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Extraction of coherent bursts from turbulent edge plasma in magnetic
fusion devices using orthogonal wavelets
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A new method to extract coherent bursts from turbulent signals is presented. It uses the wavelet
representation which keeps track of both time and scale and thus preserves the temporal structure of
the analyzed signal, in contrast to the Fourier representation which scrambles it among the phases
of all Fourier coefficients. Using orthogonal wavelets, turbulent signals can be decomposed into
coherent and incoherent components, which are orthogonal and whose properties can thus be studied
independently. Diagnostics based on the wavelet representation are also introduced to compare the
statistical properties of the original signals with their coherent and incoherent components. The
wavelet-based extraction method is applied to the saturation current fluctuations measuring the
plasma density fluctuations at the edge of the tokamak Tore Supra, Cadarache, France. This
procedure disentangles the coherent bursts, which contain most of the density variance, are
intermittent and correlated with non-Gaussian statistics, from the incoherent background
fluctuations, which are much weaker, non-intermittent, noise-like and almost decorrelated with
quasi-Gaussian statistics. We conjecture that the coherent bursts are responsible for turbulent
transport, whereas the remaining incoherent fluctuations only contribute to turbulent diffusion.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2172350�
I. INTRODUCTION

A. Coherent bursts

The radial transport at the edge of tokamaks is known to
be dominated by turbulent processes. Understanding them is
important, as they determine the confinement properties of
the overall plasma in the bulk region and the energy density
to be handled by the limiter or divertor components in the
shadowed region of the plasma, where the magnetic field
lines are opened. The turbulent transport of plasma density
has been extensively studied at the edge of plasma by means
of Langmuir probes,1–3 particles beams,4,5 and more recently
two-dimensional �2D� visible imaging.6,7 All these diagnos-
tics observe a turbulent transport of the plasma density in the
scrape-off layer �SOL� that can be described as a superposi-
tion of convective events, which are responsible for the
transport of matter over long radial distances at a fraction of
the ion sound speed,8,9 and of background turbulence.

The convective events are detected as coherent bursts of
plasma density, but with a signature different from the one
expected for turbulent eddies, since they exhibit a probability
distribution function �PDF� which is skewed. Typically, it is
found that these convective events account for a small frac-
tion of the time and substantial proportion of the turbulence
intensity,10 which underlines their importance in the turbu-
lent transport. There are many efforts to analyze these bursts
independently from the background turbulence. For this pur-

pose different extraction methods have been developed,
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which are based on, either signal clipping �see, e.g., Ref. 10�,
correlation with given templates, or conditional averaging.
These methods require strong hypotheses on the signal,
which has to be statistically steady, and also on the bursts, in
order to choose the appropriate threshold value. Actually, the
clipping method presents two drawbacks. First, the duration
of the bursts and their turbulent intensity strongly varies de-
pending on the threshold value �e.g., from 4% to 20% of the
total time and between 20% and 50% of the total turbulent
intensity10�, which unfortunately cannot be estimated a pri-
ori. Second, the clipping method does not preserve the
regularity11 of the signal, since the threshold introduces dis-
continuities which affect the Fourier spectrum and hence
yields an erroneous scaling. Although these methods give
some information about the dynamics,10,12 other methods re-
quiring less hypotheses to extract the bursts are needed.

Since 1988 we have proposed to use the wavelet repre-
sentation to analyze13,14 and extract15–17 coherent structures
out of turbulent flow fields, as the wavelet representation
does not require any hypothesis on the statistical stationarity
and homogeneity of the process under study. In this article
we demonstrate the advantages of wavelets to separate co-
herent bursts from turbulent fluctuations in edge plasma. We
present a wavelet-based extraction algorithm, which does not
even require any parameter, such as threshold value, to be
adjusted. We then apply it to study the plasma density fluc-
tuations measured in the SOL of the tokamak Tore-Supra,

18
Cadarache, France.

© 2006 American Institute of Physics4-1

IP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2172350
http://dx.doi.org/10.1063/1.2172350
http://dx.doi.org/10.1063/1.2172350


042304-2 Farge, Schneider, and Devynck Phys. Plasmas 13, 042304 �2006�
B. Wavelet representation

Since turbulent signals are highly fluctuating, one studies
them statistically, using classical diagnostics such as correla-
tion functions, spectra or structure functions. Unfortunately
those diagnostics lose the temporal structure of the signal,
since they are computed with time integrals and the Fourier
modes used as basis functions are not localized in time.

