG. 4. Two HIT fields from the series B, both with identical turbulent kinetic energy (and hence turbulence
intensity I ). Visualized is the isosurface |ω| = 4σ (ω) of vorticity magnitude, where σ is the standard deviation.
Insets show visual comparison of wing length R, integral scale �, and Taylor microscale λ.
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t/T=0.9t/T=0.8t/T=0.7t/T=0.6t/T=0.5

FIG. 5. Visualization of the bumblebees prescribed flapping motion every 0.1T time steps.

for linear and angular motion. For the latter, we use a quaternion ansatz to avoid the Gimbal lock
problem. Gimbal lock occurs when two rotation axis become parallel and the system loses one
degree of freedom. The detailed set of 13 first-order ODEs can be found in Ref. [42]. In both free
and tethered flight, we prescribe an identical wing motion relative to the body, as illustrated in Fig. 5.
The wing motion is identical for all wing beats. The wings and body are assumed to be rigid.

Our bumblebee model responds in the free flight case, unlike real animals, entirely passively to
perturbations. Therefore, we limit the simulation time to the order of magnitude of the reaction time
delay τreact in those animals. After this delay, the insect may employ active steering mechanisms
and modify the wing beat or body posture. Previous studies on freely flying honeybees reported
response delays of approximately 20 ms or 4.5 stroke cycles, suggesting the use of ocellar pathways
for body stability reflexes in this species [48]. By contrast, recent work [26] suggests reaction times
of about 5 ms in fruit flies. The precise delay in bumblebees is unknown but expected to be of the
same order of magnitude as in honeybees. Therefore, we simulate eight stroke cycles (52.6 ms)
in a simulation, thus allowing quantification of the response for any τreact � 8T . Notably, we do
not know exactly under which conditions insects react at all to perturbations, or simply accept
the externally imposed change in flight direction and orientation. An example for this is shown in
Ref. [14], where bumblebees are found to ignore aerial perturbations when approaching a cylinder.

D. Governing equations and numerical method

The present work relies on numerical simulations. We directly solve the incompressible Navier-
Stokes equations without any a priori turbulence models. All scales of fluid motion are fully resolved
in time and space. In this section, we describe briefly the numerical method we use, for reasons of
self-consistency. For further details, the reader is referred to Ref. [42].

We employ a Fourier pseudospectral method for spatial discretization and a second-order Adams-
Bashforth scheme for time advancement. The spectral discretization is fast and accurate [49] and is
particularly useful in our case as the Laplace operator becomes diagonal in Fourier space. Hence, the
solution of a Poisson problem is trivial in Fourier space. To include the no-slip boundary conditions
on the time-varying geometry we use the volume penalization method [50]. This allows us to
maintain the advantages of the Fourier discretization. Hence, we solve the penalized Navier-Stokes
equation

∂tu + ω × u = −∇� + ν∇2u − χ

Cη

(u − us )

︸ ︷︷ ︸
penalization

− 1

Csp
∇ × (χspω)

∇2︸ ︷︷ ︸
sponge

, (1)

∇ · u = 0, (2)

u(x, t = 0) = u0(x), x ∈ �, t > 0, (3)
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where u is the fluid velocity and ω = ∇ × u is the vorticity. We normalize the density ρf to unity.
The nonlinear term in Eq. (1) is written in the rotational form. Hence, we are left with the gradient of
the total pressure � = p + 1

2u · u instead of the static pressure p [49]. This formulation is chosen
because of its favorable properties when discretized with spectral methods, namely conservation
of momentum and energy [49, p. 210]. At the exterior of the computational domain, we assume
periodic boundary conditions. The domain is sufficiently large to minimize the effect of periodicity.

The mask function χ is defined as

χ (x, t ) =
{

0 if x ∈ �f

1 if x ∈ �s
, (4)

where �f is the fluid and �s is the solid domain. Note that in the fluid domain �f , the original
equations hold as the penalization term χ

Cη
(u − us ) vanishes. The convergence proof in Refs. [50,51]

shows that the solution of the penalized Navier-Stokes equations (1)–(3) tends for Cη → 0 indeed
toward the exact solution of Navier-Stokes imposing no-slip boundary conditions. Here, we use
Cη = 2.5×10−4. We also add a second penalization term for the vorticity ω, which we call sponge
term. The sponge gradually damps the vorticity in regions where χsp = 1. The sponge constant is
set to Csp = 10−1.

