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23.1 � Introduction

Many growth processes that shape the human environment 
generate structures over a wide range of scales, e.g., trees, 
rivers, lightning bolts. Likewise, most geophysical f lows hap-
pen on a wide range of scales, e.g., winds in the atmosphere, 
currents in the oceans, seismic waves in the mantle. In gen-
eral, both kinds of phenomena are governed by nonlinear 
dynamical laws that give rise to chaotic behavior, and it is 
thus very difficult to follow their evolution, let alone predict 
it. Only in the last few decades could the systems of nonlin-
ear equations modeling environmental f luid f lows be solved, 
thanks to the development of numerical methods and the 
advent of supercomputers. Although the present computer 
performances still remain insufficient to simulate from first 
principles, i.e., by direct numerical simulation (DNS), many 
environmental f luid f lows, especially those which are turbu-
lent, appropriate multiscale representations may contribute 
to the success of that ongoing enterprise. The goal of this 
review is to present three of them: fractals, self-similar ran-
dom processes, and wavelets.

A fractal is a set of points that presents structures that look 
essentially the same at all scales. When only its large-scale 
features are considered, a certain shape is observed, which 

does not become simpler when zooming toward small scales 
but on the contrary remains quite similar to which it is at large 
scale. This goes on from one scale to the other, up to the point 
that one cannot tell what is the scale of observation. When 
measuring the length, surface, or volume of a fractal object, 
it is found that, in contrast to classical geometrical objects, 
e.g., circle or polygons, a definite answer cannot be obtained
since the measured value increases when the scale of obser-
vation decreases. Let us now consider a simple example of a 
drop falling into water, an experiment that can be easily done 
with a glass of water, a drop of oil, and a drop of ink. While 
falling, the shape of the oil drop becomes more and more 
spherical, therefore more regular than it was at the instant 
of impact. Since oil is hydrophobic, the drop tends to mini-
mize the interface between oil and water for a given volume. 
In contrast, the shape of the ink drop becomes more and more 
convoluted, since the drop is unstable and splits into smaller 
drops. In absence of surface tension and of dissipation, the 
interface between ink and water would then become fractal 
in the limit of long times. Indeed, since ink is hydrophilic the 
drop tries to maximize the interface for a given volume. Both 
systems satisfy the same equations and only one parameter, 
the surface tension, differs, which implies either minimization 
or maximization of the interface. The solution of the former 
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exists and is smooth, while the maximum does not exist. John 
Hubbard, who suggested this example, concludes:

The world is full of systems which are trying to reach an 
optimum which does not exist, and consequently they 
evolve towards structures which are complicated at all 
scales. This happens for trees, which try to maximize their 
exposure to light, for lungs and capillaries, which try to 
maximize the interface between tissue and blood. The great 
work of Mandelbrot has been to tell, very loudly and in a 
very convincing way, that the world is full of complicated 
phenomena, of complicated objects having structure at all 
scales. [28]

Fractals can be traced back to the discovery of continuous 
nondifferentiable functions, e.g., the Weierstrass function, and 
nonrectifiable curves, e.g., the Sierpinski gasket. Measure the-
ory, as developed in particular by Felix Hausdorff at the end of 
the nineteenth century, and integration theory, as redesigned 
by Henri Lebesgue and others at the beginning of the twentieth 
century, together with the study of recursive sequences in 
the  complex plane, by Pierre Fatou and Gaston Julia, were all 
precursors of fractals, although a different terminology was used 
those years. Only when computer graphics became widely avail-
able in the 1960s was one able to visualize fractals and wonder 
about their apparent complexity. Although the mathematical 
tools were already there, it is Benoît Mandelbrot, while working 
for the IBM Research Center in Yorktown (USA), who popular-
ized fractals and named them in the 1970s. Actually, before he 
started talking about fractals, Mandelbrot was a specialist of the 
theory of Brownian motion that he had learned about during the 
time he was at Ecole Polytechnique in Paris, where he studied 
under the French probabilist Paul Lévy [38]. It was Mandelbrot 
who gave in 1968 the name “fractional Brownian motion” [42] 
to the self-similar stochastic processes proposed by Kolmogorov 
in 1940 [33], which are generalizations to long-range correlated 
increments of the classical Brownian motion.

The mathematical foundation of wavelets is more recent, 
since the continuous wavelet transform has been introduced 
only in the 1980s by Jean Morlet and Alex Grossmann. Jean 
Morlet was researching on oil exploration for the French com-
pany Elf, while Alex Grossmann was a specialist of coherent 
states in quantum mechanics and a member of the CPT (Centre 
de Physique Théorique) in Marseille (France) (see also [21] for 
more on the early history of wavelets). From their work, Ingrid 
Daubechies, Pierre-Gilles Lemarié, and Yves Meyer constructed 
several orthogonal wavelet bases. Soon after, Stéphane Mallat 
and Yves Meyer introduced the concept of multiresolution anal-
ysis (MRA), which led to the Fast Wavelet Transform (FWT). 
Without the FWT, the wavelet transform would have remained 
confined to text books and theoretical papers. The same was true 
for the Fourier transform that would not have entered our every-
day’s life without the combination of computers and FFT (Fast 
Fourier Transform), invented by Gauss around 1805 and redis-
covered by Cooley and Tukey in 1965.

The aim of this chapter is to give researchers working in envi-
ronmental fluid dynamics some mathematical tools to study 
the multiscale behavior of many natural flows. For the sake of 
clarity, we propose to divide what is presently named “fractals” 
into two classes: deterministic fractals and self-similar random 
processes. We will keep the terminology “fractals” to designate 
the former, which are constructed following some deterministic 
procedure iterated scale by scale. For the latter we propose to 
return to the “pre-fractal” terminology of “self-similar random 
processes,” which are ensembles of random realizations whose 
statistics exhibit some scaling behavior. In this paper we will 
present several multiscale methods developed from three dif-
ferent view points: fractals, self-similar random processes, and 
wavelets. All of them are mathematical tools that do not have 
any explanatory power per se. They require the scientist who 
uses them to have enough physical insight to interpret the results 
and decide if this tool is actually appropriate to his problem. If a 
new technique is not mastered well enough, it induces an a priori 
interpretation, built in within it without the user being a ware 
of that. To avoid such a drawback, we will here limit ourselves 
to give definitions, expose methods, and illustrate their use on 
academic examples rather than from applications. We will jus-
tify this choice in the conclusion by showing how such misin-
terpretation already happened while applying either fractals or 
wavelets to study turbulence.

23.2 � Principles

23.2.1 � Fractals

23.2.1.1 � Definition and History

To define what “fractal” means is quite a difficult endeavor since 
one finds in the literature different definitions. Here we use the 
following definition: a fractal is a geometrical object that is so 
convoluted, irregular, or fragmented that its length, surface, 
volume, as well as higher-dimensional generalizations of these 
measures, all equal either zero or infinity. Its boundary is a set of 
points, either connected or disconnected, which looks the same 
at different scales and tends to be space-filling. For instance, a 
fractal curve is not rectifiable, i.e., its length is infinite. If the 
points remain connected the boundary can be parametrized 
by a continuous but nondifferentiable function. Otherwise, the 
fractal is a dust of disconnected points that can only be param-
etrized by a measure. A fractal shape may look complicated 
although it is not, since it may have been generated by a simple 
iterative procedure. The difficulty is, given an observed compli-
cated shape, can we infer the simple rule that has generated it? 
In most cases the answer is no and this is why methods devel-
oped under the trademark “fractals” are rather descriptive than 
predictive.

Benoît Mandelbrot introduced the word “fractal” in 1975, 
in a book first published in French [44] and 2 years later in 
English [45], but he managed to keep the definition vague and 
varied them throughout his books. The first definition he gave 
is: …‘ fractal object’ and ‘ fractal,’ terms that I have formed for 
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this book from the Latin adjective ‘ fractus’ which means irregu-
lar or broken [44]. Subsequently, Mandelbrot succeeded in gath-
ering under the same name different mathematical objects that 
were proposed before but were considered by most mathemati-
cians as surprising, anecdotic, or weird. Poincaré recalled that

we have seen a rabble of functions arise whose only job, it 
seems, is to look as little as possible like decent and use-
ful functions. No more continuity, or perhaps continuity 
but no derivatives […] Yesterday, if a new function was 
invented it was to serve some practical end, today there are 
specially invented only to show up the arguments of our 
fathers, and they will never have any other use” [7].

An example of such entertaining mathematical object was the 
fractal curve known as the “snow flake,” see Figure 23.1a, pub-
lished in 1904 by Helge von Koch in the Swedish journal “Arkiv 
for Matematik” [32].

In 1918, the French Academy set for its “Grand Prix des 
Sciences Mathématiques” the iteration of fractional func-
tions and Gaston Julia won that prize. Independently, Gaston 
Julia and Pierre Fatou were studying rational maps in the 
complex plane by iterating polynomials, e.g. quadratic maps. 
In 1977, Adrien Douady and John Hubbard used Newton’s 
method to solve the quadratic map fc(z) = z2 + c, with z ∈ �, 
c ∈ � a parameter. This quadratic map is the simplest nonlin-
ear dynamical system one can think of in the complex plane 
and they studied the set Kc of z for which the n-th iterate of f, 
f zc

n( ), converges. The frontier of Kc is now called the Julia set 
of fc. Benoît Mandelbrot, who worked for IBM and had thus 
access to large computers, graphical facilities, and good pro-
grammers, made visualizations to help understanding that 
problem. In a paper published in 1982, Douady and Hubbard 
[15] showed that the set of all cs for which 0 ∈ Kc is connex, and 
they baptized it the Mandelbrot set M in order to pay tribute to 
Mandelbrot for his visualizations. They commented as follows: 
Benoît Mandelbrot has obtained on a computer a very beautiful 
picture of M, exhibiting small islands which are detached from 
the principal component. These islands are in fact connected by 

filaments which escape the computer [15]. Without any doubt 
computer visualization has played an essential role in the dis-
semination of fractals outside mathematics.