The wavelet transform is more appropriate than the Fou-
rier transform to analyze and represent non-stationary, non-
homogeneous, and intermittent signals, such as those en-
countered in turbulence. It uses analyzing functions which
are generated by translation and dilation of a so-called
“mother wavelet,” which is well localized �i.e., having a fi-
nite support� in both physical and spectral space. In contrast,
the Fourier transform uses trigonometric functions, which
are nonlocal �having an infinite support� in physical space
but well localized in spectral space, and the analyzing func-
tions are generated by modulation rather than dilation. The
localization of the basis functions and the invariance group
of the transform constitute the main differences between
wavelet and Fourier representations. For a general presenta-
tion of the different types of wavelet transforms and their
applications to turbulence, we refer the reader to several re-
view articles.19–21

Trigonometric functions used by the Fourier transform
oscillate for all times, and the temporal information of the
transformed signal is scrambled among the phases of all Fou-
rier coefficients. In contrast, the wavelet coefficients preserve
the temporal properties of the signal. Thus, when a wavelet
coefficient is filtered out, the effect on the reconstructed sig-
nal remains local in time and does not affect the overall
signal, as the Fourier transform does. This property allows
one to study the behavior of a limited portion of the signal
directly from its wavelet coefficients.

If a turbulent signal is stationary, non-intermittent and
supposed to be made up of a superposition of waves, not
having any nonlinear behavior such as chirps, solitons, or
shocks, only in this case one can define without ambiguity
the associated frequencies. However, if a turbulent signal is
supposed to be a superposition of elementary structures lo-
calized in space and time, and nonlinearly interacting �e.g.,
vortices, shocklets�, the wavelet representation should be
preferred, because it preserves the locality of information in
both space and scale. Actually, these two different transforms
translate into mathematical language two different interpre-
tations of turbulent signals.19

In the context of plasma physics the continuous wavelet
transform has already been used to analyze signals measured
in magnetic fusion devices, see e.g., Refs. 22 and 23. In this
article we propose to use the orthogonal wavelet transform
instead, since it has been proved to be optimal for de-noising
signals corrupted with additive Gaussian white noise.24 A
generalization to correlated noise is straightforward, and a
similar method has been developed25 to treat non-Gaussian
noises, i.e., �2 distribution. To improve the choice of the
threshold we have proposed a recursive algorithm,26 that we
have applied to extract coherent structures out of incom-

15
pressible turbulent flows. In the present article we demon-
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strate its use to study turbulence in edge plasmas of magnetic
fusion devices, such as tokamaks or stellarators.

C. Content

This article is organized as follows. First, we present the
wavelet-based extraction method. We then explain the recur-
sive algorithm and validate it on an academic signal. We
finally apply it to a saturation current signal measured in the
SOL of the tokamak Tore Supra, Cadarache, France. We thus
show that the coherent bursts can be efficiently extracted. We
also present new statistical diagnostics based on the wavelet
representation that we use to compare the original signal
with its coherent and incoherent components. Finally, some
conclusions are drawn and perspectives for future work are
given.

II. EXTRACTION OF COHERENT BURSTS

A. Principle

We propose a new method to extract coherent structures
from turbulent flows, as encountered in fluids �e.g., vortices,
shocklets� or plasmas �e.g., bursts�, in order to study their
role in transport and mixing.

As already mentioned, we first replace the Fourier rep-
resentation by the wavelet representation, which keeps track
of both time and scale, instead of frequency only. The second
improvement consists in changing our viewpoint about co-
herent structures. Since there is not yet an universal defini-
tion of coherent structures in turbulent flows, we prefer start-
ing from a minimal but more consensual statement about
them, that everyone hopefully could agree with: coherent
structures are not noise. Using this apophatic method we
propose the following definition: coherent structures corre-
spond to what remains after denoising.

For the noise we use the mathematical definition stating
that a noise cannot be compressed in any functional basis.
Another way to say this, is to observe that the shortest de-
scription of a noise is the noise itself. Notice that plasma
physicists typically call “noise” what is actually “experimen-
tal noise”, measured when there is no plasma. Their defini-
tion includes what we define as noise, plus possibly some
organized features �e.g., parasite waves� that we do not con-
sider as noise according to the above-mentioned mathemati-
cal definition.

This new way of thinking about coherent structures pre-
sents the advantage of being able to process “incomplete
fields”. What does it mean? A typical example of incomplete-
ness is encountered in the experimental setting, where typi-
cally one measures the time evolution of a three-dimensional
�3D� field using a probe located in one point, thus obtaining
a one-dimensional �1D� cut of a four-dimensional space-time
field. Notice that incompleteness is different from discretiza-
tion, i.e., sampling, that one should consider in addition. If
the algorithm used to extract coherent structures requires
templates of typical structures, it becomes intractable when
the measured field is incomplete, because, in order to define
the template, one should then consider how the probe sees all

possible motions and distortions of the coherent structures
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passing by, in order to define the templates. Since our algo-
rithm requires a model of the noise, but not of the coherent
structures themselves �no templates are needed�, it treats any
field, complete or incomplete, the same way.