In the case of free flight, we compute the position and orientation of the insect from the
aerodynamic forces and moments using a quaternion-based formulation. We integrate the resulting
ODE system time using the same Adams-Bashforth scheme as for the fluid. More details about
the numerical method and its implementation in the open-source code FLUSI [52] can be found in
Ref. [42], along with detailed validation cases. In addition, Appendix shows the convergence of the
forces for decreasing wing thickness of a flapping wing.

III. RESULTS AND DISCUSSION

In the following subsection, we present and discuss the results of two types of simulations,
tethered and free flight. We use both cases to investigate the influence of turbulence on the insect
when varying either the intensity or the length scales of the turbulent inflow perturbations. We start
with the tethered cases, which serve as references for the free flight cases. In numerical simulations,
the tethered case is the idealized limit of perfect control. In experimental work, where the animals
are fixed using a material tether, usually a thin wire glued to the back, the insects lack the sensor
feedback present in free flight. The wing kinematics might then be very different from what an insect
uses in free flight [53]. However, note that our tethered simulations are based on wing kinematics
measured in free flight [54,55]. They are thus equivalent to a tethered insect that flaps as if it were
in free flight.

A. Tethered flight

1. Influence of turbulence intensity at fixed length scales

We first study the influence of I at constant integral scale �. The insect is tethered and we
used the series A of turbulence fields, as presented in Ref. [16]. Their properties are summarized
in Table I. We fix the integral scale and vary the turbulence intensity I , which also results in an
increasing Reynolds number Reλ and reduced eddy turnover time. Figure 6 illustrates the obtained
results for forces [Figs. 6(a)–6(c)], moments [Figs. 6(d)–6(f)], and aerodynamic power [Fig. 6(g)].
We choose the box plot representation, first introduced in Ref. [56], to visualize the data. Each of the
NR realizations yields Nw independent cycle-averaged forces and moments (Table I). The median
value of the data are remarkably close to the value in the laminar case (dashed line) for all quantities,
even in the strongest inflow turbulence. This indicates that turbulence does not systematically alter
the vortex dynamics generated by the flapping wings of the insect. This vortex system features
the leading edge vortex that results from the typically high angle of attack (here roughly 50◦)
[57–59]. The leading-edge vortex remains attached to the wing in unperturbed conditions, and in the
simulations with turbulent inflow it is not systematically detaching neither. Owing to the decreased
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FIG. 6. Tethered flight in turbulence. The integral scale is � = 0.77R and I varies between 0 and 0.99.
Cycle averaged values are represented by box plots. Each of the NR simulations yields four data points, one
for each cycle. In the colored boxes, the line is the median (or two-quantile) of the data, and the limits of
the box are the upper and lower quartiles (or four-quantile). The additional vertical line are min/max values
excluding outliers, which are shown as individual points with a ♦ marker. Aerodynamic quantities are forces
[(a)–(c), normalized by mg], moments [(d)–(f), normalized by mgR], and aerodynamic power [(g), in W/kg
body mass]. The dashed line corresponds to the laminar case (I = 0) where the insect is aligned with the mean
flow.

pressure in its core, this vortex provides a boost for the aerodynamic forces, especially the lift force.
Thus, its detachment or destruction would result in a significant change in forces, moments, and
power. Compared to an airfoil, where upstream turbulence can trigger transitions in the boundary
layer or impact flow separation, this behavior is thus different. However, fluctuations occur, as
represented in Fig. 6 by the colored boxes and the min-max values. With increasing turbulence
intensity, those fluctuations become larger. We conclude that flapping flight in turbulence faces
insects more with a problem for control rather than deteriorated force production [16].

2. Influence of turbulent length scales at constant intensity

With the results of Ref. [16], we now further explore the influence of turbulent length scales
on tethered flight and use the series B from Table I, where we fixed I = 0.33. This particular
intermediate value of I does not require a large number of flow realizations for any tested value
of �, which allows keeping the computational cost within acceptable limits. Furthermore, field
experiments [17] show a large flight activity of bumblebees for this value of I .