The main contribution of Mandelbrot has been to widely 
popularize fractals, thanks to computer visualization. His 
argument is that fractals are more appropriate to describe nat-
ural phenomena than the classical objects geometers have been 
using for centuries, namely rectifiable curves (e.g., circle and 
other ovals) or piecewise regular curves (e.g., triangle and 
other polygons). He illustrated that with many examples 
[44,45] such as the length of the coast of Britain, fluctuations 
of stock exchange, flood data, etc.

23.2.1.2 � Fractal Dimension

The box-counting dimension d of a simple geometrical object A 
is defined by

N l l
l

d( ) ~ ,
→

−

0
	 (23.1)

where N(l) is the minimal number of boxes of side length l 
required to cover the whole set of points A. For instance, if A is 
a regular curve (i.e., everywhere differentiable), like a segment, 
then d = 1. If A is as simple surface (respectively a simple volume), 
then d = 2 (respectively d = 3). In those cases, d corresponds to 
the topological dimension of the manifold. The definition of d 
given by Equation 23.1 can be extended to more general sets, 
for which d is in general no more an integer. These sets are thus 
fractal sets and d is called their fractal dimension. A more rigor-
ous definition of the fractal dimension relies on the Hausdorff 
dimension [24]. But the latter is less easy to compute from data, 
and, in all the examples we shall consider thereafter, the box-
counting dimension d and the Hausdorff dimension are equal. 
Hence, we consider thereafter that the Hausdorff dimension is 
equivalent to the fractal dimension as defined by Equation 23.1.

Classical illustrations of fractal sets of points are given by the 
Cantor dust and the von Koch curve. The former is a set of points 
obtained by dividing recursively a segment into three parts, 
where only the first and the third subsegment are retained; this 
construction is illustrated in Figure 23.1a. Since each step of the 
algorithm doubles the number of segments while their length is 
divided by three, after n iterations there are 2n segments of length 
3−n. Since each segment includes all the subsegments of the fol-
lowing iterations, it results that one can cover this ensemble of 
segments with 2n balls of radius 3−n. The fractal dimension of the 
Cantor set as defined by the box-counting method is as follows:
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(23.2)

Therefore, the fractal dimension of the Cantor set is between 
0 and 1, which implies that the set is neither an ensemble of iso-
lated points nor a line.

The second example, the von Koch curve, is also obtained using 
a recursive process where in this case each segment of length l is 

(a) (b)

FIGURE 23.1  Illustration of the first four iteration steps leading to 
the Cantor dust (a) and to the von Koch snow flake (b).
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replaced by four segments of length l/3 as illustrated in Figure 23.1b. 
Starting from the unit length segment, after n iterations there are 
4n segments of length 3−n. The fractal dimension of the von Koch 
curve, as defined by the box-counting method, is as follows:

dK
n

n

n=






=

→ ∞
lim

ln
ln

ln
ln

.− −

4
3

4
3

(23.3)

The fractal dimension is hence contained between 1 and 2, 
implying that the length of the von Koch curve is infinite while 
its surface is zero.

23.2.1.3 � Hölder Exponent and Singularity Spectrum

The fractal dimension was defined earlier as a geometrical prop-
erty that characterizes a set of points, but it can also be used to 
analyze the regularity of functions or distributions as detailed 
now. Complex signals, like those encountered in environmen-
tal data analysis, can be seen as superpositions of singularities. 
One way of detecting a singularity of a function f at a point x 
is to measure its Hölder regularity. The function f is said to be 
α-Hölder in x if there exists a polynomial Pn of degree n and a 
constant K such that for sufficiently small l

| ( ) ( ) | | | ,f x l P l K ln+ − ≤ α 	 (23.4)

where n is the integer part of α (i.e., n ≤ α < n + 1). The Hölder 
regularity of f in x is the maximum α such that f is α-Hölder in x. 
Note that for α = 1 the function is called Lipschitz-continuous in x. 

If f is n + 1 times differentiable in x, then P l ln
f x

kk

n
kk

( ) ,
( ) ( )

!=
=∑ 0

the Taylor expansion of f in x. The smaller the Hölder exponent, 
the stronger the singularity (as illustrated by the examples in 
Figure 23.2).

Some functions, sometimes called multifractal functions 
[48], have a Hölder regularity that varies from one point to the 
other. It is thus interesting to analyze the set of points Aα where 
a function has Hölder regularity α, for example, by computing 
its fractal dimension d(α). The singularity spectrum is the func-
tion that associates d(α) to each value of the Hölder regular-
ity α. It is not easy to compute directly, but a trick can be used to 
estimate it. We briefly sketch the idea without giving a rigorous 
demonstration.

If we consider a covering l of the support of the function f
by boxes of the form Bx,l = [x,x + l], then, by definition of the 
regularity, we obtain that

| ( ) ( ) |~ ,f x l f x l x+ − α 	 (23.5)

where ∼ stands for the magnitude order. Hereafter l is assumed 
to be small (l ≪ 1). By definition of the fractal dimension, the 
minimal number of balls needed to recover the support of Aα is

N l lA
d

α
α( ) ~ .( )− (23.6)

The moment function Zq(l) associated to the cover l of
the domain is defined by Z l f x l f xq

q

Bl l
( ) .| ( ) ( ) |= + −

∈∑ B
 

Note that it is sometimes called partition function by anal-
ogy with statistical physics. Contributions of boxes containing 
an α-singularity are given by |f(x + l) − f(x)|q ∼ lqα, while the 
number of such boxes is given by Equation 23.6. Hence, the 

moment function can be approximated by Z l lq
q d

h
( ) ~ .( )α α−∑

Since l is assumed to be small, the leading contribution in Zq 
is given by the term of minimum exponent qα − d(α). It fol-
lows that the moment function is approximated by Zq(l) ≈ lτ(q), 
where τ α αα( ) inf { ( )}q q d= −  is the multiscale exponent. Hence, 
as shown in [48] the singularity spectrum d(α) appears as being 
the Legendre–Fenchel inverse transform of the multiscale 
exponent τ(q)

d q q( ) inf{ ( )}.α α τ
α

= − 	 (23.7)

For instance, the singularity spectrum of the Riemann func-

tion f x n x
nn

( ) sin=
=

∞∑ 2
2

1
, is d(α) = 4h − 2 if α ∈ [1/2,3/4] and 

d(3/2) = 0. Another example is given by the Devil’s staircase, 
related to the Cantor set as follows. In the Cantor set genera-
tion algorithm that we have described earlier, each interval was 
split into two pieces in a symmetric fashion at each iteration. 
Denoting by μ the characteristic function of the set obtained 
after n iterations of the procedure, one can easily show that the 

limit f x u u
n

n

x
( ) lim ( )=

→∞ ∫ χ
0

d  exists, and the resulting function f, 

shown in Figure 23.3a, is called the Devil’s staircase. It can 
be shown that each singularity of f is of the same Hölder regu-
larity α = ln 2/ln 3 and the support of these singularities is the 
Cantor set. Therefore, in that case the singularity spectrum is 
reduced to the point d(ln 2/ln 3) = ln 2/ln 3.
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FIGURE 23.2  Illustrations of singularities at point x = 0 with the 
graph of the function f(x) = 1 − |x|α, with α = 1, 5/9, and 1/9, respec-
tively, for (a), (b), and (c).
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More complex singularity spectra can be obtained by consid-
ering more general fractals similar to the Devil’s staircase (see 
Figure 23.3b), which we do not detail here.

23.2.2 � Self-Similar Random Processes

23.2.2.1 � Definition and History

Stochastic fractals, sometimes also called fractal noise, are self-
similar random processes, which yield models for many appli-
cations, e.g., turbulent velocity fields. The self-similarity of a 
stochastic process is only satisfied in the statistical sense and 
hence a given realization is not necessarily self-similar. One can 
distinguish between scalar- or vector-valued random processes 
in one or higher space dimensions. For the sake of simplicity, we 
restrict ourselves in the following to scalar-valued processes in 
one space dimension, which typically corresponds to time t or 
space x. The simplest ones are Gaussian random processes.

Denoting by ξ(t) a Gaussian random process that we assume 
to be stationary (i.e., all its statistics are invariant by translation), 
its one-point probability distribution function (pdf) is given by

p( ) exp ( ) ,ξ
πσ

ξ µ
σ

= −



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1
2 22

2

2− (23.8)

where
μ is the mean
σ the standard deviation

In the following we suppose that the mean vanishes since we are 
only interested in the fluctuations. The process ξ(t) is then char-
acterized by its autocovariance function, defined as ⟨ξ(τ)ξ(0)〉, 
where ⟨·〉 denotes the expectation, computed either from ensem-
ble, time, or space averages. Equivalently, it can be characterized 
by its energy spectrum defined as the Fourier transform of its 
autocovariance function:
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(23.9)

The energy spectrum yields the spectral distribution of energy 
and summing over all frequencies thus yields the total energy.

A simple example of a Gaussian process is the Wiener process, 
also called Brownian motion, which was proposed in 1900 by 
Louis Bachelier as a model to describe market price fluctuations 
[4]. Its mathematical properties were studied in 1923 by Norbert 
Wiener who called it the fundamental random function. The 
nomenclature “Brownian” is due to Paul Lévy who named the 
Wiener process Brownian motion in memory of the Scottish 
botanist Richard Brown, who in the beginning of the nineteenth 
century observed the random motion of pollen suspension in 
water [37]. An extension of Brownian motion has been intro-
duced by Kolmogorov in 1940 [33], of which a spectral repre-
sentation was given by Hunt in 1951 [29] and that Mandelbrot 
proposed in 1968 to call fractional Brownian motion [42].

23.2.2.2 � Brownian Motion

For Brownian motion the variance of the increments scales as

〈 − 〉 = −| ( ) ( ) | | |B t B tτ τ2 	 (23.10)

and the Hölder regularity of the trajectories is 1/2. The formal 
derivative of a Wiener process is called a Gaussian white noise. It 
is stationary and uncorrelated, i.e., its autocovariance function is 
⟨ξ(τ)ξ(0)〉 = δ(τ), where δ is the Dirac distribution or equivalently 
its energy spectrum is constant, E(f) = 1. The constant spectrum 
means that all frequencies f have the same weight, and hence 
the noise is called white by analogy with white light. Correlated 
Gaussian processes have nonconstant spectra and they are called 
colored noise. Power-law spectra E(f) ∝ f β are of particular inter-
est as the processes are statistically self-similar, i.e., ⟨ξ(λτ)ξ(0)〉 = 
λα⟨ξ(τ)ξ(0)〉. However, such processes are not necessarily station-
ary and, in order to recover stationarity, we consider their incre-
ments. Due to nonstationarity the energy spectrum can only be 
defined formally and can no more be integrated (due to infrared 
divergence). For example, the generalized energy spectrum of 
Brownian motion satisfies the power law E(f) ∝ 1/f 2. Brownian 
motion thus belongs to the class of so-called 1/f processes, which 
have been studied for many applications.