Considering our definition of coherent structures, turbu-
lent signals are split into two contributions: coherent bursts,
corresponding to that part of the signal which can be com-
pressed in a wavelet basis, plus incoherent noise, correspond-
ing to that part of the signal which cannot be compressed,
neither in wavelets nor in any other basis. We will then check
a posteriori that the incoherent contribution is spread, and
therefore does not compress, in both Fourier and grid point
bases. Since we use the orthogonal wavelet representation,
both coherent and incoherent components are orthogonal and
therefore the total energy is the sum of coherent and inco-
herent energies.

Assuming that coherent structures are what remains after
denoising, we need a model, not for the structures, but for
the noise. As first guess, we choose the simplest model and
suppose the noise to be additive, Gaussian and white, i.e.,
uncorrelated. Having this model in mind, we then rely on the
theorem of Donoho and Johnstone24 to compute the value
used to threshold the wavelet coefficients. Since the thresh-
old value depends on the variance of the noise, which in the
case of turbulence is not a priori known, we propose a re-
cursive method to estimate it from the variance of the weak-
est wavelet coefficients, i.e., those whose modulus is below
the threshold value.

After applying our algorithm to a turbulent signal, we
then check a posteriori that the incoherent component is in-
deed noise-like, spread in physical space, quasi-Gaussian and
quasi-uncorrelated �i.e., spread in Fourier space�, which thus
confirms the hypotheses we have chosen for the noise.

B. Orthogonal wavelet representation

The construction of orthogonal wavelet bases and the
associated fast numerical algorithm are based on the math-
ematical concept of multiresolution analysis, which consid-
ers approximations at different scales. A function or a signal
�sampled function� can thus be decomposed into a set of
embedded coarser and coarser approximations. The original-
ity of the wavelet representation is to encode the differences
between successive finer approximations, instead of the ap-
proximations themselves. The amount of information needed
to go from a coarse approximation to a finer approximation
is then described using orthogonal wavelets. A function or a
signal is thus represented by its coarsest approximation, en-
coded by the scaling coefficients, plus the differences be-
tween the successive finer approximations, encoded by the
wavelet coefficients.

We consider a signal S�t� of duration T sampled on N
=2J equidistant instants ti= iT /N, with i=0, . . . ,N−1. We
project it onto an orthogonal wavelet basis19,27 to represent it
at different instants ti and different time scales �=2−j, with
j=0, . . . ,J−1.

The signal is thus developed into an orthogonal wavelet

series,
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S�t� = S̄00�00�t� + �
�j,i���J

S̃ji� ji�t� , �1�

where �00 is the scaling function and � ji the corresponding
wavelets, i the index for the instant t and j the index for the
time scale �. To simplify notation, we introduce �J, which
indexes all wavelets constituting the basis, defined as

�J = ��j,i�, j = 0, . . . ,J − 1, i = 0, . . . ,2 j − 1� . �2�

Due to orthogonality of the basis functions, the coefficients
are computed using the L2 inner product, denoted by �f ,�	
=
−�

� f�t���t�dt. The scaling coefficients are S̄00= �S ,�00	 and

the wavelet coefficients are S̃ji= �S ,� ji	. The scaling coeffi-
cients encode the approximation of the function S at the larg-
est scale �0=20=1, which corresponds to the mean value,
whereas the wavelet coefficients encode the differences be-
tween approximations at two successive scales, which corre-
spond to the details added to get a finer time resolution. In
this article we use the Coifman 12 wavelet, which generates
all functions of the wavelet basis from a set of two discrete
filters, a low-pass and a band-pass filter, each of length 12.27

The scaling function ��t�, defined by the low-pass filter, and
the corresponding wavelet ��t�, defined by the band-pass fil-
ter, together with the modulus of their Fourier transforms

��̂���� and ��̂����, are shown in Fig. 1. The Fourier transform
we use is defined by

�̂��� = �
−�

�

��t�e−�2	�tdt , �3�

with �=−1.

