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We present a new numerical scheme for the simulation of deformable objects immersed in a viscous
incompressible fluid. The two-dimensional Navier–Stokes equations are discretized with an efficient Fou-
rier pseudo-spectral scheme. Using the volume penalization method arbitrary inflow conditions can be
enforced, together with the no-slip conditions at the boundary of the immersed flexible object. With
respect to Kolomenskiy and Schneider (2009) [1], where rigid moving obstacles have been considered,
the present work extends the volume penalization method to account for moving deformable objects
while avoiding numerical oscillations in the hydrodynamic forces. For the solid part, a simple and accu-
rate one-dimensional model, the non-linear beam equation, is employed. The coupling between the fluid
and solid parts is realized with a fast explicit staggered scheme. The method is applied to the fluttering
instability of a slender structure immersed in a free stream. This coupled non-linear system can enter
three distinct states: stability of the initial condition or maintenance of an either periodic or chaotic flut-
tering motion. We present a detailed parameter study for different Reynolds numbers and reduced free-
stream velocities. The dynamics of the transition from a periodic to a chaotic state is investigated. The
results are compared with those obtained by an inviscid vortex shedding method [2] and by a viscous
linear stability analysis [3], yielding for both satisfactory agreement. New results concerning the transi-
tion to chaos are presented.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In nature inspired fluid dynamics, the complex interaction of
some deformable structures with an ambient flow is a common-
place problem. Whether it is gliding, swimming or flying, many
types of animal locomotion strongly rely on this type of interaction
[4]. The archetype problem of fluid–structure interaction is the
flapping of a flag in the wind, attracting researchers due to its rich-
ness in phenomena. Indeed, a flag exhibits a large variety of possi-
ble regimes, depending on its material parameters and the
surrounding flow. It can be aligned with the flow in a stable state,
or flap dynamically. The latter state can further be subdivided into
highly regular and chaotic motion patterns. In some parameter
ranges, also bistable behavior has been reported, where the
dynamically selected state depends on the initial conditions.

Natural swimmers and flapping flyers exploit a combination
of active and passive flapping to improve their flight performance
[5–7], a source of inspiration for various investigations. Also, aside
from locomotion, the fluttering instability occurs in other biologi-
cal applications. Huang [8] first pointed out that flutter is encoun-
tered in the upper human airways, where the soft palate separates
nasal and oral inflow. The instability manifests itself in the occur-
rence of snoring or, in severe cases, obstructive sleep apnoea/
hypopnea.

In engineering, the flutter phenomenon occurs as a problem in
printing machines, where flutter limits the speed for moving
sheets [9]. However, it is not only destructive and perturbing if
flutter occurs in technical applications. The concept of a flutter-
mill, a small scale device for energy harvesting, is based on the fact
that if the instability threshold is exceeded, energy is pumped con-
tinuously into the structure. This energy, originating from the
mean flow, can partly be harvested and used for power generation
[10,11].

The past decades have seen an increasing variety of theoretical
treatments, providing further insight into the phenomenon. One
of the earliest works falling into this category was done by Kornecki
et al. [12], where the instability has been analyzed using a potential
flow with a linear solid model, see also [13] with improved com-
puter accuracy. Eloy et al. [13] also developed a three-dimensional
volume
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Fig. 1. Fluid–structure configuration with constant uniform mean flow and a
clamped flexible beam. The rectangular computational domain X comprises the
fluid domain Xf, the solid domain Xs and the sponge layer Xsp.
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finite-span model and explained why the two-dimensional theoret-
ical predictions are not observed experimentally. There is also a vis-
cous stability analysis available, developed by Connell and Yue [3],
which we will also use for comparison. The same study presents
some explanation for the bistable character, yet this question is
not completely understood. For an exhaustive review on theoretical
stability analysis, we refer to [14,15].

Since the pioneering experiments performed by Taneda [16],
dealing with a flag in a wind tunnel, several experimental studies
have been published. Shelley et al. [17] studied the problem in a
water tunnel and found the flapping frequency to increase linearly
with the inflow velocity, a fact that is observed also in the present
work. Eloy et al. [13] performed wind-tunnel experiments and con-
firmed their state-of-the-art analysis, taking a finite span into
account.

Since fluid–structure interaction is computationally challeng-
ing, both in terms of computational power and numerical model-
ing, the numerical simulations concentrate mostly on the last
decade. They can be subdivided in two major categories, depend-
ing on the fluid model: inviscid and viscous approaches.

Among the inviscid methods, i.e. methods that are using some
kind of approximation for the fluid instead of evaluating the com-
plete Navier–Stokes equations, two examples are the vortex sheet
method presented by Alben [6] and the discrete vortex shedding
method developed by Michelin et al. [18]. The latter is used for
comparison with present results.

One of the first simulations solving the complete Navier–Stokes
equation was developed by Zhu and Peskin [19]. They used a new
version of the immersed boundary method to take the structure
into account, incorporating its mass as a delta function layer of
the fluid density. Their simulations, performed at Re = 200, showed
that a minimum mass of the filament is required to sustain flap-
ping and that bistability depends on the filament’s length. The lat-
ter observations are in agreement with the experiments of Zhang
et al. [20]. Sawada and Hisada [21] also reproduced the experi-
ments of Zhang et al. [20] using an arbitrary Lagrangian–Eulerian
approach. The immersed boundary method for the filament has
been improved by Huang et al. [22]. The latter study also consid-
ered two foils, coupled by the ambient fluid.

A different approach was employed by Connell and Yue [3],
based on body-fitted grids. They confirmed that a massless fila-
ment is always stable and found good agreement with the viscous
linear stability analysis presented in the same work. This study is
the most detailed one considering the complete Navier–Stokes
equations, but rather coarse grids have been used.

Balint and Lucey [23] focused on the application to snoring and
airway collapse, their numerical simulations are performed at a
Reynolds number in the same range as in the present paper. The
beam was modeled using a simple linear model for the solid. An-
other type of solid model is also employed in the work of Farnell
et al. [24], where the beam is represented by an ensemble of tiny
rigid objects, connected by springs. This approach apparently re-
quires more development, especially in tuning the parameters.