23.2.2.3 � Fractional Brownian Motion

Fractional Brownian motion is a kind of self-similar Gaussian 
process that is nonstationary and whose energy spectrum fol-
lows a power law. A given realization of such a noise is almost 
everywhere singular and has the same Hölder regularity at all 
points, i.e., it is mono-fractal.

The fractional Brownian motion BH(t) is the Gaussian process 
with zero mean such that

B tH ( )= =0 0 (23.11)

and

〈 − 〉 = −| ( ) ( ) | | | ,B t B tH H
Hτ τ2 2 	 (23.12)

where 0 < H < 1 is an additional parameter called Hurst expo-
nent [30]. Here H determines the regularity of the trajectories. 
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FIGURE 23.3  Illustration of the Devil’s staircase with a homoge-
neous repartition of mass (a) and a heterogeneous repartition of mass 
where each left subsegment receives 30% of the mass (b).
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The smaller H, the lower the regularity. For H < 1/2 the incre-
ments of the process are correlated, while for H > 1/2 they are 
anti-correlated. For H = 1/2 we get the classical Brownian motion. 
In all cases the process is said to be long-range dependent.

The covariance function of BH is given by

〈 〉 = + − −B t B t tH H
H H H( ) ( ) (| | | | | | )τ τ τ1

2
2 2 2 (23.13)

Note that one given realization of fractional Brownian motion 
is not a fractal: the self-similarity is only fulfilled in the statisti-
cal sense. Indeed, Equation 23.12 implies that

〈 − 〉 = 〈 − 〉| ( ) ( ) | | ( ) ( ) | .B t B B t BH H
H

H Hλ λτ λ τ2 2 2
	 (23.14)

However, it can be shown that a given trajectory has the 
pointwise Hölder regularity H = α almost surely and is almost 
(besides for a set of measure zero) nowhere differentiable.

The self-similarity of the fractional Brownian motion BH(t) 
implies for the energy spectrum a power-law behavior with 
exponent 2H + 1,

E f C
f

H
H( ) .= +2 1 (23.15)

Gaussian processes, and thus also fractional Brownian 
motion, can be represented in Fourier space using the Cramer 
representation

B t E f e d fH
ft( ) ( )( ) ( ),= −∫

�

ι π ξ2 1 (23.16)

where dξ(f) is an orthogonal Gaussian increment process with 
⟨dξ(f)dξ(f ′)〉 = δ(f − f ′), which means that the measure corre-
sponds to Gaussian white noise. The term (eι2πft − 1) instead of 
eι2πft guarantees that BH(0) = 0.

23.2.2.4 � Multifractional Brownian Motion

Allowing for time (or space) varying Hurst exponents gen-
eralizes fractional Brownian motion, which is mono-fractal, 
to introduce stochastic multifractals. Such multifractional 
Brownian processes can be defined by generalizing the spectral 
representation, Equation 23.16, as follows:

B t e
f

d f
i ft

tθ
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θ ξ( )
| |

( ),( ) /= −
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2

1 2
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�

(23.17)

where θ is a function θ: [0,1] →]0,1[ which can be seen as a local 
Hurst exponent of the process. Indeed, the pointwise Hölder reg-
ularity of Bθ(t) is almost surely equal to θ(t) and the Hausdorff 
dimension of the graph of Bθ is 2 − inf{θ(t),0 ≤ t ≤ 1}.

Methods for synthesizing fractional Brownian motion are 
presented in Section 23.3.2.

23.2.3 � Wavelets

23.2.3.1 � Definition and History

In a signal the useful information is often carried by both its fre-
quency content and its time evolution, or by both its wavenumber 
content and its space evolution. Unfortunately the spectral anal-
ysis does not give information on the instant of emission of each 
frequency, or on the spatial location of each wavenumber. This 
is due to the fact that, since the Fourier representation spreads 
time or space information among the phase of all Fourier coef-
ficients, the energy spectrum (i.e., the modulus of the Fourier 
coefficients) does not carry any structural information in time 
or space. This is a major limitation of the classical way to analyze 
nonstationary signals or inhomogeneous fields. A more appro-
priate representation should combine these two complementary 
descriptions.

From now on we will consider a signal f(x), which will only 
depend on space. The theory is the same for a signal f(t), which 
depends on time, except that the wavenumber k should in that 
case be replaced by the frequency ν and the spatial scale l by the 
time scale or duration τ. Any function f ∈ L2(ℝ) also has a spec-
tral representation f̂ (k) defined as

f̂ k f x e dxkx( ) ( ) ,=
−∞

∞
−∫ 2πι (23.18)

where ι = −1.
However, there is no perfect representation due to the limi-

tation resulting from the Fourier’s uncertainty principle (also 
called Heisenberg’s uncertainty principle when it is used in 
quantum mechanics). One thus cannot perfectly analyze the 
signal f from both sides of the Fourier transform at the same 
time, due to the restriction Δx · Δ k ≥ C, where Δx is the spatial 
support of |f(x)| and Δk the spectral support of | f̂ (k)|, with C 
a constant that depends on the chosen normalization of the 
Fourier transform. Due to the uncertainty principle, there is 
always a compromise to be made in order to have either a good 
spatial resolution Δx at the price of a poor spectral resolution 
Δk or a good spectral resolution Δk while losing the space reso-
lution Δx, as it is the case with the Fourier transform. These 
two representations, in space or in wavenumber, are the most 
commonly used in practice because they allow to construct 
orthogonal bases onto which one projects the signal to be ana-
lyzed and processed.

In order to try to recover some space locality while using 
the Fourier transform, Gabor [23] has proposed the windowed 
Fourier transform, which consists of convolving the signal 
with a set of Fourier modes e2πιkx localized in a Gaussian enve-
lope of constant width l0. This transform allows then a space-
wavenumber (or time-frequency) decomposition of the signal 
at a given scale l0, which is kept fixed. But unfortunately, as 
shown by Balian [5], the bases constructed with such windowed 
Fourier modes cannot be orthogonal. In 1984, Grossmann and 
Morlet [25] have proposed a new transform, the so-called wavelet 
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transform, which consists of convolving the signal with a set of 
wave packets, called wavelets, of different widths l and loca-
tions x. To analyze the signal f(x), we generate the family of ana-
lyzing wavelets ψl,x by dilation (scale parameter l) and translation 
(position parameter x) of a given function ψ, which oscillates 
with a characteristic wavenumber kψ in such a way that its mean 
remains zero. The wavelet transform thus allows a space-scale
decomposition of the signal f given by its wavelet coefficients f~l,x.
The wavelet representation yields the best compromise in view 
of the Fourier uncertainty principle, because the product Δx · Δk 
remains constant in the process of dilating and translating ψ. 
In fact it gives for the large scales a good spectral resolution Δk 
but a poor spatial resolution Δx, while, on the contrary, it gives 
a good spatial resolution Δx with a poor spectral resolution Δk 
for the small scales.

In 1989, the continuous wavelet transform has been 
extended to analyze and synthesize signals or fields in higher 
dimensions [1,47]. In 1985, Meyer, while trying to prove the 
same kind of impossibility to build orthogonal bases as done 
by Balian [5] in the case of the windowed Fourier transform, 
has been quite surprised to discover an orthogonal wave-
let basis built with spline functions, now called the Meyer–
Lemarié wavelet basis [36]. In fact the Haar orthogonal basis, 
which was proposed in 1909 in the PhD thesis of Haar and 
published in 1910 [26], is now recognized as the first orthog-
onal wavelet basis known, but the functions it uses are not 
regular, which limits its application. In practice one often 
likes to build orthogonal wavelet bases in which the expan-
sion of some signals of interest (depending on the applica-
tion) are sparse, i.e., involve as few large wavelet coefficients 
as possible, while the rest are negligible. In particular, fol-
lowing Meyer’s work, Daubechies has proposed in 1988 [12] 
orthogonal wavelet bases built with compactly supported 
functions defined by discrete Quadrature Mirror Filters 
(QMFs) of different lengths. The longer the filter, the sparser 
is the expansion of smooth signals, thanks to the higher num-
ber of vanishing moments of the wavelet, as detailed later. In 
1989, Mallat has devised a fast algorithm [39] to compute 
the orthogonal wavelet transform using wavelets defined by 
QMF. Later Malvar [41] and Coifman and Meyer [8] have 
found a new kind of windows of variable width that allows the 
construction of orthogonal adaptive local cosine bases, which 
have then been used to design the MP3 format for sound 
compression. The elementary functions of such bases, called 
Malvar’s wavelets, are parametrized by their position x, their 
scale l (width of the window), and their wavenumber k (pro-
portional to the number of oscillations inside each window). 
In the same spirit, Coifman, Meyer, and Wickerhauser  [9] 
have proposed the so-called wavelet packets, which, similarly 
to compactly supported wavelets, are wavepackets of pre-
scribed number of vanishing moments, defined by discrete 
QMFs, from which one can construct orthogonal bases.

The Fourier representation is well suited to solve linear equa-
tions, for which the superposition principle holds and whose 
generic solutions either persist at a given scale or spread to 

larger scales. In contrast, the superposition principle does not 
hold anymore for nonlinear equations, for example, the Navier–
Stokes equations, which are the fundamental equations of fluid 
dynamics. In this case, the equations can no more be decom-
posed as a sum of simpler equations, which can be solved sepa-
rately. Generically, the time evolution of their solutions involves 
a wide range of scales and could even lead to finite-time singu-
larities, for example shocks. The “art” of predicting such nonlin-
ear evolutions (a generic case being turbulent flows) consists in 
disentangling the nonlinear from the linear dynamical compo-
nents: the former should be deterministically computed while 
the latter could either be discarded or their effect be statistically 
modeled. A review of the different types of wavelet transforms 
and their applications to analyze and compute turbulent flows 
is given in [19,52].