C. Wavelet denoising

As explained previously, we define the coherent bursts as
what remains after denoising the turbulent signal S�t�. We

FIG. 1. Coifman 12 wavelet. �Top� Scaling function ��t� and the modulus
of its Fourier transform ��̂����. �Bottom� Wavelet ��t� and the modulus of

its Fourier transform ��̂����.
then propose a wavelet-based method to split the signal S�t�
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into two orthogonal components: the coherent signal SC�t�,
which retains the coherent bursts, and the incoherent signal
SI�t�, which corresponds to the turbulent fluctuations as-
sumed to be noise-like. For this, we first project S�t� onto an
orthogonal wavelet basis and we compute a threshold value


. We then separate the wavelet coefficients S̃ij into two
classes: those whose modulus is larger than the threshold

value 
 correspond to the coherent coefficients S̃ij
C, whereas

the remaining coefficients correspond to the incoherent coef-

ficients S̃ij
I . Finally, the coherent component is reconstructed

in physical space using the inverse wavelet transform to get
SC�t�, whereas the incoherent component is easily obtained
as SI�t�=S�t�−SC�t�. It could also be computed by applying

the inverse wavelet transform to S̃ij
I .

We choose the simplest model for the noise to be elimi-
nated, therfore we suppose it to be additive, Gaussian and
white. If we know a priori the noise’s variance �2, the opti-
mal threshold value is given by


 = �2 ln N�2�1/2. �4�

Indeed, Donoho and Johnstone24 have proven that such a
wavelet thresholding is optimal to denoise signals in the
presence of additive Gaussian white noise, because it mini-
mizes the maximal L2 error �between the denoised signal and
the noise-free signal� for functions with inhomogeneous
regularity, such as intermittent signals. However, to compute
the threshold 
 the variance of the noise has to be known.

In Refs. 26 and 15 we have proposed a recursive algo-
rithm to estimate the variance of the noise when it is not
known a priori, as it is the case for most practical applica-
tions, in particular for coherent bursts extraction. The recur-
sive algorithm is based on the observation that, given a
threshold 
n at interation n, the variance of the noise esti-
mated using Parseval’s theorem

�n
2 =

1

N
�

�j,i���J,�S̃ji��
n

�S̃ji�2 �5�

yields a new variance �n+1
2 , and hence a threshold 
n+1 closer

to the optimal threshold 
 than 
n. In Ref. 26 we studied the
mathematical properties of this algorithm and proved its con-
vergence for signals having sufficiently sparse representation
in wavelet space, such as intermittent signals.

D. Algorithm

The recursive extraction algorithm can be summarized
as follows.

(1) Initialization

• Given the signal S�t� of duration T, sampled on an equi-
distant grid ti= iT /N for i=0, N−1, with N=2J;

• set n=0 and perform a wavelet decomposition, i.e., apply
the fast wavelet transform �FWT�27 to S to obtain the

wavelet coefficients S̃ji for �j , i���J;
• compute the variance �0

2 of S as a rough estimate of the
variance of the incoherent signal SI and compute the cor-
responding threshold 
0= �2 ln N�0

2�1/2, where �0
2

˜ 2
=1/N��j,i���J
�Sji� ;
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• set the number of coefficients considered as noise to NI

=N, i.e., to the total number of wavelet coefficients.
(2) Main loop
Repeat the following until �NI= =NI

old�:

• set NI
old=NI and count the number of wavelet coefficients

smaller than 
n, which yields a new value for NI;
• compute the new variance �n+1

2 from the wavelet coeffi-

cients smaller than 
n, i.e., �n+1
2 = 1

N��j,i���J
�S̃ji

I �2, where

S̃ji
I = �S̃ji for �S̃ji�  
n

0 else,
� �6�

and the new threshold 
n+1= �2 ln N�n+1
2 �1/2;

• set n=n+1.
(3) Final step

• Reconstruct the coherent signal SC from the coefficients S̃ji
C

using the inverse FWT, where

S̃ji
C = �S̃ji for �S̃ji� � 
n

0 else
� �7�

• finally, compute pointwise the incoherent signal SI�ti�
=S�ti�−SC�ti� for i=0, . . . ,N−1.

(4) End.
Note that the decomposition yields S�t�=SC�t�+SI�t� and

orthogonality implies that energy is split into �2=�C
2 +�I

2,
since �SC ,SI	=0.

The FWT, proposed by Mallat,27 requires �2mN� multi-
plications for its computation, where m is the length of the
discrete filter defining the orthogonal wavelet used. Hence,
the extraction algorithm we propose is computed in �2nmN�
operations, with a number of iterations n very small, typi-
cally less than log2 N. Recall that the operation count for the
fast Fourier transform is proportional to N log2 N operations.

This algorithm defines a sequence of estimated thresh-
olds �
n�n�N and the corresponding sequence of estimated
variances ��n

2�n�N. The convergence of these sequences
within a finite number of iterations has been demonstrated in
Ref. 26 applying a fixed point type argument to the iteration
function

IS,N�
n+1� = �2 ln N

N
�

�j,i���J

�S̃ji
I �
n��2�1/2

. �8�

The algorithm thus stops after n iterations when IS,N�
n�
=
n+1.

