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Abstract - We describe a transform for locally refined wavelet bases which employs 
the cardinal Lagrange function instead of the scaling function. This construction is ex-
tended to biorthogonal vaguelettes into which a diffenntial operator is incorporated. The 
approach is nlevant for the solution of nonlinear parabolic PDEs by an explicit or semi-
implicit time scheme when the nonlinear term is evaluated in physical space. 

1. INTRODUCTION. - The background of the present work is constituted by an 
evolutionary PDE where the solution at each time step is developed in an adaptively 
selected set of wavelet basis functions. This viewpoint is similar to the one of wavelet 
compression in signal analysis. In contrast to the signal processing field the difficulty 
when solving a PDE is to avoid the computation of all wavelet coeffidents of the solution 
up to the finest scale before eliminating the irrelevant ones. Just the amplitudes of the 
relevant set (which is supposed to be known from the previous time step) are to be 
determined. For this task the dassical Mallat algorithm is not suitable as It requires the 
coeffidents of the scaling functions on each scale whidi do not exhibit the sparslty of the 
wavelet coeffidents and require a preliminary projection. However, for general nonlinear 
terms as encountered e.g. in [1] the transfonn between physical space and coefficient 
space seems to be unavoidable. It is one of the central difficulties for adaptive wavelet 
algorithms. 

The present paper starts with an adaptive wavelet transfonn which is suitable for 
a lacunary basis. It employs a collocation projection on successively coarsened grids, 
similar to |4). The basic subtraction strategy is applicable to arbitrary generating sets. 
But in the present context the orthogonality of the wavelet basis can be used as a 
second ingredience for the solution of differential equations to avoid the inversion of linear 
systems [3). This is accomplished by defining biorthogonal vaguelettes that incorporate 
the differential operator. We therefore generalize the adaptive wavelet transfonn to the 
case of positive inhomogeneous elliptic operators by constructing the appropriate bases. 
This Improves the algorithm of [1]. Further details and numerical results can be found 
in [2] together with the application of the method to the solution of nonlinear parabolic 
PDEs. 

2. PERIODIC MULTIRéSOLUTION. - A periodic multirésolution (MRA) of spaces 
V, C La(T) on the tonis T — R/Z can be constructed through perlodlzatlon from 
6«(i) € L2iR) with 6j?(i) = 2'/2 6,,(2J x - i) generating an MRA of L3iBl) through [5] 

M*)=E*"(*+«)• * e r , or tik) = lRik), kez (i) 
nez 

with , fa, 
l{k) = Jobix)e-Madx , S«H = £ V ( x ) e - a ' ' ' - d x 

These relations permit to deduce scaling functions <i>, wavelets i> and required filters from 
the nonperiodic case. The cardinal Lagrange functiona in V} are given by 
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S*W •= r' Irfk)/ -£ Ijiik + Vn) , 
nés 

provided that the denominator is different from zero. Observe that the latter is Just the 
discrete Fourier transform of 6̂  sampled at the points n/2^. 

3. TRANSFORM FOR A LACUNARY BASIS. - Any function / j € Kr can be developed 
in the coiresponding wavelet basis 

//(*) = ££<*/« M») (3) 
i i 

(we sldp details such as index bounds, \fr_i,o := 6» etc.). The term "lacunary" Is used 
here to Indicate that not the whole set of basis functions In Vj Is employed in the 
representation (3) but just a certain subset, adapted to a given function. Mostly, a 
so-called cone condition is fulfilled, but this is no prerequisite for the sequel. 

The classical wavelet transform (WT) consists of a first projection step onto Vj and a 
subsequent decomposition in terms of scaling functions and wavelets. Por the solution 
of PDEs a collocation projection is mostly applied in the first step for diverse reasons. 
Then, however, it is natural to use the cardinal function which is at the origin of this 
projection in every decomposition step j = 7,...,0 instead of the scaling function, i.e. 

/>(*) = T.Iiiii) Sni*) = E / i - i ^ ) S,-,,(x) + £<*,_,, V-.-./x) (4) 

Due to the orthogonality of the functions ^ii and since (S^-LJ , Vi-i.n) = 0 the wavelet 
amplitudes dn are computed by the filters D{ = (Sji, V>-î ) where (...) Is the usual 
scalar product. Subsequently, the contribution of the second sum In the rhs of (4) Is 
subtracted at the even grid points to get 

fi-ii^x) = /iCgJTî) - Ç ^ - U ^ - i . « ( ^ r î ) (5) 

When working with the entire set of basis functions in Vj all operations are conveniently 
carried out in Fourier space by FFT. However, the WT of fj does not seem to have any 
advantage for a direct (I.e. non-iterative) solution of a differential equation. In that case 
employing the functions 4>Ji,Sju or bjt is much simpler and leads to the same result. 