23.2.3.2 � Continuous Wavelet Transform

The only condition a real function ψ(x) ∈ L2(ℝ), or a complex 
function ψ(x) ∈ L2(�), should satisfy to be called a wavelet is the 
admissibility condition:

C k dkψ ψ= < ∞
∞

∫ | |(̂ ) ,2

0

(23.19)

where ψ πιˆ= −

−∞

∞

∫ f x e dxkx( ) 2  is the Fourier transform of ψ. From
(23.18), we see that for ψ to be admissible it should satisfy in par-
ticular ψ̂(0) = 0, i.e., the space average of ψ should vanish and 
only then can the wavelet transform be invertible. The wavelet 
ψ may also have other properties, such as being well-localized 
in physical space x ∈ ℝ (fast decay of f for |x| tending to ∞) and 
smooth, i.e., well localized in spectral space (fast decay of ψ̂(k) for 
|k| tending to ∞). For several applications, in particular to study 
deterministic fractals or random processes, one also wishes that 
ψ̂(k) decays rapidly near 0 or equivalently that the wavelet has 
enough cancellations such that

x x dx m Mmψ( ) , , ,= = … −
−∞

∞

∫ 0 0 1for (23.20)

namely that its first M moments vanish. In this case the wavelet 
analysis will enhance any quasi-singular behavior of the signal 
by hiding all its polynomial behavior up to degree m.

One then generates a family of wavelets by dilatation (or con-
traction), with the scale parameter l ∈ ℝ+, and translation, with 
the location parameter x ∈ ℝ, of the so-called mother wavelet 
and obtains

ψ ψl x x c l x x
l, ( ) ( )′ =

′ −





(23.21)
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where c(l) = l−1/2 corresponds to all wavelets being normalized in 
the L2 -norm, i.e., they have the same energy, while for c(l) = l−1 
all wavelets are normalized in the L1 -norm.

The continuous wavelet transform of a function f ∈ L2(ℝ) is 
the inner product of f with the analyzing wavelets ψl,x, which 
yields the wavelet coefficients

�f l x f f x x dxl x l x( , ) , ( ) * ( ) ,, ,= 〈 〉 = ′ ′ ′
−∞

∞

∫ψ ψ (23.22)

with ψ* denoting the complex-conjugate of ψ. The continuous 
wavelet coefficients measure the fluctuations of f at scale l and 
around position x. If the analyzing wavelets are normalized in 
L2-norm (c(l) = l−1/2), then the squared wavelet coefficients corre-
spond to the energy density of the signal whose evolution can be 
tracked in both space and scale. If the wavelets are normalized 
in L1-norm (c(l) = l−1), the coefficients are related to the previous 
ones by the following relation:

� �f l fL L1 2
1 2= − / . (23.23)

Note that to study the Hölder regularity of a function and 
estimate its singularity spectrum, one typically uses wavelet 
coefficients in L1-norm (see Section 23.2.1.3).

The function f can be reconstructed without any loss as the inner-
product of its wavelet coefficients f~ with the analyzing wavelets ψl,x:

f x C f l x x dl
l

dxl x( ) ( , ) ( ),′ = ′−
∞

∞

∞

+
∫∫ψ ψ1

0

2
� (23.24)

with Cψ the constant of the admissibility condition given in 
Equation 23.19, which only depends on the chosen wavelet ψ.

Like the Fourier transform, the wavelet transform is linear, 
i.e., we have

β β β β1 1 2 2 1 1 2 2f x f x f x f x( ) ( ) ( ) ( )+ = +� � � (23.25)

with β1, β2 ∈ ℝ, and it is also an isometry, i.e., it conserves the 
inner product (Plancherel’s theorem) and in particular the 
energy (Parseval’s identity). The continuous wavelet transform 
is also covariant by translation and by dilation, both properties 
that are partially lost by the orthogonal wavelet transform. Let 
us also mention that, due to the localization of wavelets in physi-
cal space, the behavior of the signal at infinity does not play any 
role. In contrast, the nonlocal nature of the trigonometric func-
tions used for the Fourier transform does not allow us to locally 
analyze or process a signal with it.

Figure 23.4 shows six examples of wavelet analyses of aca-
demic signals using the complex-valued Morlet wavelet: a 
Dirac spike (a), a step function (b), a superposition of two 
cosine functions having different frequencies (c), a succes-
sion of two cosine functions having different frequencies  (d), 

a chirp (e), and a Gaussian white noise (f). The modulus of the 
wavelet coefficients is plotted as a function of position x on 
abscissa and the log of the scale l on ordinate. The curved black 
lines delimitate the region where the coefficients are not influ-
enced by left and right boundaries, which correspond to the 
spatial support of the wavelets localized in x = 0 and x = 1. The 
horizontal straight black line indicates the scale below which 
the wavelet coefficients are aliased, due to undersampling of 
the wavelets at small scales. Note in particular that three sig-
nals, namely Figure 23.4a, e, and f, have similar flat Fourier and 
wavelet spectra (see Section 23.3.3.2), although the space-scale 
representation of the energy density in wavelet space exhibit 
very different behaviors.

The extension of the continuous wavelet transform to ana-
lyze signals in d dimensions is made possible by replacing the 
affine group by the Euclidean group including rotations. One 
thus generates the d-dimensional wavelet family ψl,r,x⃗ with l the 
dilation factor, R the rotation matrix in ℝd, and x⃗ the transla-
tion such that

ψ ψl x r dx
l

r x x
l, , /( )�

� �
′ = ′ −











−1
2

1 (23.26)

where the wavelet ψ should satisfy the admissibility condition, 
which becomes in d-dimensions:

C k d k
k

d

dψ ψ= < ∞
∞

∫ (̂ )
| |

2

0

(23.27)

If we consider d = 2 then the rotation matrix R(θ) is

cos sin
sin cos

.
θ θ
θ θ

−







 (23.28)

The wavelet analysis of a two-dimensional scalar field f(x⃗) is

f l x f x x dxl x( , , ) ( ) * ( ) ,, ,
�� � �

�θ ψ θ= ′ ′ ′
−∞

∞

−∞

∞

∫∫ (23.29)

and the wavelet synthesis is

f x
C

f l x x
dldx d

ll x( ) ( , , ) * ( ) ., ,
� � � �

�
�′ = ′∫∫∫∫

−∞

∞

−∞

∞∞
1

0

2

3

0
ψ

π

θθ ψ
θ

(23.30)

In dimensions larger than two, one needs (d − 1) angles to 
describe the rotation operator R.

23.2.3.3 � Orthogonal Wavelet Transform

Wavelets can also be used to construct discrete representations of 
various function spaces, called frames [11], by selecting a discrete 
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subset of all their translations and dilations. Some special frames 
sampled on a dyadic grid λ = (j, i), i.e., for which the scale l has 
been discretized by octaves j and the position x by spatial steps 2−ji, 
constitute orthogonal wavelet bases. The main difference between 
the continuous and the orthogonal wavelet transform is that all 

orthogonal wavelet coefficients are decorrelated. This is not the 
case for the continuous wavelet coefficients, which are redundant 
and correlated in both space and scale. These correlations can be 
visualized by plotting the modulus of the continuous wavelet coef-
ficients of one realization of a white noise computed with a Morlet 
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FIGURE 23.4  Examples of wavelet analyses of academic signals, namely a Dirac spike (a), a step function (b), the superposition of two cosine 
functions having different frequencies (c), the succession of two cosine functions of very different frequencies (d), a chirp (e), and finally one 
realization of a Gaussian white noise (f). The moduli of the complex-valued Morlet wavelet coefficients are plotted as a function of position and 
scale. The original signal is plotted on the top. The Fourier spectrum (black curve) and the wavelet scalogram (grey crosses), as defined in Section 
23.3.3.2, are also shown on the left, with the axes rotated by 90°.
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wavelet, see Figure 23.9b. The patterns one thus observes are due 
to the reproducing kernel of the continuous wavelet transform, 
which corresponds to the correlation between all the analyzing 
wavelets themselves. Note that the redundancy of the continu-
ous wavelet transform is actually useful for algorithms such as 
edge and texture detection. Moreover, its translation and dilation 
invariance eliminates some artifacts one encounters when denois-
ing with the orthogonal wavelet transform, which does not pre-
serve those invariances (Figure 23.5).

As a tutorial example, we explain the orthogonal wavelet 
decomposition of a three-dimensional vector field. For this we 
consider a square integrable vector-valued field x⃗ → f⃗ (x⃗) ∈ L2(𝕋3), 
where 𝕋3 = (ℝ/ℤ)3 is the 3D torus and x⃗ = (x1, x2, x3) ∈ 𝕋3. Note that 
in practice the fact that f is defined on a torus simply means that 
periodic boundary conditions are assumed. The input data consist 
in discrete values of f sampled with a resolution Nk = 2J in each 
direction. Nk is thus the number of grid points and J is the number 
of octaves in each of the three directions, and the total number of 
grid points is thus N = N1 × N2 × N3 = 23J. The mother wavelet is 
denoted ψ as earlier and we assume that it satisfies all the neces-
sary conditions (see, e.g., [13]) so that the wavelets ψl,i defined by 
Equation 23.21 are pairwise orthogonal if (l,x) is sampled on the 
dyadic grid {(2−j,2−ji) | j = 0, …, J − 1, i = 0, …, 2j − 1}. We also 
assume that the wavelet has been suitably periodized. To expand 
the components fd of f⃗  (with d = 1, 2, 3) into an orthogonal wavelet 
series from the largest scale lmax = 20 to the smallest scale lmin = 
2−J+1, we need to construct a 3D MRA as follows [13,19]:

For λ0 belonging to the index set

	 Λ0
3 30 1 0 1 0 2 1= = … − ∈ ∈ … −{( , , ) , , , { , } , { , , } },j uj J j� �

� � �
µ µτ τ

define the 3D wavelet ψλ by

	