The main novelty of the present work is the extension of a vis-
cous incompressible fluid solver previously developed in [1] to
take flexible solids into account. A fluid–structure coupling tech-
nique is proposed that is compatible with the volume penalization
method and Fourier pseudo-spectral discretization. The coupled
fluid–structure interaction solver is applied to study the flutter
problem. We present high-resolution simulations that resolve the
far field of the flow as good as the vicinity of the structure. More-
over, the spectral discretization does not introduce numerical dis-
sipation. The simulations show that a chaotic state does not
necessarily have to occur directly after the initial perturbation,
but that it rather can take a finite time, during which the flapping
Please cite this article in press as: Engels T et al. Two-dimensional simulation
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is periodic, before developing such a state. This result is obtained
using a time–frequency decomposition based on wavelets.

The remainder of this article is organized as follows. In Section 2
we describe the computational setup and the governing equations
for both the fluid and the solid part, as well as the volume penali-
zation method. Numerical algorithms used to solve the coupled
problem are presented in Section 3. In Section 4, we then apply
our new method to the fluttering instability. Numerous simula-
tions are performed to explore the influence of the Reynolds num-
ber and the reduced inflow velocity on the non-linear dynamics of
the coupled fluid–structure system. Finally, some conclusions are
drawn in Section 5.

2. Setup and governing equations

2.1. Computational setup

The computational setup for our simulations is illustrated in
Fig. 1. The slender structure, Xs, is clamped at its leading edge
and placed on the axis of symmetry. Its thickness is assumed to
be small, such that the finite thickness t entering the simulation
is a numerical parameter rather than a physical one, as explained
in Section 3.1.4. The distance x0 is one chord length ‘.

The mean flow in the fluid Xf is parallel to the initially unde-
formed, straight structure. At all four boundaries of the domain
we impose homogeneous Dirichlet conditions on the vorticity
using a sponge technique acting on the domain Xbc, as specified
in Section 3.1.2.

The flow is given a sufficiently long time to develop a boundary
layer in the vicinity of the fluid–solid interface. Then, an external
force is applied on the structure, bending it downwards to break
the symmetry. Depending on the system parameters, the beam
may return to its rest position (stable) or sustain either a periodic
or chaotic flutter motion.

For convenience, we render all equations and quantities dimen-
sionless, with the free-stream velocity u1, the fluid density .f and
the beam length ‘ being the set of reference values. Three dimen-
sionless parameters determine the response to the initial perturba-
tion: the Reynolds number Re and two parameters characterizing
the elastic material, its normalized bending resistance g, and den-
sity l, given by

Re ¼ u1‘
m
; l ¼ h.s

‘.f
; g ¼ Eh3

12‘3.f u2
1
; ð1Þ

respectively. Here, .s is the solid density, E its Young’s modulus and
h the (physical) height of the cross section, which is not the same as
the numerical thickness t that is used to define the geometry of the
problem, cf. Fig. 1. Due to the normalization, both l and g charac-
terize the solid material as much as the fluid flow.
of the fluttering instability using a pseudospectral method with volume
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2.2. Fluid model

We consider an incompressible Newtonian fluid with constant
density, in the fluid domain Xf, governed by the Navier–Stokes
equations. No-slip boundary conditions at the fluid–solid interface
@X and an initial condition complete the problem

@tuþ ðu � rÞu ¼ �rpþ 1
Re

Du; r � u ¼ 0;

uj@X ¼ usðs; tÞ; uðx; t ¼ 0Þ ¼ u0ðxÞ:
ð2Þ

The interface is allowed to move and to deform, interacting in non-
linear fashion with the surrounding fluid and thereby constituting
the numerical challenge of the problem at hand. Numerous compu-
tational techniques are available for its solution, for example one
could use a rather traditional approach using body-fitted, struc-
tured or unstructured grids [25,26]. This comprises a complicated
re-meshing process and data transfers between different grids.
There are some alternative approaches that allow to avoid re-mesh-
ing, such as the Lattice-Boltzmann solvers, Smooth Particle Hydro-
dynamics or vortex methods. Another popular approach is the use
of ALE (arbitrary Lagrangian–Eulerian) methods, that also avoid
remeshing, see for example [27]. It is also possible to keep the Eule-
rian description of the fluid and use immersed boundary methods
to account for the moving boundaries. This approach is chosen in
the present work.

We use the volume penalization method to treat the no-slip
boundary conditions. In general, penalization methods consist in
embedding the original, complex spatial domain into a bigger do-
main with simple geometry, cf. [28,29]. The boundary conditions
are then enforced by supplementary terms in the original equa-
tions. In particular, the volume penalization method uses the Darcy
force to model the solid objects. This is inspired by the idea of con-
sidering impermeable walls as permeable ones with small, and, in
the limit, vanishing permeability. The main advantage of this pro-
cedure is the fact that now all information about the geometry is
included in the penalization term, hence there is no need to ac-
count for it when discretizing the equations. This method has first
been proposed by Arquis and Caltagirone [30] for flows in porous
media. Angot et al. [31] presented a mathematically rigorous proof
for the convergence of the penalized incompressible Navier–Stokes
equations to the original equations with no-slip boundary condi-
tions. The rate-of-convergence estimates were refined by Carbou
and Fabrie [32]. The penalization method has been used success-
fully to compute the flow around fixed obstacles of complex shape,
see for example [33–35], and extended to simulate moving, rigid
objects by Kolomenskiy and Schneider [1].

The penalized version of (2) reads

@tuþ ðu � rÞu ¼ �rpþ 1
Re

Du� v
e
ðu� usÞ; r � u ¼ 0; ð3Þ

The Darcy penalization term, v/e(u � us), contains all the geom-
etry of the problem. The mask function v is v = 0 if x 2Xf and v = 1
if x 2Xs, where us(x, t) is the velocity of the solid and x 2X the po-
sition vector. The parameter e is the penalization parameter, phys-
ically interpreted as the permeability of the solid. The solution of
the penalized problem converges to the solution of the original
problem with an order of convergence of O

ffiffiffi
e
p� �

[32]. In this con-
nection it has to be emphasized that e is a numerical parameter
that can, unlike the spatial resolution, be chosen a priori as small
as necessary. For a detailed mathematical analysis of the penalized
differential operators and their discretization we refer to [36].