Figure 7 illustrates the cycle-averaged forces, moments, and power as a function of �. The
median values are close to the values in laminar inflow (dashed line), which is consistent with
the findings in Ref. [16] and Fig. 6. For any quantity, fluctuations are significantly reduced at
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FIG. 7. Tethered flight in turbulence. The turbulence intensity is I = 0.33 and the integral scale � varies
between 0.32R and 1.54R. Cycle averaged values are represented by box plots. Each of the NR simulations
yields four data points, one for each cycle. In the colored boxes, the line is the median of the data, and the limits
of the box are the upper and lower quartiles. The additional vertical line are min-max values excluding outliers,
which are shown as individual points with a ♦ marker. Aerodynamic quantities are forces [(a)–(c), normalized
by mg], moments [(d)–(f), normalized by mgR], and aerodynamic power [(g), in W/kg body mass]. The dashed
line corresponds to the laminar case (I = 0) where the insect is aligned with the mean flow.

� = 0.32R (blue), compared to the other two cases. The lateral [Fig. 7(b)] and lift [Fig. 7(c)]
forces exhibit the largest fluctuations for � = 0.77R, while the fluctuations in thrust [Fig. 7(a)]
are of the same magnitude in both cases. For the aerodynamic torques [Figs. 7(d)–7(f)], the largest
fluctuations appear for � = 1.54R with standard deviations σ = 0.104, 0.095, and 0.076 for the roll
(Mx), pitch (My), and yaw (Mz) moments, respectively. The yaw moment is slightly less sensitive to
perturbations but remains of the same order of magnitude. The aerodynamic power Paero [Fig. 7(g)]
displays the same behavior as the forces, with � = 0.77R resulting in the largest fluctuations.
However, in that case, σ (Paero)/P aero = 0.05, while for the vertical force σ (Fz)/F z = 0.2. The
power thus fluctuates little.

These results suggest a reduced sensitivity to turbulence at smaller scales, expressed in a
reduction of more than a factor of 2 in the magnitude of fluctuations at the same turbulence
intensity. This is in agreement with the conjecture stated in Ref. [13] that perturbations which
are small compared to the animal average out over the body and thus induce less perturbations.
To further explore the effect of �, we illustrate in Figs. 8(a) and 8(b) the flow for the coarsest
and finest turbulent case. Vortical structures are visualized by the Q criterion [60]. For both inflow
conditions, we plot the same relative isosurface using the standard deviation σ , Q = 0.7σ (Q), to
identify vortices. In the coarser turbulence, less vortex tubes can be identified in the region between
the inlet and the insect than in the smaller scale case, and the tubes are of similar diameter. This
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(a) (b)

(d)(c)

FIG. 8. Tethered flight in turbulence. Left column, I = .33 and � = 1.54R; right column, I = .33 and
� = 0.32R. [(a), (b)] An isosurface of the Q criterion is shown to visualize vortical structures. In the case
of � = 1.54R (a), fewer vortices are identified upstream of the insect. [(c), (d)] Corresponding pressure field,
where the pressure from the laminar inflow has been subtracted, �p = pturb − plam. Compared to the � =
0.32R case (d), variations in pressure are of the same order of magnitude but on a larger spatial scale in the
� = 1.54R case (c).

may lead to the visual intuition that the smaller scale turbulence has a larger impact on the insect.
However, the pressure field, illustrated in Figs. 8(c) and 8(d) as the difference in pressure between
the turbulent and laminar realization, �p = pturb − plam, confirms that pressure fluctuations are
of similar magnitude in both cases, while the spatial scale differs significantly. The coarser scale
turbulence is associated with much larger scales of the pressure variations, which therefore have
less chance of canceling out over the region of the insect.