ψ φ ψλ

µ µ
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k k

k
k k

1 2 3
3 2

1 3 1 3

2 2 2

0 1

= − −
≤ ≤ ≤ ≤

= =

∏ ∏ ,,

where ϕ is the scaling function (also called father wavelet) 
associated to ψ [13]. Here, the parameters j and ι⃗ are the 3D 

equivalent to the scale and position parameters that we are 
already familiar with from the preceding discussion of the 
one-dimensional continuous wavelet transform. The new 
parameter, μ⃗, provides an additional degree of freedom, which 
is necessary to represent 3D data without loss of information. It 
controls the directions of oscillation of the wavelet. For exam-
ple, if μ⃗ = (1, 0, 0), the wavelet is oscillatory (i.e., it has vanish-
ing mean) in the first direction, whereas it has nonvanishing 
mean in the two others directions. If μ⃗ = (0, 0, 0), ψλ is the 3D 
equivalent to a scaling function, in which case we shall denote 
it ϕλ, following the classical convention. The wavelets are thus 
indexed by the subset of Λ0 whose elements satisfy μ⃗ ≠ 0, which 
we denote Λ. The wavelet coefficients and scaling coefficients of 
fd are then simply defined by

	

�f f

f f

d
d

d
d

λ λ

λ λ

ψ

φ

=

=

〈 〉

〈 〉

,

, ,

where ⟨·,·〉 denotes the inner product in L2(ℝ3).
Now we have all the ingredients to write down the wavelet 

series of fd:

	
f f fd

d= +
∈

∑( , , ) .0 0 0
�

λ

λ

λψ
Λ

	 (23.31)

The first term is a constant, which is in fact the mean value 
of f, and the sum over λ contains all the oscillations of f at 
finer and finer scales, j = 0, …, J − 1, while preserving some 
amount of space-locality thanks to the position index ı⃗  and 
also some amount of directionality thanks to μ⃗. Hence the 
expansion coefficients appearing in Equation 23.31 can be 
used to compute directional and/or scale-wise statistics of f⃗ , 
as we shall see further down. Importantly, there exists a fast 
wavelet algorithm with O(N) complexity, where N denotes 
the number of wavelet coefficients used in the computation. 
It is thus asymptotically even faster than the FFT, whose com-
plexity is O(N log2 N).

0(a) (b)

0 0

0.5 –0.51 0 0.5 1 1.5

FIGURE 23.5  Orthogonal wavelets: Haar wavelet (a) and Coifman 12 wavelet (b). We have superposed one wavelet at scale j = 0 (solid line) and 
position x = 0.5) and two wavelets at the next smaller scale j = 1, located at position x = 0.25 (dashed line) and x = 0.75 (dotted line). They are mutu-
ally orthogonal, which can be directly seen for the Haar wavelet and which is much less obvious for the Coifman wavelet.
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23.3 � Methods of Analysis

23.3.1 � Fractals

23.3.1.1 � Estimation of the Fractal Dimension

The box-counting algorithm is a simple method to compute the 
fractal dimension of a given object (a set of points S in Euclidean 
space ℝd, for example, a curve in two dimensions or an iso-surface 
in three dimensions) by counting the number of boxes (squares in 
two dimensions, cubes in three dimensions, …) which cover the 
object. First the object is overlaid with an equidistant Cartesian 
grid of size ℓ. Then the number of boxes with side length ℓ cov-
ering the object is counted, which yields N(ℓ). Subsequently the 
grid size ℓ is reduced (e.g., by a factor 2), a refined grid is overlaid, 
and the number of boxes covering the object is counted again. 
The earlier procedure is repeated until the finest resolution of the 
object is obtained. Finally, the number of boxes N(ℓ) covering the 
object is plotted against the inverse grid size 1/ℓ in log–log repre-
sentation. A straight line is fitted to the curve thus obtained and 
the slope of the curve yields the fractal dimension of the set S as 
defined by Equation 23.1.

For a regular smooth curve (e.g., a straight line in two or three 
dimensions) we can observe that the number of boxes cover-
ing the curve is proportional to the inverse of the grid size and 
hence its dimension is 1, which is equal to its topological dimen-
sion. For a smooth surface (e.g., the surface of a sphere in three 
dimensions) we find that the number of boxes increases qua-
dratically with the inverse grid size, which yields its topological 
dimension of two. For fractals the obtained dimension differs 
from its topological one.

Besides pathological cases, e.g., singular sets, the limit obtained 
with the box-counting algorithm corresponds to the Hausdorff 
dimension (box counting dimension ≥ Hausdorff dimension) 
and thus this technique is an efficient way for computing it.

23.3.1.2 � Synthesis of Fractal Sets

Now we discuss a method to generate a fractal set of points based 
on iterated functions, recursively applied. An iterated function 
system (IFS) is a set of functions { fi}i∈[1,N] from ℝd into itself 
which are contractions, i.e., such that there exists for each i a 
constant ci such that 0 < ci < 1 with |fi(x) − fi(y)| ≤ ci|x − y|. The 
Hutchinson function F associated to the IFS is the transforma-
tion from (ℝd) to itself, where (ℝd) denotes the set of all com-
pact subsets of ℝd, defined by

F A f A f AN( ) ( ) ( ),= ∪ ∪1 � (23.32)

with A ∈ (ℝd). It can be shown that F itself is also a contrac-
tion defined into (ℝd) for the Hausdorff distance δH, that is
δH(F(A),F(B)) ≤ cδH(A,B), where δH(A,B) = max{supx∈A infy∈B|x − 
y|,supy∈B infx∈A|x − y|} and c = max{ci}. Because of the complete-
ness of the metric space ((ℝd), δH), F admits a fixed point in
(ℝd), and this fixed point is a compact limit ensemble AF,
obtained as AF = limn→∞Fn(A), where A is an arbitrary initial 
compact set and AF verifies AF = F(AF).

As illustration for an IFS, we consider the IFS {f1,f2} defined on 
the real line ℝ by f1(x) = x/3 and f2(x) = x/3 + 2/3. These functions 
are contractions with ratio 1/3. When applying these two contrac-
tions to the segment [0, 1], we obtain the algorithm for generating 
the Cantor set, as illustrated in Figure 23.1. The Cantor set is thus 
the limit ensemble of the IFS {f1,f2}. In the particular case where 
the IFS is made of disconnected or just-touching affine functions 
fi(x) = ciRix + bi where 0 < ci < 1 is the magnitude, Ri the rotation 
matrix, and bi the translation, then the fractal dimension d of the 
limit set is linked to the similitude magnitude ci by the relation

ci
d

i
∑ = 1. (23.33)

By applying this relation to the Cantor set, we obtain the 
equation 2(1/3)d = 1, whose solution is the fractal dimension d = 
ln 2/ln 3 already found earlier. Similarly, the von Koch curve can 
be obtained from an IFS of four similitudes of magnitude 1/3, 
so that its fractal dimension satisfies 4(1/3)d = 1, leading to the 
known result d = ln 4/ln 3.

To construct the limit ensemble, a direct solution is to start 
from a simple compact set and to make it evolve by using the 
Hutchinson function associated to the IFS. However this solu-
tion is computationally costly, since we have to deal with sets. 
A more efficient alternative is to use a random procedure as we 
will describe now. From a single point A = {x0}, which is a com-
pact set, a recursive process is generated so that xn+1 = wn where 
wn is randomly chosen within the list { fi(xn)} where fi(xn) is sam-
pled with probability pi. If fi(x) = Aix + bi, where Ai is a matrix, 

then pi can be defined as p A
Ai
i

k k
=

∑
|det |

|det | . The intuitive reason

of this choice for pi is that the volume of the unit square trans-
formed by fi is |det Ai|. When the determinant is zero, pi is set 
to a small value compared to the other nonzero determinants, 
and then normalized to ensure the probability normalization 

pi
i∑ = 1.

Another possibility to construct a fractal set of points from 
an existing set of points is given by the collage theorem [6]. 
We consider a compact ensemble  of ℝd and ε > 0. The idea
is to be able to reconstruct this ensemble from an IFS strategy, 
which would be easy if an IFS, generating the pattern was known 
exactly. However, in practical applications the generating system 
is unknown. The collage theorem states that, if one finds an IFS 
{fi}i∈[1,N] such that the Hutchinson function F leaves  invariant
up to a tolerance ε, i.e., δH(, F() ) ≤ ε, then the limit ensemble
AF associated to the IFS satisfies

δ ε
H FA

c
( , ) ,S ≤

−1
(23.34)

where c is the contraction ratio of F.
Even if this theorem does not lead to a constructive method 

to determine an appropriate IFS, it provides a useful way for 
building fractal sets from a given set of points. In practice, the 
IFS can be looked for within a reduced class of contractions. For 
instance, one can try to estimate the smallest set of similitudes 
required to ensure a given tolerance ε.
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23.3.1.3 � Singularity Spectrum

As an illustration of the singularity spectrum and its limita-
tions, we compute the singularity spectrum of a function f and 
we compare its singularity spectrum when noise is added.

In Figure 23.6b, we show the singularity spectrum of the 
function f plotted in Figure 23.6a. The support of the spectrum is 
the whole interval (0, 1) and the fractal dimension of the Hölder 
exponent close to α = 1 is about d = 0.7. It is larger than the fractal 
dimension of stronger singularities (having small Hölder expo-
nents). Hence, the support where the signal is regular is larger 
than the one where it is irregular, as seen in Figure 23.6a. If a 
white noise with a weak standard deviation of σ = 0.01 is added, 
see Figure 23.6c, then the signal becomes more irregular leading 
to a singularity spectrum truncated at a Hölder exponent close 
to α = 0.5, as seen on Figure 23.6d. Moreover, the support of the 
singularities becomes larger since the fractal dimension d(α) for 
α = 0.5 for the noise-free signal, in Figure 23.6a, is close to α = 0.5, 

see Figure 23.6b, while for the noisy signal in Figure 23.6c it is 
close to α = 1, see Figure 23.6d. This effect is reinforced with 
a more intense noise of standard deviation σ = 0.1, see Figure 
23.6e and f.

This illustrates that the computation of the singularity spec-
trum is sensitive to the amount of noise present in the signal. 
Thus adding white noise to a signal reduces the regularity 
since large Hölder exponents disappear as the amount of noise 
increases, as seen in Figure 23.6.