Another advantage is that the hydrodynamic forces can be com-
puted using volume integrals instead of evaluating surface integrals,

F ¼
Z

Xs

v
e
ðu� usÞdXþ d

dt

Z
Xs

us dX: ð4Þ
Please cite this article in press as: Engels T et al. Two-dimensional simulation
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The second contribution is the unsteady correction for moving
and deforming objects [37,1]. As we suppose the problem being
two-dimensional, it is appealing to work with the vorticity–velocity
formulation of the Navier–Stokes equations. This yields a scalar-
valued equation where the incompressibilty of the velocity field is
satisfied via the Biot–Savart relation. The penalized Navier–Stokes
equation, written in vorticity–velocity formulation, reads

@txþ ðu � rÞx ¼
1

Re
Dx�r� v

e
ðu� usÞ

� �
: ð5Þ

The velocity is determined as u =r\w + u1, where the stream-
function w is the solution of r2w = x and r\ = (�@y,@x)T is the
orthogonal gradient. The free-stream velocity is denoted by u1.
Note that u1 has to be irrotational, but it may well depend on time.
To compute the pressure field from the vorticity and the velocity,
we take the divergence of the Navier–Stokes equation in primi-
tive variables, yielding a Poisson equation for the pressure,
�r2q =r � (x � u) +r � v/e (u � us), where q = p + 0.5u2 is the
dynamical pressure.

2.3. Solid model

The solid part is considered as a slender, inextensible beam,
consisting of a linear-elastic material satisfying Hooke’s law. Such
a structure is essentially one-dimensional. We use a model that al-
lows large deflections, it hence includes geometrical non-linearity.
The structural contribution to the total dissipation is small com-
pared to the fluid’s one and therefore neglected.

The dynamics of the structure is determined by the pressure
difference between the upper and lower side of the beam, viscous
stresses are neglected. A similar hypothesis was made in [3], where
only the normal stresses were taken into account, because the nor-
mal stresses are dominated by the pressure at the regimes which
we consider here. In the vortex shedding simulations [18], viscous
tensions are not modeled neither.

These assumptions lead to two coupled non-linear partial dif-
ferential equations,

Tss � TH2
s ¼ �½p�

�Hs � 2gHsHsss � gH2
ss � lð _HÞ2 ð6Þ
l €H ¼ �½p��s � gHssss þ T þ gH2
s

� �
Hss þ 2TsHs; ð7Þ

where T is the tension inside the beam that guarantees its inexten-
sibility, [p]± is the local pressure difference between upper and low-
er side, H the local deflection angle, s 2 [0,1] the reduced arc length
coordinate, ( )s and (�) denote the derivatives with respect to s and
time, respectively. The parameters l and g are the reduced density
and stiffness, respectively, as defined in Section 2.1.

The beam is clamped at the leading edge, so its local deflection
angle is zero at this position, as well as the local acceleration. The
trailing edge is a free end, therefore all tensions are zero. Thereby
we find the complete set of six boundary conditions, yielding

H ¼ 0
Ts þ gHssHs ¼ 0
THs � gHsss ¼ ½p�� þlfext

9>=
>; at s ¼ 0;

T ¼ 0
Hs ¼ 0
Hss ¼ 0

9>=
>; at s ¼ 1; ð8Þ

where fext is the external force used to trigger the instability, as de-
scribed in Section 4.

3. Numerical method

3.1. Fluid solver

3.1.1. Spatial discretization
The spatial discretization of the penalized Navier–Stokes equa-

tions (5) is performed using a Fourier-pseudospectral scheme. The
of the fluttering instability using a pseudospectral method with volume
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vorticity and all other variables are represented as truncated Fou-
rier series,

x x; tð Þ ¼
XNx=2�1

kx¼�Nx=2

XNy=2�1

ky¼�Ny=2

x̂ðk; tÞ expðik � xÞ;

where k = (kx,ky)T. The Fast Fourier Transformation with its order
NxNylog2(NxNy) complexity is used to switch between physical and
Fourier space. Derivatives are computed in Fourier space by multi-
plication by ik and �jkj2 for the gradient and the Laplacian, respec-
tively. The non-linear term (u � r)x and the penalization term
r� v

e ðu� usÞ
� �

are evaluated by the pseudo-spectral technique
using collocation in physical space. This avoids the expensive com-
putation of convolution integrals in Fourier space. Solving a Poisson
equation, as required for the streamfunction and the pressure, re-
duces to a division by jkj2. To avoid aliasing errors, i.e. the produc-
tion of small scales due to the non-linear terms which are not
resolved on the grid, we de-aliase the vorticity at each time step
by truncating its Fourier coefficients using the 2/3 rule [38]. The
Fourier pseudospectral method offers the advantage of absent
numerical diffusion and a straightforward implementation.

3.1.2. Boundary conditions
By using this type of discretization, the computational domain

X = Xf
S

Xs
S

Xsp is assumed to be periodic in both x and y direc-
tion. This is, usually, in conflict with the physical situation and
makes the Fourier pseudospectral method solely suitable for phys-
ically periodic configurations, such as homogeneous turbulence, or
requires very large computational domains to reduce the influence
of the ghost images.

The range of applications of this discretization can be improved
with the help of the volume penalization method. All we need to
do is to use suitable penalization terms to force the desired inflow
condition.

We add a penalization term for the vorticity, i.e. vbc/ebc (x �x0),
to Eq. (5) in order to impose a Dirichlet condition on x, typically
with x0 = 0. The mask function for the sponge, vbc, is defined like
a frame around the computational domain, as illustrated in
Fig. 1. There is no need for the use of two distinct penalization
parameters, since both have the same convergence properties
and imply the same restrictions on the time step. Hence we set
ebc = e. Using this technique is particularly suitable for free-flow
configurations and therefore used for the simulations in Section 4.
Fig. 2 illustrates the effect of the sponge. In the periodic case (left),
the wake of the obstacle re-enters the domain. The penalization
term for the vorticity cancels the wake and prevents it from an
interaction with the obstacle.