B. Free flight

We now consider our model in free flight with all six degrees of freedom coupled to the flow
solver, neglecting active control. This configuration is more realistic for real insects, since they
cannot react instantaneously to changes in the flow condition. Reaction rather takes place after a
time delay τreact, during which sensor information is converted to changes in wing beat for active
countermeasures (see Sec. II C). Therefore, the insect behaves passively during this interval, similar
to what our model does. The orientation and linear and angular velocities after τreact can thus yield
insight into the effort required for corrective maneuvers.
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(a)

(b)

(c)

(d)

FIG. 9. Free flight in turbulent inflow, I = 0.16 (a), 0.33 (b), 0.60 (c), and 0.99 (d), for fixed � = 0.77.
Time evolution for the magnitude of body angular velocity. Individual realizations are shown as thin, gray,
dashed lines. Ensemble averaged time evolution is represented by the thick green line and the light green
shaded background illustrates the standard deviation. The red dashed line corresponds to the laminar case.

1. Influence of turbulence intensity at constant length scales

After revisiting the problem of a tethered bumblebee in turbulence and studying the same model
in free flight and laminar inflow, we now turn to free flight in turbulence. We first keep � = 0.77R

fixed for these simulations and alter the energy content of the imposed velocity fluctuations (series
A in Table I). In free flight, force and moment fluctuations are transduced to linear and angular
velocities, which in turn alter the forces and moments. It can be seen as the limiting case of no flight
control, while tethered flight can somehow be seen as a limit of perfect control using external force,
in the sense that attitude is perfectly stabilized while neglecting the necessary changes in wing beat.

Figures 9(a)–9(d) show the magnitude of the body’s angular velocity, �
(b)
b , as a function of time

for the four different turbulence intensities I = 0.16, 0.33, 0.60, and 0.99. At the lowest turbulence
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FIG. 10. Free flight in turbulent inflow. Shown are the yaw (a), pitch (b), and roll (c) components of the
body angular velocity, averaged over the last computed cycle, as a function of the turbulence intensity. Data
are represented by a box plot. In the colored boxes, the line is the median of the data, and the limits of the
box are the upper and lower quartiles. The additional vertical line correspond to min-max values excluding
outliers (♦).

intensity [Fig. 9(a)], fluctuations remain small and the overall time evolution resembles the laminar
case, in which only the pitch component of �

(b)
b is nonzero owing to lateral symmetry, although

the difference grows in time. The first stroke is virtually unaffected as perturbations have not yet
been advected to the insect. From the next larger value of I in Fig. 9(b), the resemblance to the
laminar case disappears. The terminal value of the ensemble averaged angular velocity increases
from 829◦/s at I = 0.33 [Fig. 9(b)] to 2300◦/s at I = 0.99 [Fig. 9(d)]. In the laminar case, peak
values of 470◦/s are found. It can be seen that after an initial growth phase, which takes place
roughly in the first two strokes, the average angular velocity remains roughly constant; thus, it is
limited by aerodynamic damping.

Figure 10 shows the components of the angular velocity vector, averaged over the last cycle
7 � t/T � 8, as a function of the turbulence intensity. The magnitude of the mean value as well as
fluctuations increase with increasing I , but no relevant difference among the three directions can be
observed. We thus do not observe a significantly increased roll angular velocity [Fig. 10(c)], despite
the lower moment of inertia around this axis.

We find the largest magnitude of linear velocity |u(b)
b |/u∞ = 0.06 ± 0.04 for the highest

turbulence intensity (I = 0.99, � = 0.77R). It can be concluded that, even for the largest turbulence
intensity, the translational response of the bumblebee is small compared to the flight speed.
Therefore, the changes in position xcntr are small within the time span of the computations, i.e.,
8T . The impact of turbulence on the angular degrees of freedom is thus much higher than on the
linear ones.

2. Influence of turbulent length scales at constant intensity

As for the tethered case, we fix I = 0.33 and vary the integral scale � of the turbulent inflow
perturbations. Figure 11 shows the angular velocity components for the case I = 0.33, � = 0.77R

[Figs. 11(a)–11(c)] and � = 0.32R [Figs. 11(d)–11(f)]. Each realization is shown as a thin gray line,
and the reference computation in laminar flow is shown as red dashed line. All realizations result
in a different attitude of the insect, though the turbulence fields have identical statistical properties.
The ensemble-averaged time evolution (solid green lines) is however remarkably close to what is
seen in laminar inflow. Standard deviations among the realizations (green shaded area) increase with
time, as turbulent inflow perturbations are imposed continuously.