23.3.2 � Self-Similar Random Processes

23.3.2.1 �A nalysis

The Hurst exponent H of a stochastic process can be esti-
mated by considering the quadratic variation of a given real-
ization, e.g., observed data. For fractional Brownian motion 
BH(t) with t ∈ [0, 1] the quadratic variation VN associated to 
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the step size δt = 1/N, N being the number of sampling points, 
is given by

	
V B k

N N
B k

NN H H

k

N

= +





− 









=

−

∑ 1
2

0

1

.
	

(23.35)

This quadratic variation can be related to the Hurst exponent by

	 V c NN
H= −1 2 , 	 (23.36)

where c is a constant. Moreover the quadratic variation of the 
dyadically subsampled data, taking only one out of two values of 
BH(k/N), is VN/2. It follows that

	
V

V
N

N

H

/
,

2

1 22= −

	
(23.37)

which leads thus to the Hurst exponent

	
H V

V
N

N
= −





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1
2

1 2
2

log .
/ 	

(23.38)

Hence this relation can be used to estimate H from the data. It 
only requires to compute the quadratic variation of both the data 
and the dyadically subsampled data.

23.3.2.2 � Synthesis

Different approaches are available for the synthesis of self-
similar random processes, which are typically either based on 
the spectral representation of stochastic processes or construct 
the process in physical space using a decomposed covariance 
matrix. Additionally wavelet techniques have been developed 
that allow the efficient generation of realizations with long-range 
dependence and with many scales without imposing a cutoff 
scale thanks to the vanishing moment property of the wavelets.

For synthesizing fractional Brownian motion numerically 
one can either discretize the Cramer representation in a suitable 

way or generate it directly in physical space by applying the 
decomposed covariance matrix to Gaussian white noise.

For the latter the discrete covariance matrix Γi,j = ⟨BH(ti)BH(τj)〉 
for i, j = 1, …, N, where N denotes the number of grid points, is 
first assembled. Then a Cholesky decomposition Γ = LLt is com-
puted (where L is a lower triangular matrix with positive diago-
nal entries and Lt is its transpose). Then, a vector of length N is 
constructed by taking one realization of Gaussian white noise 
with variance 1, i.e., ξ(ti) for i = 1, …, N. A realization of fractional 
Brownian motion is then obtained by multiplication of ξ with L,

	 B t L ti ij j( ) ( )= ξ

where summation over j is assumed. Finally, let us recall that the 
Hausdorff dimension of the graph of BH is 2 − H.

Different wavelet techniques for synthesizing fluctuating fields 
using self-similar random processes with a wide range of scales have 
been proposed. Elliot and Majda [16,17] proposed a wavelet Monte-
Carlo method to generate stochastic Gaussian processes with many 
scales for one-dimensional scalar fields and for two-dimensional 
divergent-free velocity fields. The fields thus obtained have a k−5/3 
scaling of the energy spectrum (which means that the increments 
grow as l2/3) and thus correspond to fractional Brownian motion 
with a Hurst exponent H = 2/3. Applications were dealing with the 
simulation of particle dispersion (Elliot and Majda) [17]. A related 
construction was proposed by Tafti and Unser [53].

An interesting technique from image processing, which was 
originally developed for generating artificial clouds in computer 
animations was proposed in [10]. Therewith intermittent sca-
lar valued processes in two space dimensions can be efficiently 
generated, which have a given energy distribution, that could be 
self-similar. The resulting process is strictly band-limited.

23.3.2.3 �A pplication to Fractional Brownian Motion

To illustrate the fractional Brownian motion, we show in 
Figure 23.7b three realizations of different fractional Brownian 
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FIGURE 23.7  Sample trajectories of Gaussian fractional noise (a), and of fractional Brownian motion (b) for three different values of the Hurst 
exponent H. The Gaussian fractional noise (a) corresponds to increments of the fractional Brownian motion (b). The resolution is N = 1024.
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motion for H = 0.5 (corresponding to classical Brownian motion), 
H = 0.75, and 0.9. The corresponding increments, which are frac-
tional Gaussian noise with different correlations, are shown in 
Figure 23.7a. We can observe that the regularity of the curves 
increases for larger values of H.

To model random process with short-range correlation we 
can suppose that the covariance function decays exponentially 
∝ exp(−t/τc), with τc being the correlation time. The correspond-
ing spectral density decays ∝ 4τc/(1 + (fτc)2). Figure 23.8 shows 
examples for different values of τC (a) and different spectral den-
sities (b). For increasing ∝ the apparent regularity of the trajec-
tory increases, although the actual regularity of the underlying 
function remains the same.

23.3.3 � Wavelets

23.3.3.1 � Wavelet Analysis

The choice of the kind of wavelet transform one needs to solve 
a given problem is essential. Typically if the problem has to 
do with signal or image analysis, then the continuous wavelet 

transform should be preferred. The analysis benefits from the 
redundancy of the continuous wavelet coefficients, which thus 
allows to continuously unfold the information content into both 
space and scale. The best is to choose a complex-valued wave-
let, e.g., the Morlet wavelet, since from the wavelet coefficients 
one can directly read off the space-scale behavior of the signal 
and detect for instance frequency modulation laws or quasi-
singularities, even if they are superimposed. For this one plots 
the modulus and the phase of the wavelet coefficients in wavelet 
space, with a linear horizontal axis corresponding to the posi-
tion x, and a logarithmic vertical axis corresponding to scale l, 
with the largest scale at the bottom and the smallest scale being 
at the top.

A classical real-valued wavelet is the Marr wavelet, also called 
“Mexican hat,” which is the second derivative of a Gaussian,

ψ( ) ( )x x e
x

= −
−

1 2 2

2

(23.39)

and its Fourier transform is

ψ̂( )k k e
k

=
−

2 2

2

(23.40)
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The most useful complex-valued wavelet is the Morlet wavelet 
(Figure 23.9):

ψ ι ψ( )x e ek x
x

=
−

2

2 (23.41)

with the wavenumber kψ denoting the barycenter of the wavelet 
support in Fourier space given by

k
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The wavenumber kψ controls the number of oscillations inside 
the wavelet. Actually the Morlet wavelet does not stricto sensus 
respects the admissibility condition as defined in Equation 23.19 
since its mean is not zero. One should take kψ > 5 to insure that it 
vanishes up to the computer round-off errors. A better solution is to 
define the Morlet wavelet in Fourier space and enforce the admis-
sibility condition by putting its mean, i.e., ψ̂(0), to zero, which gives

ψ
ψ

ˆ( ) ,
.
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If the problem one would like to solve requires filtering or 
compressing a signal, an image or a vector field under study, 
then one should use the orthogonal wavelet transform to avoid 
the redundancy inherent to the continuous wavelet transform. 
In this case there is also a large collection of possible orthogonal 
wavelets and their choice depends on which properties one pre-
fers, e.g., compact-support, symmetry, smoothness, number of 
cancellations, and computational efficiency.

From our experience, we recommend the Coifman 12 wavelet, 
which is compactly supported, has four vanishing moments, is 
quasi-symmetric, and is defined by a filter of length 12, which 
leads to a computational cost of the FWT in 24N multiplica-
tions (since two filters are needed for the wavelet and the scaling 
function).

To analyze fluctuating signals or fields, one should use the con-
tinuous wavelet transform with complex-valued wavelets, since 
the modulus of the wavelet coefficients allows to read the evolu-
tion of the energy density in both space (or time) and scales. If 
one uses real-valued wavelets instead, the modulus of the wave-
let coefficients will present the same oscillations as the analyz-
ing wavelets and it will then become difficult to sort out features 
belonging to the signal or to the wavelet. In the case of complex-
valued wavelets the quadrature between the real and the imagi-
nary parts of the wavelet coefficients eliminates these spurious 
oscillations and this is why we recommend to use complex-valued 
wavelets, such as the Morlet wavelet. If one wants to compress 
turbulent flows, and a fortiori to compute their evolution at a 
reduced cost compared to standard methods (finite difference, 
finite volume, or spectral methods), one should use orthogonal 
wavelets. In this case there is no more redundancy of the wavelet 
coefficients and one has the same number of wavelet coefficients 
as the number of grid points and one uses the FWT [13,19,40]. The 
first application of wavelets to analyze turbulent flows has been 
published in 1988 [18]. Since then a long-term research program 
has been developed for analyzing, computing, and modeling 
turbulent flows using either continuous wavelets or orthogonal 
wavelets and also wavelet packets (one can download the corre-
sponding papers from http://wavelets.ens.fr in “Publications”).

As an example we show the continuous wavelet transform, 
using the complex-valued Morlet wavelet, of several signals: a 
deterministic fractal, which is the Devil’s staircase (Figure 23.10), 
and two self-similar random signals, which are fractional 
Brownian motions (FBM) having different Hurst exponent, i.e., 
H = 0.25 and H = 0.75 (Figure 23.11).
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23.3.3.2 � Wavelet Spectrum

Since the wavelet transform conserves energy and preserves 
locality in physical space, one can use it to extend the concept of 
the energy spectrum and define the local energy spectrum of the 
function f ∈ L2(ℝ), such that

� �E k x
C k

f
k
k

x k( , ) , ,= 





≥1 0
2

ψ ψ

ψ for (23.43)

where
kψ is the centroid wavenumber of the analyzing wavelet ψ
Cψ is defined by the admissibility condition given in 

Equation 23.19

By measuring E~(k, x) at different instants or positions in the
signal, one estimates which elements in the signal contribute most 
to the global Fourier energy spectrum that might suggest a way to 
decompose the signal into different components. One can split a 
given signal or field using the orthogonal wavelet transform into 
two orthogonal contributions (see Section 23.3.3.5) and then plot 
the energy spectrum of each to exhibit their different spectral 
slopes and therefore their different correlation.

Although the wavelet transform analyzes the flow using local-
ized functions rather than complex exponentials as for Fourier 
transform, one can show that the global wavelet energy spectrum 
approximates the Fourier energy spectrum provided the analyz-
ing wavelet has enough vanishing moments. More precisely, the 
global wavelet spectrum, defined by integrating Equation 23.43 
over all positions,

� �E k E k x dx( ) ( , )=
−∞

∞

∫ (23.44)

gives the correct exponent for a power-law Fourier energy 
spectrum E(k) scaling as k−β if the analyzing wavelet has at 
least M > −β 1

2  vanishing moments. Thus, the steeper the energy 

spectrum one would like to study, the more vanishing moments 
the analyzing wavelet should have. In practice one should choose 
first a wavelet with many vanishing moments and then reduce 
this number until the estimated slope varies. This will give the 
optimal wavelet to analyze the given function.

