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We present an adaptive multiresolution method for the numerical simulation of ideal 
magnetohydrodynamics in two space dimensions. The discretization uses a finite volume 
scheme based on a Cartesian mesh and an explicit compact Runge–Kutta scheme for 
time integration. Harten’s cell average multiresolution allows to introduce a locally 
refined spatial mesh while controlling the error. The incompressibility of the magnetic 
field is controlled by using a Generalized Lagrangian Multiplier (GLM) approach with a 
mixed hyperbolic–parabolic correction. Different applications to two-dimensional problems 
illustrate the properties of the method. For each application CPU time and memory savings 
are reported and numerical aspects of the method are discussed. The accuracy of the 
adaptive computations is assessed by comparison with reference solutions computed on a 
regular fine mesh.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The magnetohydrodynamic (MHD) equations, which consist of the compressible Euler equations of hydrodynamics 
coupled with the Maxwell equations of electrodynamics, are used for mathematical modeling of numerous phenomena 
encountered in our daily life. Prominent examples can be found in the physics of the Sun–Earth electrodynamics interac-
tion chain, and in the dynamo action caused by motion of liquid metal inside the mantle of the Earth, which generates its 
magnetic field. The numerical challenge for solving the ideal MHD equations, a coupled set of nonlinear Partial Differential 
Equations (PDEs), is the presence of multiple spatial and temporal scales. The complex character of boundary conditions of 
the magnetic field, in comparison to those for classical hydrodynamics, requires even more sophisticated approaches. In a 
surrounding vacuum, for example, the magnetic field does not vanish, it only decays. Thus, at the boundary it has to be 
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matched with the field of the fluid region. A second difficulty is to maintain the incompressibility of the magnetic field 
numerically, which is imposed by Gauss’s law. Therefore, in the numerical simulations, special attention has to be paid to 
the incompressibility constraint, because, as shown in practice, uncontrolled divergence errors can modify the underlying 
physics. For details we refer the reader to, e.g., [2,4,26,29]. Typically, projection methods based on the Helmholtz decom-
position are used. These methods are computationally demanding, especially in three dimensions, because the solution of 
an elliptic problem requires a Poisson equation solver. An alternative method is divergence cleaning, which is based on 
Lagrangian multipliers. In the finite element context, Assous et al. [1] introduced this approach for time-dependent Maxwell 
equations. Several variants can be found in the literature [2,4,25,29].

In the current paper we apply the multiresolution approach to an ideal MHD numerical model called the Generalized 
Lagrange Multiplier (GLM) with a mixed hyperbolic–parabolic correction proposed by Dedner et al. [6] to deal with the 
incompressibility condition of the magnetic field. The ideas of the Lagrangian multiplier formulation in this situation were 
introduced by Munz et al. [24] in the context of Maxwell equations. With the motivation to reduce CPU time and memory 
requirements, we use an auto-adaptive discretization which is based on the multiresolution representation. The underly-
ing time dependent conservation laws are discretized with finite volume schemes and local mesh refinement is triggered 
by multiresolution analysis of the cell averages and thresholding of the resulting coefficients. The adaptive refinement of 
the mesh tracks steep gradients in the solution of the equation and thus allows automatic error control. For reviews on 
multiresolution techniques for PDEs we refer to [17,18,23,13] and references therein.

Preliminary results for a quasi-one dimensional MHD Riemann problem with exact solution have been presented in [10], 
which showed the feasibility of using adaptive discretizations and magnetic field divergence cleaning for extended GLM–
MHD with local and controlled time stepping methods. In its extended form, source terms similar to those in [25] are 
introduced. The starting point is the adaptive multiresolution code originally developed by Roussel et al. [27] in which the 
Maxwell equations governing the magnetic field have been included [16]. In the present work, we have chosen the GLM–
MHD approach instead of its extended version, because the divergence errors and the solution obtained for both cases are 
almost the same for the studied problem. A similar choice is suggested in the conclusion in [6]. The resulting new method 
has been applied to a two-dimensional Riemann test problem, for which a reference solution on a fine mesh has been com-
puted. The accuracy of the adaptive computations has been assessed and their efficiency in terms of memory compression 
compared to a finite volume scheme on a regular mesh has been analyzed.

This paper is organized as follows: After a presentation of the governing ideal MHD equations in Section 2, we recall 
the divergence cleaning technique based on the GLM formulation in Section 3. In Section 4, space and time discretizations 
are briefly described together with the GLM discretization. In Section 5, numerical results are presented. In the last section, 
some conclusions are drawn and perspectives for future work are given.