Ensemble-averaged angular orientation, expressed in term of the body angles, does not change
significantly for ψroll and ψyaw, while βpitch has changed by 8.5◦. Fluctuations are largest for yaw
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FIG. 11. Free flight in turbulent inflow, I = 0.33: [(a)–(c)] � = 0.77R and [(d)–(f)] � = 0.32R. Time
evolution of the three components of the angular velocity vector of the body, in the body system �

(b)
b . Angular

velocities are given in ◦/s for easier comparison with results in the literature. Individual realizations are shown
as thin gray lines. Ensemble-averaged time evolution is represented by the thick green line, and light green
shaded background illustrates the standard deviation. The thick red dashed line corresponds to the laminar
case.

(15.4◦), followed by pitch (11.0◦) and roll (10.3◦). The values are, however, close to each other,
such that the difference is not significant.

For all components, the standard deviation of the angular velocity �
(b)
b first grows in time, until

some saturation is reached. The initial growth rate is largest for the roll component [Fig. 11(a)],
which presents large fluctuations at t = 2T already. By this time, the pitch component [Fig. 11(b)]
has almost vanishing fluctuations and those in yaw [Fig. 11(c)] are significantly smaller. The insect’s
motion is damped by the viscous fluid, and thus the magnitude of the angular velocity remains
bounded.

Figures 11(d)–11(f) show the same quantities as Figs. 11(a)–11(c) for the case � = 0.32R. While
the qualitative behavior is similar, the magnitudes of both changes in angular orientation and angular
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FIG. 12. Free flight in turbulent inflow. Yaw (a), pitch (b), and roll (c) components of the body angular
velocity, averaged over the last computed cycle, as a function of �. Data are represented by a box plot. In the
colored boxes, the line is the median of the data, and the limits of the box are the upper and lower quartiles.
The additional vertical line is min-max values excluding outliers (♦).

velocities of the body (�(b)
b ) are significantly reduced. For example, γyaw = 20◦ in the � = 0.77R

case is reduced to 2.5◦. The fluctuations in roll angular velocity grow quickest.
From the direct comparison of the two cases, we can confirm the conclusions from the tethered

simulations also in the free flight case. The reduced integral scale significantly reduces the impact of
the flow on the insect’s attitude. Figure 12 shows the magnitude of the different components of the
angular velocity and confirms that conclusion. Furthermore, as the 95% confidence intervals of the
different directions overlap for both values of �, again no direction with statistically significantly
increased magnitude can be observed. It appears thus from Fig. 11 that while the roll angular
velocity grows quickest, its terminal value is not significantly larger than the other two components,
yaw and pitch.

A key advantage of numerical work is that we can exclude any voluntary motion that might be
used, e.g., for distance estimation [14]. However, at this point, we cannot give a quantitative estimate
for the limit of stable flight in turbulent conditions. The first uncertainty concerns the degree of
desired control. Experimental work [14] suggests that bumblebees passively ride out small-scale
perturbations and actively impose a long-wavelength casting motion. It thus seems that real animals
are somewhat behaving between the two limiting cases of tethered and free flight. This can also
result from energetic considerations as allowing for a certain amount of deviations may reduce
overall energetic cost.

The role of the reaction time delay appears to be the second crucial factor for evaluating the
stability. Our free flight data show that fluctuations in angular velocity grow quickest for the roll
axis, which is a consequence of the reduced moment of inertia. Figures 11(a) and 11(c) show that
the roll component has reached its saturation at about t = 2T . Beyond this time, damping inhibits
further growth, possibly via the flapping countertorque (FCT) mechanism [18,61]. This does not
imply any bound for changes in body angles, which continuously grow in time. However, without
the damping, the angular velocities are expected to grow continuously, leading to much greater
changes in orientation.