Furthermore, we have shown that the convergence rate
of the recursive algorithm depends on the signal to noise
ratio �SNR=10 log10��2 /�I

2��, and the smaller the SNR, i.e.,
the stronger the noise, the faster the convergence. Moreover,
if the algorithm is applied to a Gaussian white noise only, it
converges in one iteration and removes the noise �in statisti-
cal mean�. If it is applied to a signal without noise, the signal
is fully preserved. Finally, we have proven that the algorithm
is idempotent, i.e., if we apply it several times, the noise is
eliminated the first time, and the coherent signal is no more
modified in the subsequent applications, as it would have
been the case for a Gaussian filter. As a consequence, this

26
algorithm yields a nonlinear projector.

IP license or copyright, see http://pop.aip.org/pop/copyright.jsp



�bott

042304-5 Extraction of coherent bursts ... Phys. Plasmas 13, 042304 �2006�
E. Application to an academic test signal

To illustrate the properties of the recursive algorithm we
apply it to a 1D noisy test signal S �Fig. 2, middle�. This
signal has been constructed by superposing a Gaussian white
noise W, with zero mean and variance �W

2 =1, to a function
F, normalized such that its variance yields 100, which cor-
responds to a signal to noise ratio SNR=10 log10��F

2 /�W
2 �

=20 dB �Fig. 2, top�. The function F is a piecewise polyno-
mial function which presents several discontinuities, either in
the function or in its derivatives. The number of samples is
N=213=8192.

We apply the recursive extraction algorithm to the test
signal S�t� and it converges after n=5 iterations, giving the
coherent compnent SC�t� and the incoherent noise SI�t� �cf.
Fig. 2, bottom�. We observe that SC�t� yields a denoised ver-
sion of the test signal S�t� which is very close to F�t�,
whereas the incoherent part SI�t� is homogeneous and noise-
like with flatness F=3.03, which corresponds to quasi-
Gaussianity. Note that the flatness F is defined as the ratio of

FIG. 2. �Top� Construction of a �middle� 1D noisy signal S=F+W, and
the centered fourth order moment divided by the square of
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the variance, and F=3 for a Gaussian process. Fig. 2 �bot-
tom, left� shows that the coherent signal retains all disconti-
nuities and spikes present in the original function F�t�, with-
out smoothing them as it would have been the case with
standard denoising methods, e.g., with low-pass Fourier fil-
tering. Nevertheless, we observe slight overshoots in the vi-
cinity of the discontinuities, although they remain much
more local than the classical Gibbs phenomena, and could
easily be removed using the translation invariant wavelet
transform.27

III. APPLICATION TO TURBULENT EDGE PLASMA

A. Density fluctuations

We have measured the time evolution of the ion satura-
tion current during 8 ms in the SOL of the tokamak Tore
Supra in Cadarache �France�. This signal, denoted S�t�, gives
an estimation of the density fluctuations.

The measure was taken according to the following

om� results obtained by the recursive algorithm, which gives S=SC+SI.
plasma scenario: the shot 28338 lasted 18 s and the signal
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has been recorded in the middle of the plasma current pla-
teau. The large radius was R=2.33 m, the small radius a
=0.77 m, the mean plasma density n̄i=1.37�1019 m−3, the
plasma current Ip=0.84 MA and the edge safety factor q
=6.71. Moreover, 2.1 MW of lower hybrid waves were ap-
plied to the plasma.

The ion saturation current fluctuations were measured by
a fast reciprocating Langmuir probe. The total duration of the
probe motion into the plasma was 300 ms. When the probe
reached 2.8 cm away from the last closed flux surface
�LCFS�, the signal was recorded at 1 MHz during 8 ms �Fig.
3�, which gave N=213=8192 samples. A high-pass filter at
frequency 0.1 kHz and a low-pass filter at frequency
500 kHz have been applied to eliminate both low frequencies
and aliasing.

B. Extraction of coherent bursts

We use the wavelet extraction algorithm to split the sig-
nal S�t� �Fig. 4, top� into two orthogonal components, the
coherent bursts, SC�t� �Fig. 4, middle�, and the incoherent
turbulent fluctuations, SI�t� �Fig. 4, bottom�. The optimal
threshold value has been obtained after n=12 iterations of
the algorithm �Fig. 5�.