3.1.3. Time discretization
Having performed the spatial discretization, we still need to dis-

cretize Eq. (5) with respect to time. It is possible to rewrite Eq. (5)
in the form of a non-linear evolution equation,

@tx�
1

Re
Dx ¼ f ðxÞ; ð9Þ
Fig. 2. Flow past an object without (left) and with (right) sponge technique. Shown is vor
is shown.
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where the convection and penalty terms are now assembled in the
non-linear function f (x). First we consider the homogeneous equa-
tion where f = 0. The Laplace operator is diagonal in Fourier space,
therefore we can easily find the exact solution of the homogeneous
equation,

x̂ðk; tnþ1Þ ¼ x̂ðk; tnÞ exp �Dt
Re
jkj2

� �
;

where the time step Dt = tn+1 � tn has been introduced. The solution
of the complete Eq. (9) is then given by

x̂ðk; tnþ1Þ ¼ x̂ðk; tnÞ exp �Dt
Re
jkj2

� �
þ
Z tnþ1

tn

� exp � s
Re
jkj2

� �
f̂ ðxðx; tnþ1 � sÞÞds:

The integral on the right hand side can be evaluated by any quadra-
ture rule. In the present work, an explicit Adams–Bashforth scheme
of second order is used. Due to its explicit nature, the time step for
this scheme is limited to dt 6min (CFLDx/umax,e) for stability rea-
sons. Note that the penalization term introduces additional stiffness
and can therefore further limit the time step, provided e is smaller
than the CFL constraint [1,33]. However, the diffusion term is trea-
ted exactly and does not impose any stability limit on the time step.

3.1.4. Time-dependent penalization
Formally, it is straightforward to apply the volume penalization

method in the case of moving and deforming obstacles, in which v
depends on time. However, discretization of the time-dependent
penalization term needs some particular treatment, as previously
demonstrated in [1] for moving, rigid objects. The problem arises
from the fact that v is actually discontinuous and can therefore
not be displaced smoothly. The minimum displacement is one grid
point, yielding a CFL number of one. This jerky motion of a discon-
tinuous mask causes large numerical oscillations in the hydrody-
namic forces. A possible way to circumvent this problem is to
shift the mask in Fourier space, as described in [1]. However, this
approach is only suitable for rigid moving bodies.

The technique used in the present work relies on using a
smooth mask rather than a discontinuous one. Hence we choose
a continuous approximation to the Heaviside function, with a cer-
tain width of the transition from one to zero. The width of this
smoothing layer decreases when the resolution increases, so the
smooth approximation gets sharper and converges, in the limit of
small Dx, to the Heaviside function. This smooth function can then
be displaced by an increment as small as desired and not limited by
the spatial resolution. Among the various possible approximations
we choose

v xð Þ ¼ 1
2

erf
t � x

d

� �
þ erf

t þ x
d

� �	 


where

d ¼ csmDx max
@v
@x

� �
¼ csmDxffiffiffiffi

p
p ½expð�4Þ � 1�:
−5

0

5

ticity with superimposed white streamlines. Only part of the computational domain

of the fluttering instability using a pseudospectral method with volume
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The parameter csm defines the thickness of the smoothing layer
in mesh widths.

3.2. Solid solver

The beam equation is solved numerically using a second order
finite difference scheme for spatial discretization. All derivatives
are approximated by central finite differences, at the boundaries
we use fourth order backward stencils. As the beam equation is
mathematically stiff, we apply a second order Crank–Nicolson
scheme, and treat all terms implicitly. This avoids the use of very
small time steps which would be required for an explicit time
marching method. The evolution equation for H, (7), contains a sec-
ond order derivative in time, and is rewritten as a first order problem,

Hnþ1

_Hnþ1

 !
¼ Hn

_Hn

� �
þ Dt

2

_Hnþ1

g Hnþ1; Tnþ1
� � !

þ
_Hn

g Hn; Tn� �
 ! !

;

ð10Þ

where gðH; TÞ ¼ �½p��s � gHssss þ T þ gH2
s

� �
Hss þ 2TsHs

� �.
l de-

notes the right hand side of Eq. (7). The inextensibility equation
for the tension T, (6), does not contain a time derivative of T. We de-
note this equation with h(H,T) and add it to the system (8) at the
new time level,

Hnþ1

_Hnþ1

0

0
B@

1
CA ¼

Hn

_Hn

0

0
B@

1
CAþ

Dt
2

_Hnþ1 þ _Hn
� �

Dt
2 g Hnþ1; Tnþ1

� �
þ g Hn; Tn� �� �

h Hnþ1; Tnþ1
� �

0
BBBB@

1
CCCCA: ð11Þ

The system (11) is a non-linear set of equations with the un-
known deflection angle H and tension T at the new time level.
To solve it numerically, we perform Newton–Raphson iterations
and use the solution of the previous time step as initial guess for
the unknowns. Performing Newton–Raphson iterations requires
the knowledge of the Jacobian, which we compute analytically.
The resulting linear systems are solved using a fast sparse matrices
solver, PARDISO, see [39]. In each time step, 2–3 iterations are per-
formed, and the computational cost of the solid solver is less than
1% of the total cost.

3.3. Numerical coupling

The numerical challenge when simulating fluid–structure inter-
action constitutes in the coupling of the two physical fields. Phys-
ically, the coupling conditions consist in the no-slip conditions of
the velocity and the continuity of the mechanical stress tensor at
the fluid–solid interface. The former condition, a kinematic one,
is treated by the volume penalization method, we only need to pro-
vide the obstacle’s position (v) and its velocity (us).

The pressure field is continuous in the computational domain
X, but we need to provide the surface pressure to the solid solver.
As the beam nodes do usually not coincide with the grid points, we
use a bi-cubic interpolation of the pressure. We found that a simple
linear interpolation is not sufficient and can lead to considerable
spurious oscillations in the forces, resulting in numerically induced
oscillations, possibly amplified by resonance phenomena.