Experimental work [48] showed that honeybees (Apis mellifera) use angular velocities for roll,
pitch, and yaw of 3090, 697, 1874 ◦/s, respectively, during the active recovery phase after being
perturbed with a strong wind gust. The magnitude of this angular velocity is 3680 ◦/s, which is
higher than the largest value we find in our simulations (Fig. 9) and also higher than the 2060 ◦/s
reported in Ref. [48] during the passive phase directly after the perturbation. The associated reaction
time is stated as 3.5T < τreact < 6T . Besides differences in species (we are not aware of data
available for bumblebees in the literature), the study cannot directly be used to define a threshold
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for the angular velocity beyond which the animals cannot recover. In addition, flying in turbulence
imposes continuous perturbations, while the authors of Ref. [48] studied the effect of a singular gust.

IV. CONCLUSIONS AND PERSPECTIVES

We numerically studied the impact of turbulence on a model insect, using high-resolution
numerical simulations on massively parallel machines. Both tethered and free flight without control
have been considered, using a bumblebee model with rigid wings and prescribed wing-beat
kinematics. The inflow condition ranged from laminar to turbulent, and in the latter we varied
the turbulence intensity as well as the spectral distribution of the turbulent kinetic energy. For
the turbulent inflows, we performed ensemble averaging to obtain statistical estimates of forces,
moments, and power in the tethered case and body orientation and velocities in the free flight case.

In tethered flight, we have statistically estimated that the turbulent inflow does not induce the
detachment of the leading-edge vortex. This is true even in the strongest turbulence case and has
already been shown in our previous work [16]. In addition to the turbulence intensity, here we
found the spectral distribution of turbulent kinetic energy to be a significant parameter to be taken
into account. If the integral scale of the inflow is smaller than the wing length, we found that
statistically perturbations are reduced for forces, moments, and power, compared to turbulent inflow
with larger integral scale. We have demonstrated that the pressure field of the turbulent perturbations
is associated likewise with large-scale variations if the integral scale is large. The positive- and
negative-pressure perturbations have thus less chance of canceling out over the body, which induces
larger fluctuations.

Using free flight simulations, we first checked that our model remains stable for laminar inflow
condition. In turbulent inflow, we confirmed the finding from the tethered flight. We found that
changes in body orientation and angular velocity are highly sensitive to variations in the turbulence
spectrum. For constant turbulence intensity, a smaller integral scale results in much smaller angular
velocities and changes in orientation. By modifying the turbulence intensity at fixed integral scale,
we showed how the angular velocities increase when the perturbations become stronger. In all free
flight simulations, we found the translation of the insect to be small compared to its rotational
motion.

Collectively, our findings suggest that the scales of turbulent motion have a significant effect on
the aerodynamics of flapping flight and should hence be considered in future contributions on this
topic.

In perspective, we plan to overcome the limitations of the current study and specifically include
the effects of both wing flexibility and flight control. Moreover, since our results have been obtained
using a single species, namely a bumblebee, the generalization to other insects is another important
direction for future work. Finally, we aim to replace the homogeneous isotropic turbulence, which
is a valuable starting point, by generic turbulent flows even more relevant to insects, e.g., flower
wakes.
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APPENDIX: CONVERGENCE TO AN INFINITESIMALLY THIN FLAPPING WING

In this Appendix, we study the convergence of our numerical scheme in the limit of infinitesi-
mally thin wings. We choose the same wing geometry as in the rest of the article, with the same
kinematics, but simulate only one wing without the insect’s body. The domain size is reduced to
2×2×2 in order to be able to reach high resolutions. The thickness of the wing is hw/R = ct�x

where we set the constant Ct = 4. As no reference solution is available, we instead use the solution
on the finest grid. As described in Ref. [42], the penalization parameter Cη = (Kη�x)2/ν is reduced
with increasing resolution, in order to achieve optimal results. The constant is Kη = 7.4 · 10−2. We
perform five simulations with resolution 1923, 3843, 5123, 7683, and 10243, with hw/R ranging
from 4.2% to 0.78%. The error is evaluated as

ε =
∫ 2T

0
(Fi − Fref,i )dt

/ ∫ 2T

0
Fref,idt.

Figure 13 shows the resulting convergence. For all components, we find qualitatively the same
behavior and an order of about 1.5. We can hence conclude that the penalization method retains its
accuracy also in the limit of thin flapping wings.
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