As results, we observe that the coherent signal SC�t�,
made of 5.8%N wavelet coefficients, retains 86.6% of the
total variance and the extrema are preserved �Table I�. In
contrast, the incoherent contribution SI�t�, is made of
94.2%N wavelet coefficients but contributes to only 13.4%
of the total variance �Table I�, which corresponds to a signal
to noise ratio SNR=10 log10��2 /�I

2�=8.72 dB.
The decomposition shows that the bursty and coherent

contribution to the signal dominates over the turbulent back-
ground fluctuation, and this more strongly than what has

10

FIG. 3. Plasma scenario of the shot 28338 from the tokamak Tore Supra,
Cadarache. The duration of the shot is 18 s. The plasma density fluctuations
are measured by a fast reciprocating Langmuir probe. When the probe is
2.8 cm away from the LCFS in the SOL, the signal is acquired during time
windows of 8 ms.
been found with previous methods based on clipping.
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Figure 6 shows the PDFs in semi-logarithamic coordi-
nates for the total, coherent and incoherent contributions,
estimated using histograms with 50 bins and integrals nor-

FIG. 4. Signal S�t� of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the SOL of the tokamak Tore
Supra, Cadarache. �Top� Total signal S, �middle� coherent part SC, and �bot-
tom� incoherent part SI.
malized to one. The PDFs of the total signal and the coherent
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contribution are skewed and present the same behavior: posi-
tive values have exponential tails with p�S��exp�−5/2S�,
whereas negative values yield a Gaussian behavior �Fig. 6�.
In contrast, the PDF of the incoherent component is almost
symmetric, with skewness 0.38, instead of 2.56 and 2.84 for
the total and coherent part, respectively. It has a quasi-
Gaussian shape with flatness 4.03, instead of 12.00 and
14.22, respectively �Fig. 6�.

C. Fourier spectrum and modified periodogram

To study the spectral distribution of the density variance
for the different components, we consider the Fourier spec-
trum

E��� =
1

2
�Ŝ����2, �9�

where Ŝ��� denotes the Fourier transform as defined in Eq.
�3�. As estimator for the spectrum we take the periodogram,
which is a discrete version of Eq. �9�, although it is known to

FIG. 5. Threshold value 
n vs iteration number n.

TABLE I. Statistical properties of the signal S�t� from the tokamak Tore
Supra, Cadarache, for the signal and its coherent and incoherent components
using the Coifman 12 orthogonal wavelet.

Properties
Total

S
Coherent

SC
Incoherent

SI

Number of coefficients 8192 479 7713

Percent of coefficients 100 5.8 94.2

Minimum value −0.284 −0.282 −0.307

Maximum value 1.689 1.686 0.374

Mean value 0.019 0.019 �10−11

Variance �2 0.0417 0.0361 0.0056

Percent of variance 100 86.6 13.4

Skewness 2.564 2.842 0.383

Flatness 12.001 14.224 4.026
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be an inconsistent estimator due to the presence of
oscillations.28 To obtain a consistent estimator we also com-
pute the modified periodogram, by first tapering the data
with a raised cosine window �affecting 40 data points at each
boundary�, and then convolving the periodogram with a
Gaussian window �with standard deviation of 40 data
points�. Figure 7 shows the periodogram and the modified
periodogram for S, SC, and SI, which confirms that the latter
yields a stabilized estimator of the spectrum, presenting no
more spurious oscillations.

D. Wavelet spectrum

The wavelet decomposition, given in Eq. �1�, yields the
distribution of the variance of the signal scale per scale,
which is called scalogram.19 It is defined as

Ẽj =
1

2 �
i=0

2j−1

�S̃ji�2. �10�

Parseval’s theorem implies that E=� j�0Ẽj. Using the rela-
tion � j =��2 j between the scale index j and the frequency �,

the wavelet spectrum can be defined as Ẽ���= Ẽj ·2
−j, with

�� being the centroid frequency of the mother wavelet
whose value is ��=1.3 for the Coifman 12 wavelet used
here. It corresponds to a smoothed version of the Fourier
spectrum �9�, the smoothing kernel being the square of the
Fourier transform of the wavelet, since

Ẽ��� =
1

��
�

0

+�

E������̂�����

�
��2

d��. �11�

Note that, as frequency increases, i.e., when one goes to
small scale, the smoothing interval becomes larger, which
explains why the wavelet spectrum is a well-conditioned sta-
tistical estimator. The advantage of the wavelet spectrum in

FIG. 6. Probability density function p�S�, estimated using histogram with
50 bins. PDF of the total signal S �green dashed line�, of the coherent com-
ponent SC �red solid line�, and of the incoherent component SI �blue dotted-
dashed line�, together with a Gaussian fit with variance �I

2 �black dotted
line�.
comparison to the modified periodogram is that the smooth-
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ing window is automatically adjusted by the wavelet repre-
sentation, since wavelets correspond to filters with constant
relative bandwidth �� /�.19