In order to discuss the numerical coupling scheme, we first
introduce some notation. Let S and F be the solid and fluid opera-
tors, respectively, and b and f the beam and the fluid state. Then we
can note the problem at hand

_f ¼ Fðb; f Þ; _b ¼ Sðb; f Þ: ð12Þ

Introducing the time and space discrete operators S and F, we can
describe the coupling scheme used in this work by
Please cite this article in press as: Engels T et al. Two-dimensional simulation
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f nþ1 ¼ Fðf n; bnÞ; bnþ1 ¼ Sðbn
; f nþ1Þ:

Thus we first advance the fluid, keeping the solid fixed during
the time step. Then we obtain the new forces on the beam using
the fluid field at the new time step, fn+1. These are then transferred
to the solid solver to advance the beam to the next time level and
construct the mask function for the next time step.

Using this scheme, the coupling is realized explicitly, and the
scheme is called ‘‘sequential staggered’’. It is first order accurate
in time. Coupling information is exchanged only once per time
step, which is typical for a staggered scheme. Obviously, the dy-
namic coupling condition is fulfilled at the new time level n + 1,
but the kinematic condition is not. Explicit schemes can only fulfill
either of them, but require only one call of each solver per time
step.

Besides its appealing simplicity, this scheme has the drawback
of a limited stability. It suffers from the artificial added mass effect,
a numerical instability arising in incompressible simulations. Foer-
ster et al. [40] carried out a detailed mathematical analysis of this
effect, explaining why smaller time steps cannot stabilize the
simulations. The stability depends on the mass ratio: very light im-
mersed structures cannot be simulated using a staggered scheme.
In such cases, a strong coupling algorithm has to be applied. For
this purpose we implemented an iterative coupling algorithm. It
is based on fixpoint iterations with an Aitken relaxation. Several
tests showed that both algorithms yield nearly identical results
for heavy structures, and that hence the violation of the kinematic
coupling condition does not alter the results. The only visible dif-
ference is the stability for light structures, where the staggered
scheme fails.

In the present paper, we do not consider very light structures
and therefore work only with the faster staggered scheme.
3.4. Validation results

The present numerical scheme has been successfully compared
with the benchmark proposed by Turek and Hron [41]. It consists
of three stages, a CFD (computational fluid dynamics) test with a
fixed obstacle, the CSM (computational structural mechanics) test
where only the solid is considered, and the fully coupled FSI (fluid–
structure interaction) test.

The CFD test consists in a channel flow with an immersed, rigid
object, for different Reynolds numbers (20, 100 and 200). The
quantities of comparison are the hydrodynamical lift and drag
forces. The converged values of the present solver differ about
0.90% from the reference values.

The CSM test deals with the structure only, under the load of
gravity, and is used to validate both the solid model and the corre-
sponding numerical solver, yielding a difference of about 1% in
both displacement amplitude and frequency.

Finally, the coupled FSI test completes the validation. Herein, a
flexible foil is placed in a channel and in the wake of a fixed cylin-
der. The agreement is as good as for the other tests.
3.5. Influence of thickness and penalization parameter

The volume penalization method requires an obstacle occupy-
ing a certain volume to work. If the structure is too thin, possibly
even thinner than the spatial resolution, we can no longer simulate
it.

In the setup used for validation tests, a structure of finite thick-
ness was considered. Therefore t is a given constant and we set the
geometrical thickness equal to the physical thickness of the struc-
ture. The physical thickness is used to define the material proper-
ties, such as weight per unit length and bending resistance.
of the fluttering instability using a pseudospectral method with volume
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In the present work, we focus on the flutter phenomenon and
deal with a slender structure. Therefore the thickness t is a numer-
ical parameter rather than a fixed value given by the geometry. It is
now natural to ask how sensitive the solution depends on this
parameter. To clarify this, we performed some simulations in a
smaller domain (3 � 3) with high resolution (1200 � 1200), in or-
der to allow for a large range of thicknesses. The mean flow is ori-
ented with an angle of 45� with respect to the initial beam. It is
likely that the thickness has a stronger influence on the dynamics
than in the case where the mean flow is parallel to the beam, be-
cause it acts more like a bluff body.

We compute this simulation for different thicknesses,
t = 6.25 � 10�3, 1.25 � 10�2, 1.88� 10�2, 2.50 � 10�2, 3.13 � 10�2,
3.75 � 10�2, 5.0 � 10�2, 6.25 � 10�2. The smallest value corre-
sponds to 5 grid points, while the largest one corresponds to 50
grid points. Fig. 3 (left) illustrates the deflection lines (i.e. the ac-
tual coordinates of the beam nodes) for this range of thicknesses.
Although we vary t by a factor of 10, the resulting deflection lines
alter only by about

yðs ¼ 1Þt � yðs ¼ 1Þtmin

yðs ¼ 1Þtmin
� y0

¼ 8%:

Note that t = 6.25 � 10�2 can barely be called slender. To clarify the
influence of e, we fix the thickness and vary e between 10�3 and
5 � 10�5. Fig. 3 (right) exhibits that the influence of e is even smal-
ler, the deflection lines of the smallest and the largest e differ only
by about 2%. We can hence conclude that the solution is not very
sensitive to either of these parameters, as long as they are chosen
reasonably. Of course, a very thick beam or a very large e would
not yield physical results.
4. Results

We now apply the method described above to study the flutter
problem. The domain size is L � H = 10 � 4 chord lengths, the vor-
ticity sponge technique is applied at all four boundaries of the do-
main and thus prevents the wake from re-entering the domain. The
spatial resolution is 2000 � 800 Fourier modes for Re 6 200,
2500 � 1000 for Re = 500, 2800 � 1120 for Re = 750 and finally
3200 � 1280 for Re = 1000. The penalization parameter is fixed to
e = 10�4 and the smoothing is equal to two grid points, i.e.
csm = 2, in all simulations. The beam thickness is 4 � 10�2, corre-
sponding to eight grid points on the coarsest and 13 on the finest
grid. To complete the picture and to check its validity, some runs
with double resolution have also been performed, yielding a differ-
ence of less than 3% for the averaged end point deflection angle
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amplitude and about 8% for the lift force amplitude, with respect
to the coarser simulations.

For the flutter phenomenon it is conventional to introduce a re-
duced free-stream velocity uH ¼

ffiffiffiffiffiffiffiffiffi
l=g

p
¼ u1‘

ffiffiffiffiffiffiffiffiffiffiffiffi
.s=EI

p
, as proposed

in [13,2,10,17]. There is no mathematical reason for this choice,
but it is physically more intuitive to increase the flow velocity than
decreasing the bending stiffness and hence change the material the
beam is made of.