The above WT has been set up to be executed in physical spaoe for a lacunary basis 
set (where FFT Is inapplicable), as it works with the values at grid points in physical 
space. The filters IP and the functions ^ will generally have non-compact support. 
But in that case they exhibit fast decay which allows truncation in space up to a given 
predslon. The successive coarsening of the employed grids leads to an 0(n M) operation 
count if the resulting filters have length M and n entries are retained in (3). The price to 
be payed for the finite filter length is a slight error on each level which can be controlled, 
however. On the other hand, the evaluation of fj which Is often costly in the PDE 
context is not required at all points n/2-' but just at a subset defined by the selected 
wavelet fiinctions. The Inverse transform is analogeous and again based on (4) with 
x replaced by n/2 .̂ Note that for even n the first sum on the rhs contains only one 
entry. In summary, the cardinal function can be a convenient means to accomplish the 
simultaneous projections wilh locally varying finest grid and to relate the amplitudes to 
values at these grid points which is required in the PDE context. 
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4. OPERATOR-ADAPTED DECOMPOSITION. - Consider a linear operator L of order s 
with constant coeffidents and positive symbol ait) = ï^oam(2jr»€),n > 0 (i.e. Qo > 0). 
For the periodic case f is replaced by k e Z. The aim now is to solve the differential 
equation 

Lu(i) = / ( i ) , XGT (6) 
We set u(i) = E, Ei dn rl>nix) with V belonging to a suffidently smooth multirésolution 
and restrict j < J for some large J e IN. Then the image of VO is V^j = span(L6j|}. 
In many cases the related cardinal Lagrange functions 5tji can be constmctcd as with 
eq. (2) repladng 6j,(ik) with ^ ^ ( J b ) . This allows to project the rhs of (6) onto Vt:j 
by collocation 

/w(x) = Ç/(^)51.:J.(x) (7) 

A Pctrov-Golerkin method with test functions 0^ is now used to determine the ampli-
tudes dji of the solution. Solving (6) can thereby be made equivalent to representing the 
rhs BS 

UAx) = E E dii Lfyiix) = E E UhM . On) M*) (8) 
I i I 1 

with the biorthogonal vaguelettes Ojt = L^'fyi and /i^ = Lfa constructed from the 
symbol. Several properties of these functions are reported in [6] where they are used 
with a different transform. In particular it can be shown that even if fy Is equivalent to 
the convolution of Vty with the Greens fimction of the operator, it decays rapidly If the 
wavelets have suffident vanishing moments. 

With the above tools we now extend the WT of the previous section to the operator 
adapted case. The central equation la 

/w(x) = E/w(^) 5 W.(x) = Ç ftJ-iijzi) Stj-Liix) + E ^ - M W - M W W 

Hence, the filters £>t;1 = (SL^I , Oj-xp) have to be employed to determine the amplitudes 
of the solution through 

dj-u — E ^ a t a ) t̂jn-W 
n *^ 

(recall that In general SLji ^ LSjiSO that this expression does not simplify). Further-
more, V >s replaced by /i in the subtraction analogeous to (5). 

5. NUMERICAL RESULTS. - In this section we present results for Meyer wavelets 
ibR — 4>Mty)- The required computations in Fourier space are straightforward and 
furthermore their numerical support in physical spaoe with low predslon is even slightly 
smaller than the one of quintic spline wavelets [1). The formulae for the exact filters in 
the operator adapted spline wavelet case (6" = Wm) are more involved and reported In 
[2] together with the related results. 

The tnmcation of the filters advocated in the previous section Introduces an error. It 
does not alter the perfect reconstruction property of the decomposltlon-reoomposltlon 
scheme but the orthogonality which la relevant for the Inversion of the differential oper-
ator. In TUde I we report as an example E = maxf^o, Vw)<j - fyAm) with different 
truncations (J = 10, double predslon, full index set) for the collocation transform, its 
inverse, and the operator adapted decomposition. In the later case E is set up with 0 
and (i where L = A - fl^ with A = 150. We observe lhat an asymmetric truncation 
improves the result, e.g. to 5.2E-4 for KQ = 40. Ks = 20. 
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We furthermore solved a Helmholtz equation under the conditions of [1]. The new 
transfonn results in less than half the amount of work compared to the older method 
which employed the scaling function in the intermediate decomposition step. 

6. CONCLUSION. The proposed operator adapted wavelet transform for a lacunary 
basis constitutes an appropriate framework for the solution of PDEs by adaptive wavelet-
type bases. Generalization to higher dimensions is immediate. Its effidency depends on 
the sizes of the resulting filters. F\iture work will be oonoemed with reducing thdr 
lengths by using MRAa with compactly supported cardinal functions and biorthogonal 
wavelets. 

KQ,KS 
full grid 
50,50 
30,30 
20,20 

WT 
8.7 E-14 
2.7 E-6 
1.6 EM 
8.6 E-4 

WT"' 
5.5 E-14 
3.9 E-6 
9.1 E-S 
6.3 E-4 

operator adapted 
1.5 E-12 
1.7 E-4 
1.5 E-3 
1.1 E-2 

Table I: Error in orthogonality relations when quadrature and substraction occuring In 
the transform (evaluation of Sn and ij>ji for WT*1) are stopped at KQ and Ks grid 

points from the wavdet center, respectively. 
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