23.3.3.3 �R elation to Fourier Spectrum

The wavelet energy spectrum E~(k) is related to the Fourier
energy spectrum E(k) via,

�E k
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2
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ψψ̂ (23.45)

which shows that the wavelet spectrum is a smoothed ver-
sion of the Fourier spectrum, weighted with the square of the 
Fourier transform of the wavelet ψ shifted at wavenumbers k. 
For increasing k, the averaging interval becomes larger, since 
wavelets are filters with constant relative bandwidth, i.e., �k

k  =
constant. The wavelet energy spectrum thus yields a stabilized 
Fourier energy spectrum.

Considering, for example, the Marr wavelet given in Equation 
23.39, which is real-valued and has two vanishing moments 
only, the wavelet spectrum can estimate exponents of the energy 
spectrum for β < 5. In the case of the complex-valued Morlet 
wavelet given in Equation 23.43, only the zeroth-order moment 
is vanishing. However higher mth-order moments are very small 

∝( )−k em k
ψ

ψ( / )2 2 , provided that kψ is sufficiently large. For instance 
choosing kψ = 6 yields accurate estimates of the exponent of 
power-law energy spectra for at least β < 7.

There also exists a family of wavelets with an infinite number 
of vanishing moments
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where αn is a normalization factor. Wavelet spectra using this 
wavelet can thus correctly measure any power–law energy spec-
trum. This choice enables, in particular, the detection of the dif-
ference between a power–law energy spectrum and a Gaussian 
energy spectrum such that E k e k k( ) ( / )∝ − 0

2
. This is important in 

turbulence to determine the wavenumber after which the energy 
spectrum decays exponentially. The end of the inertial range, 
dominated by nonlinear interactions, and the beginning of the 
dissipative range, dominated by linear dissipation, can thus be 
detected.

23.3.3.4 �R elation to Structure Functions

Structure functions, classically used to analyze nonstationary 
random processes, e.g., turbulent velocity fluctuations, have some 
limitations that can be overcome using wavelet-based alternatives. 
Structure functions are defined by moments of increments of the 
random process. The latter can be interpreted as wavelet coeffi-
cients using a special wavelet, the difference of two Diracs (called 
DoD wavelet), which is very singular and has only one vanishing 
moment, namely its mean value. This unique vanishing moment 
of the DoD wavelet limits the adequacy of structure functions to 
analyze sufficiently smooth signals. Wavelets having more vanish-
ing moments do not have this drawback.

For second-order statistics, the classical energy spec-
trum, defined as the Fourier transform of the autocorrela-
tion function, is naturally linked to the second-order structure 
function. Using the earlier relation of the wavelet spectrum 
to the Fourier spectrum, a similar relation to second-order 
structure functions can be derived. For structure functions 
yielding a power-law behavior the maximum exponent can 
be shown to be limited by the number of vanishing moments 
of the underlying wavelet.

The increments of a function f ∈ L2(ℝ) are equivalent to its 
wavelet coefficients using the DoD wavelet

ψ δ δδ ( ) ( ) ( ).x x x= + 1 − 	 (23.47)

We thus obtain

f x a f x f fx a x a( ) ( ) , ,, ,+ − = = 〈 〉� ψδ 	 (23.48)

with ψ δ δδ
x a

y x
a

y x
ay a, ( ) / ( ) ( )= − 

−
+

−1 1 , where the wavelet is nor-
malized with respect to the L1-norm. The pth-order moment of 
the wavelet coefficients at scale a yields the pth-order structure 
function:

S a f dxp x a
p

( ) .,= ( )∫ � (23.49)

As already mentioned earlier the drawback of the DoD 
wavelet is that it has only one vanishing moment, its mean. 
Consequently the exponent of the pth-order structure function 
in the case of a power-law behavior is limited by p, i.e., if Sp(a) ∝ 
aζ(p) then ζ(p) < p. The detection of larger exponents necessitates 

the use of increments with a larger stencil, or wavelets with 
more vanishing moments.

We now focus on second-order statistics, the case p = 2. 
Equation 23.45 yields a relation between the global wavelet
spectrum E~(k) and the Fourier spectrum E(k) for a given wave-
let ψ. Taking the Fourier transform of the DoD wavelet, we get 
ψ̂ δ ι ιι ι

( ) ( )k e e e ek kk k
= = −− −1 2 2 2  and therefore we have |ψ̂δ(k)|2 =

2(1 − cos k). The relation between the Fourier and the wavelet 
spectrum thus becomes
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and the wavelet spectrum can be related to the second-order 
structure function by setting a = kψ/k

�E k
C k

S a( ) ( ).= 1
2

ψ
(23.51)

Using now the result of Section 23.3.3.2 that for a Fourier 
spectrum that behaves like k−α for k → ∞, the wavelet spec-
trum only yields E~(k) ∝ k−α if α < 2M + 1, where M denotes the
number of vanishing moments of the wavelet, we find for the 

structure function S2(a) that S a a p k
k

p

2( ) ( )
( )

∝ = ( )ζ
ζ

ψ  for a → 0 if 
ζ(2) ≤ 2M.

For the DoD wavelet we have M = 1, which explains why the 
second-order structure function can only detect slopes smaller 
than 2, which corresponds to wavelet energy spectra with slopes 
being shallower than −3. This explains why the usual structure 
function gives spurious results for sufficiently smooth signals.

23.3.3.5 � Detection and Characterization 
of Singularities

The possibility to evaluate the slope of the energy spectrum is an 
important property of the wavelet transform, related to its abil-
ity to characterize the regularity of the signal and detect isolated 
singularities [27,31]. This is based on the fact that the local scal-
ing of the wavelet coefficients is computed in L1-norm, i.e., with 
the normalization c(l) = l−1 instead of c(l) = l1/2 in Equation 23.21.

If the function f ∈ Cm(x0), i.e., if f is continuously differentiable 
in x0 up to order m, then

�f l x l l l
l

m m( , ) ,/ /
0

0

1 2 1 2  ≤ =
→

+ (23.52)

The factor l1/2 comes from the fact that to study the scal-
ing in x0 of the function f we compute its wavelet coefficients 
in L1-norm, instead of L2, i.e., with the normalization c(l) = l−1 
instead of c(l)  = l1/2 in Equation 23.21. More generally if f has 
Hölder regularity α at x0 (see Section 23.2.1.3), then

�f l x Ce l
l

i( , ) /
0

0

1 2  ≈
→

Φ (23.53)
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where Φ is the phase of the wavelet coefficients in x0. The 
phases of the wavelet coefficients Φ(l, x) in wavelet coef-
ficient space allow to localize the possible singularities of f 
since the lines of constant phase converge toward the loca-
tions of all the isolated singularities when l → 0. If the func-
tion f presents few isolated singularities, their position x0, 
their strength C, and their scaling exponent α can thus be
estimated by the  asymptotic behavior of f~(l, x0), written in
L1-norm, in the limit l tending to zero. If, on the contrary, the 
modulus of the wavelet coefficient becomes zero at small scale 
around x0, then the function f is regular at x0. This result is the 
converse of Equation 23.52, but it only works for isolated sin-
gularities since it requires that in the vicinity of x0 the wave-
let coefficients remain smaller than those pointing toward x0. 
Consequently its use is not applicable to signals presenting 
dense singularities. The scaling properties presented in this 
paragraph are independent of the choice of the analyzing 
wavelet ψ. Actually we recommend to use complex-valued 
wavelets, since one thus obtains complex-valued wavelet 
coefficients whose phases locate the singularities while their 
moduli estimate the Hölder exponents of all isolated singu-
larities, as illustrated in Figure 23.10. We can then compute 
the singularity spectrum (see Section 23.2.1.3).

23.3.3.6 � Intermittency Measures

Localized bursts of high-frequency activity define typically 
intermittent behavior. Localization in both physical space 
and spectral space is thus implied, and a suitable basis for 
representing intermittency should ref lect this dual localiza-
tion. The Fourier representation yields perfect localization in 
spectral space but global support in physical space. Filtering 
a f luctuating signal with an ideal high-pass Fourier filter 
implies some loss of spatial information in physical space. 
Strong gradients are smoothed out and spurious oscilla-
tions occur in the background. This comes from the fact that 
the modulus and phase of the discarded high-wavenumber 
Fourier modes have been lost. The artifacts of Fourier filter-
ing lead to errors in estimating the f latness and hence the sig-
nal’s intermittency.

An intermittent quantity (e.g., velocity derivative) contains 
rare but strong events (i.e., bursts of intense activity), which 
correspond to large deviations reflected in “heavy tails” of the 
probability distribution function of that quantity. Second-order 
statistics (e.g., energy spectrum, second-order structure func-
tion) are not very sensitive to such rare events whose spatial 
support is too small to play a role in the integral. For higher-
order statistics, however, these rare events become increasingly 
important, may eventually dominate, and thus allow to detect 
intermittency. Of course, not for all problems intermittency is 
essential, e.g. second-order statistics are sufficient to measure 
dispersion (dominated by energy-containing scales), but not to 
calculate drag or mixing (dominated by vorticity production in 
thin boundary or shear layers).

Using the continuous wavelet transform we have proposed 
the local intermittency measure [19,50], which corresponds to 

the wavelet coefficients renormalized by the space-averaged 
energy at each scale, such that

I l x f l x

f l x d x
( , ) | ( , ) |

( , ) |
.

� � �

� � �
=

−∞

∞

∫
2

2 2
(23.54)

It yields information on the spatial variance of energy as 
a function of scale and position. For regions where I(l, x⃗) ≈ 1 
the field is nonintermittent, while regions of larger values are 
intermittent.

Similar to the continuous wavelet transform the orthogonal 
wavelet transform allows to define intermittency measures, either 
local as shown earlier or global as illustrated in the following 
text. The space-scale information contained in the wavelet coef-
ficients yields suitable global intermittency measures using scale-
dependent moments and moment ratios [51]. For a signal f the 
moments of wavelet coefficients at different scales j are defined by
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The scale distribution of energy, i.e., the scalogram, is 
obtained from the second-order moment of the orthogonal 
wavelet coefficients: Ej = 2j−1M2,j. The total energy is then recov-

ered by the sum: E Ej
j

=
≥∑ 0

 thanks to the orthogonality of the 
decomposition.