The setup is symmetric with respect to the beam, therefore the
instability has to be triggered somehow. This is done by applying
an external force, fext in Eq. (8), on the structure during a small time
interval. At the end of this perturbation, the beam has moved
downwards by about 2 � 10�3 units and reaches a velocity of
2 � 10�2. Note that applying an external force is possibly the eas-
iest way to break the symmetry, as this is always compatible with
the boundary conditions (8).

In this study we keep the mass ratio fixed at l = 1/3 and vary
the Reynolds number and the reduced free-stream velocity. Fig. 4
summarizes the parameters for which the different simulations
have been performed, where the symbols indicate configurations
found to be stable (h) or in a periodic (s) or chaotic (w) fluttering
state.

We compare our results with two different computational ap-
proaches. The first one is the inviscid vortex shedding model pre-
sented by Michelin et al. [18]. This study uses the same model
equation for the beam as we do and a simplified model for the
fluid. Their results concerning the stability limit are in agreement
with the existing experimental and linear stability results pre-
sented in [13]. For the mass ratio considered here, stability is lost
above uH

crit ¼ 9:6, according to their stability analysis. This stability
limit is represented by the dash-dotted line in Fig. 4.

The second study we compare our results with the work of Con-
nell and Yue [3], where a linear stability analysis for viscous flows
and direct numerical simulations have been presented. The solid is
also modeled using a non-linear beam equation. The computa-
tional approach for these simulations relies on body-fitted, time-
dependent grids with a resolution of 100 � 200 points. Spatial
discretization is performed using second order finite differences.
The linear stability analysis assumes a Blasius boundary layer
on the beam to determine its internal tension, therefore the
stabilizing force depends on the Reynolds number. Recasting the
stability limit found by this analysis in our terminology, the beam
becomes unstable at

uH

crit ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
l

lpþ1� 1:3 Re�1=2

s
; ð13Þ
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Fig. 4. Stability map in the Re–uw plane for l = 1/3. Inviscid [18] (–�) and viscous linear stability analysis [3] (—) Symbols indicate present simulations, found to be stable (h)
or in an either periodic (s) or chaotic (w) fluttering state. Insets show corresponding snapshots of the absolute vorticity jxj at Re = 750.
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represented by the solid line in Fig. 4. The numerical simulations
performed in [3] focus mainly on the limit of vanishing bending
stiffness, with the mass ratio being the parameter of interest, and
are found to be in reasonable agreement with the analytical results.

4.1. Variation of the Reynolds number

In the first series of simulations, we focus on the influence of the
Reynolds number for fixed values of l and uw. In order to directly
compare our results with the ones reported in [18], we fix l = 1/3
and further choose uw = 14. In the inviscid limit, this point was
found to be in the chaotic regime. The considered Reynolds num-
bers are 25, 50, 100, 200, 500, 750 and 1000.

Fig. 5 illustrates the computations for Re = 25, 100, 200 and
1000. The trajectory of the end point in the displacement–velocity
plane illustrates the temporal behavior, and the vorticity field x at
a given time is visualized in the vicinity of the beam. Note that the
figure is a zoom and the computational domain is about two times
larger in both directions. The Re = 750 case is analyzed in detail in
Fig. 6.

Let us first discuss the lowest Reynolds numbers, illustrated
exemplarily for Re = 25 in the top row of Fig. 5. In the phase dia-
gram, the initial perturbation is marked by the red part of the tra-
jectory. The oscillation amplitude grows during the first half turn
in phase space, and then continuously spirals down to the initial
state of rest.

Configurations marked as stable in Fig. 4 were stopped if the
beam’s internal energy, consisting of the elastic and kinetic contri-
bution, stayed below the initial perturbation energy for sufficiently
long time. We used Tstop = 15, which is larger than ten flapping cy-
cles in a periodic case. In the vorticity snapshot, whose correspond-
ing position in phase space is marked with a red star, a thick,
attached boundary layer can be observed. The corresponding fig-
ures for Re = 50 do not differ significantly, only the damping of
the initial perturbation has become weaker and hence the typical
spiral-like motion of the end point in phase space slower ap-
proaches its origin.

Increasing Re to 100, the behavior of the beam changes from
stable to unstable. The phase diagram shows the growth in ampli-
tude of the flutter oscillations, but also that this growth rate is very
slow. Thus, we can conclude that the critical Reynolds number
must be between 50 and 100, and that the distance to the upper
limit of this range is smaller than the lower one. On the other hand,
according to the viscous linear stability analysis, Eq. (13), the sta-
bility limit is predicted at Recrit � 183. Hence we can confirm that
the linear analysis tends to overpredict the stability threshold for
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penalization. Comput Struct (2013), http://dx.doi.org/10.1016/j.compstruc.201
low Reynolds numbers, a result that has been stated in [3] for a dif-
ferent parameter range.

When further increasing Re to 200, the growth rate of the oscil-
lation becomes significantly higher, as can be seen in the phase
diagram in Fig. 5 (third row from top). The vorticity field shows
distinct, separated vortices, shed each time the beam tip reaches
its maximum amplitude. Note that the flow field for Re = 100 is
illustrated during the amplification phase. Comparing Re = 100
and 200, the flow field reveals different wake structures in the
amplification phase and in the final periodic state: during the
growth phase, no distinct vortices are shed at the trailing edge of
the foil, the wake is formed of two coherent zones of positive
and negative vorticity. Furthermore, the final periodic state differs
in both cases, while this is not true when comparing higher Rey-
nolds numbers among themselves. The case Re = 100 is therefore
different from the others.

For Re = 500, the periodic state is reached sooner and the shed
vortices become stronger and narrower, forming the characteristic
von Kármán street, a trend that is preserved at Re = 750 and 1000.
Fig. 6 illustrates the vortex shedding mechanism observed at
Re = 750. In snapshots A–B, the layer of negative vorticity on the
top of the beam is sheared of the surface and elongated. The same
holds for the layer of positive vorticity at the bottom side. Between
C and D, a single vortex begins to separate, still connected to the
remainder of the vorticity layer on the top side. The vortex is ad-
vected, and the reverse process starts (F–G). For the instant G,
the whole vorticity field is shown, illustrating how the vortices
eventually separate and form the street of isolated vortices. The
process is also illustrated in the phase diagram in Fig. 6 (bottom
left). The phase trajectories are colored by the absolute accelera-
tion of the beam. Note that the acceleration varies smoothly. The
shape of the beam, illustrated in Fig. 6 (bottom, right), is in good
agreement with [18].