In Fig. 8 wavelet spectra, together with modified peri-
odograms, are displayed. We observe that the signal and its
coherent component present a similar scaling in �−5/3, which

FIG. 7. Fourier spectrum E���. �Top� Spectrum of the total signal S�t�,
�middle� coherent component SC�t�, and �bottom� incoherent component
SI�t�. Note that the periodogram is plotted in green, red, and blue for the
total, coherent, and incoherent signals, respectively. Superimposed are the
modified periodograms �black thick line�.
characterizes long-range correlation since the spectral slope

Downloaded 26 Apr 2006 to 129.199.72.6. Redistribution subject to A
is negative. As proposed in Ref. 10, this may be interpreted
as an inverse energy cascade, similar to what is encountered
in 2D fluid turbulence. In contrast, the incoherent component
has a different scaling, with a flat spectrum up to frequency
�=120 kHz, corresponding to decorrelation. For higher fre-
quencies we observe a �−1 scaling, which may be due to
experimental noise, since it presents the same scaling at high
frequencies, although its amplitude remains smaller than the
incoherent fluctuations. Figure 8 also shows that the wavelet
spectrum almost coincides with the modified periodogram,
and that, the higher the frequency, the better the stabilization
obtained using wavelets.

Note that the scalogram and the wavelet spectrum are
optimal to characterize scaling laws, as long as the analyzing
wavelet has at least M vanishing moments, with
M � ��−1� /2, to detect power laws in �−�, see, e.g., Refs.
21 and 29.

E. Intermittency

Intermittency characterizes the fact that the time support
of the fluctuations decreases with scale.30,31 It therefore
quantifies how bursty a signal is. Townsend32 has proposed
the “intermittency factor” as the ratio between the time sup-
ports of active and quiescent regions. But the main defi-
ciency is that intermittency factors depend on the choice of
the threshold below which the variation is considered to be
inactive.33 As we have already mentioned, one of the draw-
backs of such a clipping method is that the active bursts, and
the corresponding intermittency factor, depend on the choice
of the threshold, which can be avoided by using the wavelet
representation.

Biskamp stated in30 that “the spottiness of the dissipative
eddies is a special feature of what is now believed to be a
general property of fully developed turbulence that with de-
creasing scale turbulent fluctuations become less and less
space-filling, i.e., are concentrated in regions of smaller and
smaller volume but increasingly complicated shape. This

FIG. 8. Wavelet spectra Ẽ�� j� �lines with symbols� and modified peri-
odograms E��� �lines� of the total signal S �green and ��, coherent signal SC

�red and �� and incoherent signal SI �blue and ��.
phenomenon is called intermittency, which is a central topic
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in actual turbulence research”. Frisch explained in Ref. 31
that intermittency can be quantified by computing the varia-
tion of the flatness when scale decreases: if flatness remains
constant the signal is non-intermittent, if it increases when
scale decreases it is intermittent. We use the same definition
of intermittency and compute the scale dependent flatness
from the higher order moments of the wavelet coefficients

Sji, as introduced in Refs. 21 and 29. By summing up the pth
power of the wavelet coefficients over all positions i, one
obtains the pth order moments

M̃ j
p =

1

2 j �
i=0

2j−1

�S̃ji�p. �12�

The scale dependent flatness is then defined as

F̃ j =
M̃ j

4

�M̃ j
2�2

. �13�

The relation between scale and frequency allows one to ex-
press the flatness as a function of the frequency � j, similarly
to the wavelet spectrum. Note that Gaussian white noise,
which is by definition non-intermittent, would yield a flat-
ness equal to three for all frequencies.

To characterize the intermittency of the signal and its

different contributions we plot in Fig. 9 the flatness F̃ j versus
the frequency � j. We observe that the flatness of the coherent
contribution increases faster for high frequencies than that of
the total signal. This proves that the coherent contribution is
more intermittent than the signal itself, which is obvious
since it only retains the bursts. In contrast, the flatness of the

incoherent contribution decreases to the value F̃ j =3, up to
frequency �=120 kHz, which gives evidence for its non-
intermittent behavior. The wavelet based flatness corre-
sponds to the flatness of the band-pass filtered signal, as

31

FIG. 9. Flatness of the band-pass filtered signal F̃ vs frequency � j for the
total signal S �green dashed line�, coherent signal SC �red solid line�, and
incoherent signal SI �blue dotted-dashed line�. The horizontal dotted line

F�� j�=3 corresponds to the flatness of a Gaussian process.
typically used in the fluid turbulence community. Note that

Downloaded 26 Apr 2006 to 129.199.72.6. Redistribution subject to A
the signal reconstructed from its wavelet coefficients at a
given scale j corresponds to the band-pass filtered signal
around the frequency � j =��2 j.