Ratios of moments at different scales quantify the sparsity 
of the wavelet coefficients at each scale and thus measure the 
intermittency:
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which correspond to quotient of norms computed in two dif-
ferent sequence spaces, lp- and lq-spaces. Typically, one chooses 
q = 2 to define statistical quantities as a function of scale. For 
p  =  4 we obtain the scale-dependent flatness Fj = Q4,2,j, which 
equals 3 for a Gaussian white noise at all scales j and indicates 
that a signal is not intermittent. Scale-dependent skewness, 
hyperflatness, and hyperskewness are defined for p = 3, 5, and 6, 
respectively. Intermittency of a signal is reflected in increasing 
Qp,q,j for increasing j (smaller scale) supposing p > q.

23.3.3.7 � Extraction of Coherent Structures

To study fluctuating signals or fields, we need to separate the 
rare and extreme events from the dense events and then calcu-
late their statistics independently for each one. For this we cannot 
use pattern recognition methods since there is no simple patterns 
to characterize them. Moreover there is no clear scale separation 
between the rare and the dense events and therefore a Fourier 
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filter cannot disentangle them. Since the rare events are well 
localized in physical space, one might try to use an on–off filter 
defined in physical space to extract them. However, this approach 
changes the spectral properties by introducing spurious discon-
tinuities, adding an artificial scaling (e.g., k−2 in one dimension) 
to the energy spectrum. The wavelet representation can overcome 
these problems since it combines both physical and spectral local-
izations (bounded from below by the uncertainty principle).

We have proposed in 1999 [20] a better approach to extract 
rare events out of fluctuating signals or fields, which is based 
on the orthogonal wavelet representation. We rely on the fact 
that rare events are localized while dense events are not and we 
assume that the later are noise-like. From a mathematical view-
point a noise cannot be compressed in any functional basis. 
Another way to say this is to observe that the shortest descrip-
tion of a noise is the noise itself. Note that one often calls “noise” 
what actually is “experimental noise,” i.e., something that one 
would like to discard, although it may not be noise-like in the 
earlier mathematical sense. The problem of extracting the rare 
events has thus become the problem of denoising the signal or 
the field under study. Assuming that they are what remains after 
denoising, we need a model, not for the rare events, but for the 
noise. As a first guess, we choose the simplest model and suppose 
the noise to be additive, Gaussian and white, i.e., uncorrelated.

We now describe the wavelet algorithm for extracting coher-
ent structures out of a signal corrupted by a Gaussian noise with 

variance σ2 and vanishing mean, sampled on N equidistant grid 
points. The noisy signal f(x) is projected onto orthogonal wavelets
using Equation 23.31 to get f~λ. Its wavelet coefficients are then split
into two sets, those whose modulus is larger than a threshold ε 
that we call “coherent,” and those remaining that we call “incoher-
ent.” The threshold value, based on minmax statistical estimation 
[14], is ε = (2/dσ2lnN)1/2. Note that besides the choice of the wave-
let there is no adjustable parameter since σ2 and N are known a 
priori. In case the variance of the noise is unknown, one estimates 
it recursively from the variance of the incoherent wavelet coef-
ficients, as proposed in [3]. The convergence rate increases with 
the signal-to-noise ratio, namely if there is only noise it converges 
in zero iteration. The coherent signal fC is reconstructed from the 
wavelet coefficients whose modulus is larger than ε and the inco-
herent signal fI from the remaining wavelet coefficients. The two 
signals thus obtained, fC and fI, are orthogonal.

To illustrate the method we choose an academic signal (Figure 
23.12a), which is a superposition of several quasi-singularities 
having different Hölder exponents, to which we have superim-
posed a Gaussian white noise yielding a signal-to-noise ratio 
of 11.04 dB (Figure 23.12b). Applying the extraction method 
we recover a denoised version of the corrupted signal, which 
preserves the quasi-singularities (Figure 23.12c). It could be 
checked a posteriori that the incoherent contribution is spread, 
and therefore does not compress and has a Gaussian probability 
distribution.
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FIGURE 23.12  Academic example of denoising of a piecewise regular signal using the algorithm for coherent structure extraction. Original 
signal (a), same signal plus Gaussian white noise giving a signal to noise ratio (SNR) of 11.04 dB (b), denoised signal with SNR of 27.55 dB (c).
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23.4 R ecommendations

In the introduction we stated cautious remarks about the risk 
of misusing new mathematical tools, if one has not first gained 
enough practice on academic examples. The problem is the fol-
lowing. When doing research, the questions one addresses are 
still open and there exist several competing theories, models, 
and interpretations. Nothing being clearly fixed yet, neither the 
comprehension of the physical phenomenon under study, nor 
the practice of the new techniques, one runs the risk to perform 
a Rorschach’s test rather than a rational analysis. Indeed, the 
interpretation of the results may reveal one’s unconscious desire 
for a preferred explanation. Although it is a good thing to rely on 
one’s intuition and have a preferred theory, one should be con-
scious of that risk and make sure to avoid bias. Moreover, when a 
new technique is proposed, most of referees do not master it yet 
and therefore are not able to detect flaws in a submitted paper.

Let us take as example the case of turbulence, which has 
applications in everyday life and plays an important role in envi-
ronmental fluid dynamics. For centuries, turbulence has been 
an open problem and thus a test ground for new mathematical 
techniques. Let us focus here on the use of fractals and wave-
lets, as they were applied to study turbulence. Kolmogorov’s 
statistical theory of homogeneous and isotropic turbulence 
[34] assumes that there exists an energy cascade from large to 
small scales, which is modeled as a self-similar stochastic pro-
cess whose spectrum scales as k−5/3, where k is the wavenumber. 
Although this prediction only holds for an ensemble average of 
many flow realizations, many authors interpret the energy cas-
cade as caused by the successive breakings of whirls into smaller 
and smaller ones, as if they were stones. This interpretation was 
inspired by a comment Lewis Fry Richardson made in 1922:

When making a drawing of a rising cumulus from a fixed 
point, the details change before the sketch was completed. 
We realize thus that: big whirls have little whirls that feed 
on their velocity, and little whirls have lesser whirls and so 
on to viscosity–in the molecular sense [49].

We think that Richardson’s quote has been misunderstood 
and turbulence misinterpreted. Indeed, his remark concerns the 
interface between a cumulus cloud and the surrounding clear 
air, which is a very convoluted two-dimensional surface devel-
oping into a three-dimensional volume. Such an interface may 
develop into a fractal since its topological dimension is lower 
than the dimension of the space that contains it. But keeping 
such a fractal picture to describe three-dimensional whirls 
that evolve inside a three-dimensional space does not make 
sense since both have the same topological dimension. In 1974, 
Kraichnan was already suspicious about this interpretation, 
when he wrote:

The terms ‘scale of motion’ or ‘eddy of size l’ appear repeat-
edly in the treatment of the inertial range. One gets an 
impression of little, randomly distributed whirls in the 
fluid, with the fission of the whirls into smaller ones, after 
the fashion of Richardson’s poem. This picture seems 
to be drastically in conflict with what can be inferred 
about the qualitative structures of high Reynolds num-
bers turbulence from laboratory visualization techniques 
and from plausible application of the Kelvin’s circulation 
theorem [35].

Unfortunately Kraichnan’s viewpoint was not taken into 
account and, on the contrary, the picture of breaking whirls was 
even reinforced by the terminology fractals due to its Latin root 
fractare (to break). This gave rise to numerous models of turbu-
lence, which were based on fractals and later on multifractals 
(for a review of them see [22]).

Let us now consider the use of wavelets to analyze turbulent 
flows and illustrate the risk of misinterpretation there too. If 
one performs the continuous wavelet analysis of any fluctuating 
signals, for example, the temporal fluctuations of one velocity 
component of a three-dimensional turbulent flow, one should 
be very cautious, especially when using a real-valued wave-
let. Indeed, for this class of noise-like signals one observes a 
tree-like pattern in the two-dimensional plot of their wavelet 
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coefficients, which is generic to the continuous wavelet trans-
form and corresponds to its reproducing kernel [19]. When one 
performs the continuous wavelet transform of one realization 
of a Gaussian white noise, one observes such a pattern (see 
Figure 23.13), which proves that the correlation is among the 
wavelets but not within the signal itself. Unfortunately, in the 
case of turbulent signals this pattern has been misinterpreted as 
the evidence of whirls breaking in a paper published by Nature 
in 1989 under the title “Wavelet analysis reveals the multifrac-
tal nature of the Richardson’s cascade” [2]. If the authors had 
used an orthogonal wavelet transform instead of a real-valued 
continuous wavelet transform they would not have observed 
and correlation.

Later Benoît Mandelbrot concludes: “In the domain I know 
of, there are many words which are meaningless, that do not 
have any content, which have been created just to impress, to 
give the feeling that a domain exists when actually there is none. 
If one gives a name to a science, this science maybe does not 
exist. And, once more, due to the fierce discipline I was impos-
ing to myself, I avoided that […]. Therefore I have created the 
word ‘fractal’ with much reflection. The idea was that of objects 
which are dispersed, which are broken into small pieces”[43]. 
The question remains for us: are fractals a new science or only 
consist of refurbishing older concepts to launch a new fashion? 
In the same vein, Yves Meyer wrote:

“Wavelets are fashionable and therefore excite curiosity 
and irritation. It is amazing that wavelets have appeared, 
almost simultaneously in the beginning of the 1980s, as an 
alternative to traditional Fourier analysis, in domains as 
diverse as speech analysis and synthesis, signal coding for 
telecommunications, (low-level) information, extraction 
process performed by the retinian system, fully-developed 
turbulence analysis, renormalization in quantum field 
theory, functional spaces interpolation theory…But this 
pretention for pluridisciplinarity can only be irritating, 
as are all “great syntheses” which allow one to understand 
and explain everything. Will wavelets soon join “catas-
trophe theory” or “fractals” in the bazaar of all-purpose 
systems?” [46]

Let the future tell us the answer…
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