Even though there are some changes in the shape of the phase
trajectory, the flapping amplitude remains constant above
Re = 200. The same holds for the fundamental flapping frequency,
that is the frequency of the trailing edge oscillations, as summa-
rized in Table 1. The frequencies are computed using the fast Fou-
rier transform, and the amplitude of the displacement, adisp, is the
averaged value of all periods after the amplification phase. This
averaging is done as the beam does not reach a perfect periodic
state during the computation. That can also be seen from the phase
diagrams, where the trajectories are more spread out.

Hence we can conclude that we do not observe a transition to a
chaotic state for this choice of parameters, contrary to the result
from the inviscid model [18]. This may also be an effect due to
of the fluttering instability using a pseudospectral method with volume
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the finite simulation time, although the computation spans at least
20 oscillation periods.

4.2. Influence of the stiffness and the transition to chaos

The first part of our parameter study dealt with the influence of
the Reynolds number, now the influence of the stiffness is consid-
ered by varying the reduced inflow velocity. As illustrated in the
stability diagram, Fig. 4, we focus on two different Reynolds num-
bers, 200 and 750, and increase the reduced inflow velocity from a
stable state until we reach the region of chaotic flapping. A third
series at Re = 500 completes the picture.

Considering Re = 200, the onset of flapping can be observed for
12 < uH

crit < 13, while Eq. (13) predicts that to happen at 13.62. This
slight difference between our results and the analytical model per-
sists at Re = 500, where we find 10 < uH

crit < 11 versus 11.21 from
the theory. When Re is increased further, our interval matches
the analytical prediction. As stated previously, a simulation is con-
sidered as stable if the internal energy of the beam remains smaller
than its initial perturbation energy for sufficiently long time, de-
spite some small oscillations that are not yet completely damped.
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For the stability limit we can hence conclude that our results are
in reasonable agreement with the viscous linear stability analysis,
the difference becoming smaller with increasing Reynolds number.
Note also that the prediction from the inviscid stability analysis
[18] is consistent with the viscous theory for sufficiently high Re.

The present results for the transition from a regular to an irreg-
ular flapping state cannot be compared with the results reported in
[3], since therein the limit of small bending stiffness is considered.
In this limit, the transition periodicity–chaos is found to be well
approximated by lchaos = blcrit with b = 2.5. In the case considered
here, where the bending stiffness is not small, such a proportional-
ity cannot be observed.

When the flapping state is periodic, a single vortex is shed at
each up- and downstroke, as discussed in Section 4.1 and illus-
trated in Fig. 6. However, in the chaotic regime, the deformation
at the trailing edge becomes larger (due to the increasing reduced
inflow velocity), and now a pair of vortices of different sign is shed
into the wake, see Fig. 8, labeled by X and Y. These dipoles propa-
gate with an additional, self induced velocity, relative to the mean
flow and thus form an irregular wake pattern. They can also travel
in the cross-flow direction, as the dipole Y does. At most of the
of the fluttering instability using a pseudospectral method with volume
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Fig. 6. Periodic state: Re = 750 and uw = 14. Left side: (A–G) time history of a typical oscillation period with a snapshot every Dt = 0.1. Top: the whole vorticity field at T = 84.5.
Bottom, middle: Phase diagram of the end point, colored with the absolute acceleration. Bottom, right: time history of the deflection line for one period of motion, with
Dt = 0.05, color ranging from dark to light blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Amplitude and frequency of y-displacement and frequencies of drag and lift forces as
a function of the Reynolds number. The weight ratio is l = 1/3 and the reduced inflow
velocity is uw = 14.

Re fdisp[u1/‘] adisp[‘] fdrag[u1/‘] flift[u1/‘]

100 0.4327 0.2020 0.8380 0.4138
200 0.5886 0.3368 1.1955 0.5886
500 0.6254 0.3186 1.2275 0.6254
750 0.6251 0.3142 1.2203 0.6251

1000 0.6161 0.3172 1.2321 0.6161
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strokes, two vortices of approximately equal strength are shed (like
the pair X).

However, the chaotic regime is also characterized by violent
intermittent accelerations of the trailing edge, which are larger
than the mean accelerations by an order of magnitude. In the phase
diagram in Fig. 8, these violent snapping events are represented by
strong peaks in the acceleration (indicated by the color). The mean
absolute acceleration is found to be 5.7 and during snapping events
peak values between 50 and 100 can be observed.

A single snapping event is illustrated in Fig. 8, left. The time in-
stants A–G are equally spaced in time, with Dt = 0.05. The first
three snapshots, A–C, show only minor evolution, illustrating the
fact that the acceleration is small compared to the peak value be-
tween C and D, where the actual snapping takes place. Subse-
quently, a strong positive vortex is shed into the wake (E–G),
followed by a less intense negative one (G).

This asymmetry in intensity of the shed dipole is also character-
istic for the snapping event and distinguishes it from regular oscil-
lations, where the dipole is approximately symmetric, compare
dipole Z with X and Y in Fig. 8.

To further illustrate the chaotic nature of this regime, Fig. 8 con-
tains also the time history of the beam deflection line. A distinct
deflection line (Q) highlights another difference to the periodic
state. The trailing edge of this deflection line is orientated against
the flow direction, an event which does not occur in periodic
simulations.
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The differentiation between periodic and chaotic states, illus-
trated in Fig. 4, needs some further discussion. Several observa-
tions change during the transition. First, the relation between the
frequencies of the displacement, and the lift and drag force differ
in both flapping states. While we have fdisp = flift and fdrag = 2 fdisp

in a periodic state (cf. Table 1), these relations do no longer hold
when the flapping is irregular. Moreover, we can no longer identify
a dominant frequency in the spectra of the displacement and the
hydrodynamic forces, as illustrated exemplarily by plotting the
spectrum in Fig. 7 (right). This finding is consistent with the results
reported in [3,18].