For comparison we also show in Fig. 10 the flatness of
the low-pass filtered signal, for dyadically increasing cutoff
frequencies �C=��2JC. Therefore, we reconstruct the signal
in physical space on N grid points using only the wavelet
coefficients up to a given scale JC, corresponding to the filter
cutoff. The wavelet coefficients for scales j�JC are set to
zero and the low-pass filtered signal is computed by inverse
wavelet transform using Eq. �1�.

Similarly to Fig. 9, we observe in Fig. 10 that the flat-
ness of the total and coherent signal increases with frequency
for ��3 kHz. Considering the signal filtered at 20 kHz we
observe that its flatness is just above 7, however the signal
contains only large bursts, since all smaller scale details have
been filtered out. This shows that the signal is already inter-
mittent at medium scales. For the small scales, i.e., for �
�20 kHz, the flatness of the total and the coherent signals is
above 10. This shows that adding small scale details to the
large scale bursts increases the flatness, and hence the sig-
nal’s intermittency, as quantified by its flatness.

The flatness F� of the low-pass filtered signal, consid-
ered for increasing cutoff frequencies, quantifies the intermit-
tency of the signal reconstructed up to the corresponding

cutoffs, whereas the flatness F̃ of the band-pass filtered sig-
nal, considered for bands of increasing frequency, yields in-
cremental information on the flatness of the signal scale by
scale. The latter quantity can be compared with the wavelet
spectrum which gives the energy distribution scale by scale,
whereas the former gives some cumulative information,
since information on the flatness of the lower frequency con-
tributions of the signal is included in the flatness of the
higher frequency contributions. Hence, both quantities do not
yield the same values if the PDF of the signal varies with

FIG. 10. Flatness of the low-pass filtered signal F� vs frequency � j for the
total signal S �green dashed line�, coherent signal SC �red solid line�, and
incoherent signal SI �blue dotted-dashed line�. The horizontal dotted line
F��� j�=3 corresponds to the flatness of a Gaussian process.
scale.
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IV. CONCLUSION

We presented a wavelet-based recursive method to ex-
tract coherent bursts out of turbulent signals. The algorithm
decomposes the signal into an orthogonal wavelet basis and
reconstructs the coherent contribution from the wavelet co-
efficients whose modulus is larger than a given threshold.
The threshold value is recursively determined without any
adjustable parameter. Moreover, we have shown that this al-
gorithm is fast, since it has only linear complexity.

Compared to classical extraction methods, which are
based, either on thresholding in physical space �“clipping”�,
or on conditional averaging, working in wavelet space pre-
sents the following advantages:

�i� there is no need to suppose the signal to be statisti-
cally stationary in time,

�ii� the wavelet decomposition preserves the spectral
properties of the signal, and thus respects its scaling
as long as the analyzing wavelet is smooth enough
�which depends on the number of vanishing moments
it has�,

�iii� the wavelet-based extraction method does not require
any prior about the shape or the intensity of the bursts
to be extracted; the only prior is to assume the noise
to be Gaussian and white.

We have applied this recursive wavelet algorithm to ion
saturation current measured in the SOL of the tokamak Tore
Supra in Cadarache. We have thus extracted the coherent
bursts from an incoherent background noise. The former
contain most of the density variance and are correlated, with
non-Gaussian statistics, whereas the latter is almost decorre-
lated and quasi-Gaussian. We have also observed that the
non-Gaussianity of the PDF of the coherent component in-
creases with the frequency, which confirms that the bursts are
highly intermittent. In contrast, the incoherent component
remains quasi-Gaussian up to high frequencies, which con-
firms the non-intermittency of the background noise. By
analogy with previous studies we have made in the context
of 2D fluid turbulence,34 we conjecture that the coherent
bursts are due to organized structures produced by nonlinear
interactions and responsible for turbulent transport. On the
other hand, the incoherent background corresponds to the
turbulent fluctuations which only contribute to turbulent dif-
fusion. Moreover, the variance of the incoherent fluctuations
yields a good estimation of the turbulence level.

In Ref. 35 we applied this extraction method to both
plasma velocity and density signals, measured at different
poloidal positions, to study turbulent fluxes and thus charac-
terize the transport properties of the coherent bursts. These
results will be subject of a forthcoming article. We also have
already extended this extraction method to treat 2D and 3D,
scalar and vector, fields,15–17 and we plan to apply it to
spatio-temporal signals and to images of plasma density fluc-
tuations obtained by fast framing cameras. Our aim is to

improve the characterization of coherent bursts.
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