We observe from our data that chaos does not necessarily need
to occur directly after the breaking of symmetry. Effectively, the
initial perturbation may be followed by a phase of regular flapping,
before this regularity breaks down and the beam performs chaotic
oscillations. Therefore it is difficult to judge whether a configura-
tion is chaotic or periodic. The last simulations marked as periodic
in Fig. 4 did not show a transition for a long time (Tstop P 80 corre-
sponding to �50 periods), yet still it cannot be completely ex-
cluded that the periodicity will not break down. Note that in
both [18,3] such a transitional behavior is not reported. However,
[3] considers the limit of vanishing bending stiffness, and may
therefore not be compared directly with the present results, and
the method used in [18] relies on an inviscid approach. It can be
conjectured that the finite Reynolds number inhibits the chaotic
state for a certain time, and that this delay decreases with increas-
ing Re.

To further investigate this transition, we apply the continuous
wavelet transform (CWT) to the time evolution of the drag force.
The CWT transforms the signal into the time–frequency domain
[42]. We use the complex-valued Morlet wavelet with the wave-
number kw denoting the barycenter of the wavelet support in Fou-
rier space. Here we use kw = 5.

Fig. 9 shows the modulus of the wavelet-coefficients as a func-
tion of time and scaling factor (which is related to frequency), and
the time history of the underlying drag signal on top, for Re = 750
and uw = 20 and 22. The former case is the last value of uw found to
be in a periodic state and the latter is the first chaotic one. The
of the fluttering instability using a pseudospectral method with volume
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Fig. 7. Left: Strouhal number St ¼ 2 A f
u1

of the displacement, for simulations resulting in periodic behavior. Re = 200 (s), Re = 500 (h), Re = 750 (O), Re = 1000 (q) and values
presented by Michelin et al. (⁄) [18]. The dashed line corresponds to the average Strouhal number. Right: spectra of the integral lift force for Re = 750 in a periodic (uw = 14,
light red) and chaotic (uw = 30, blue) state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Chaotic state: Re = 750 and uw = 30. Left side: (A–G) time history of a snapping event with a snapshot every Dt = 0.05. Top: the whole vorticity field at T = 11.70,
exhibiting the typical vortex pairs of different sign (X and Y), and the strongly asymmetric vortex pair resulting from the snapping event (Z). Bottom, middle: Phase diagram of
the end point, colored with absolute acceleration. Bottom, right: time history of the deflection line with Dt = 0.05, color ranging from dark to light blue. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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modulus of the wavelet-coefficients yields an energy distribution
in the scale-time domain.

For the uw = 20 case, one distinct dominant frequency can be
found, corresponding to a horizontal band in wavelet-space. This
frequency does not alter significantly, albeit some deviations from
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a purely periodic state can be observed. Note that the values for the
lowest frequencies close to the beginning and the end of the signal
are due to boundary effects.

Considering the uw = 22 case, a different behavior can be ob-
served. The drag force exhibits a periodic behavior until T � 22,
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odulus of the complex valued Morlet wavelet coefficients are plotted as a function of
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similar to the uw = 20 case. After this time, a broad band of frequen-
cies can be observed, characteristic for a chaotic state.

In periodic states, neither the flapping amplitude nor the fre-
quency undergo a significant change when uw is increased, hence
the Strouhal number St = 2Af/u1 remains practically constant, as
illustrated in Fig. 7. The standard deviation from the mean value,
represented by the dash-dotted line, is 4.5% and there is no distinct
trend visible. The comparison with the values reported in [18]
yields reasonable agreement. In particular, the constant flapping
frequency matches well the experimental results reported by
Shelly et al. [17], where a linear dependency on the inflow velocity
has been found. Therefore the frequency is a constant when nor-
malized with u1. The Strouhal number is constant, and does in par-
ticular not approach a ‘‘natural frequency of the fluid dynamics
defined by a universal Strouhal number’’ [3] of St � 0.2. This result
seems to somewhat contradict those of Connell and Yue [3]. They
explained the transition to chaos with a resonance phenomenon
when the flapping frequency matches this universal Strouhal num-
ber. A possible explanation may be that [3] considered the limit of
vanishing bending stiffness, while here we deal with a finite one.
We conjecture that the transition mechanism is different when
the bending stiffness becomes larger.
5. Conclusions

A new computational approach using a Fourier pseudo-spectral
method has been applied to the generic problem of fluid–structure
interaction, the flutter instability of a flag in parallel planar flow.
Our method allows to use simple Cartesian grids, all information
about the time-dependent geometry is contained in the penaliza-
tion term added to the Navier–Stokes equations. The non-linear
coupling has been realized using a fast explicit staggered scheme.

The comparison with the viscous linear stability theory pre-
sented in [3] yields favorable agreement. This further confirms
the theory, as the numerical simulations in [3] focus mainly on
the limit of vanishing bending stiffness, while here we considered
a finite value.

Compared with the inviscid model proposed in [18], we also
confirm that the flapping frequency is constant and does neither
depend on the reduced inflow velocity nor on the Reynolds num-
ber. The values obtained for the Strouhal number are comparable
with the ones extracted from [18]. The difference of about 10% is
related to the use of different approaches. We also focused our
attention on a particular set of parameters, which was in [18]
found to be chaotic. A direct comparison shows that a finite Rey-
nolds number seems to inhibit the transition to chaos since we
do not observe a breakdown of periodicity even for a Reynolds
number of 1000.

For the transition from periodic to chaotic fluttering, we re-
ported the observation of a transitional state. In this case the sys-
tem sustains periodic fluttering during a finite time before passing
to irregular oscillations. A time–frequency decomposition, the con-
tinuous wavelet transform of the time history of the drag force, is
used to illustrate this behavior. The different characteristics of the
periodic and chaotic states were pointed out, in particular that the
frequencies of displacement, lift and drag are no longer correlated.
The chaotic state is also marked by the occurrence of violent inter-
mittent accelerations of the trailing edge. The vortex dynamics of
these snapping events have been analyzed, revealing characteristic
asymmetric dipoles shed into the wake.
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