2. Governing equations

The ideal magnetohydrodynamic equations describe the dynamics of a compressible, inviscid and perfectly electrically 
conducting fluid interacting with a magnetic field, see, e.g. [15]. The equations combine the Euler equations with the 
Maxwell equations. The latter yields an evolution equation for the magnetic field, also called induction equation, and an 
incompressibility constraint using Gauss’ law. The system of MHD equations is given by

∂ρ

∂t
+ ∇ · (ρ u) = 0, (Mass conservation) (1a)

∂ E

∂t
+ ∇ ·

[(
E + p + B · B

2

)
u − (u · B)B

]
= 0, (Energy conservation) (1b)

∂ρ u

∂t
+ ∇ ·

[
ρ ut u +

(
p + B · B

2

)
I − Bt B

]
= 0, (Momentum conservation) (1c)

∂B

∂t
+ ∇ · (ut B − Bt u

) = 0, (Induction equation) (1d)

where ρ represents density, p the pressure, u = (ux, u y, uz) the velocity field, B = (Bx, B y, Bz) the magnetic field, and the 
upper index t denotes the transposition. The identity tensor of order 2 is denoted by I (which corresponds to the unit 
matrix 3 × 3), and γ is the adiabatic constant (γ > 1).

The pressure is given by the constitutive law

p = (γ − 1)

(
E − ρ

u · u

2
− B · B

2

)
.

The above system is completed by suitable initial and boundary conditions. In this paper this system is considered in its 
two-dimensional form, i.e., the quantities depend on two variables only (x and y).
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In this classical MHD model, the magnetic field has to satisfy the divergence constraint

∇ · B = 0, (2)

which implies the non-existence of magnetic monopoles. By rewriting the induction equation, we have 
∂B

∂t
+∇×(B × u) = 0. 

Therefore, the application of the divergence operator yields 
∂

∂t
(∇ · B) = 0, as ∇ · (∇×) ≡ 0. This formulation shows that if 

the initial condition of the magnetic field is divergence-free, the system will remain divergence-free along its evolution. 
However, numerically the incompressibility of the magnetic field is not necessarily preserved, and thus, non-physical results 
could be obtained or the computations may even become unstable [4]. Since the 1980’s typical numerical MHD method-
ologies consider the enforcement of the divergence-free constraint. There are many techniques to perform the divergence 
cleaning in numerical MHD models [30]. In the context of this study, we have in mind the application of a multiresolution 
method based on a finite volume discretization with explicit time integration. Thus, the technique developed in Dedner et 
al. [6], called GLM–MHD with the mixed parabolic–hyperbolic correction, is well suited. Details are given in the next section.

3. Generalized Lagrangian multipliers for divergence cleaning

Dedner et al. [6] proposed the GLM formulation with the hyperbolic–parabolic correction. Its implementation into a pre-
existing MHD model is straightforward. An additional scalar field ψ is introduced, which couples the divergence constraint 
equation (Eq. (2)) to Faraday’s law, modifying the induction equation (Eq. (1d)). Moreover, some source terms are added 
similarly to what was proposed in [25]. The model contains one parameter related to the hyperbolic correction, namely ch , 
responsible for the propagation of the divergence errors, and another one related to the parabolic correction cp , responsible 
for the damping of the monopoles. The remaining terms in the equations remain unchanged. The conservative characteristics 
of this system are thus not lost in the GLM approach.

The resulting GLM–MHD equations written in two-dimensional form read

∂ρ

∂t
+ ∂ρux

∂x
+ ∂ρu y

∂ y
= 0, (3a)

∂ E

∂t
+ ∂

∂x

[(
E + p + B · B

2

)
ux − (u · B) Bx

]
+ ∂

∂ y

[(
E + p + B · B

2

)
u y − (u · B) B y

]
= 0, (3b)

∂ (ρux)

∂t
+ ∂

∂x

[
ρu2

x +
(

p + B · B

2

)
− B2

x

]
+ ∂

∂ y

(
ρuxu y − Bx B y

) = 0, (3c)

∂
(
ρu y

)
∂t

+ ∂

∂x

(
ρuxu y − Bx B y

) + ∂

∂ y

[
ρu2

y +
(

p + B · B

2

)
− B2

y

]
= 0, (3d)

∂ (ρuz)

∂t
+ ∂

∂x
(ρuzux − Bz Bx) + ∂

∂ y

(
ρuzu y − Bz B y

) = 0, (3e)

∂ Bx

∂t
+ ∂ψ

∂x
+ ∂

∂ y

(
u y Bx − B yux

) = 0, (3f)

∂ B y

∂t
+ ∂

∂x

(
ux B y − Bxu y

) + ∂ψ

∂ y
= 0, (3g)

∂ Bz

∂t
+ ∂

∂x
(ux Bz − Bzux) + ∂

∂ y

(
u y Bz − B yuz

) = 0, (3h)

∂ψ

∂t
+ c2

h

(
∂ Bx

∂x
+ ∂ B y

∂ y

)
= − c2

h

c2
p
ψ, (3i)

where B · B = B2
x + B2

y + B2
z , u · B = ux Bx + u y B y + uz Bz , cp and ch are the parabolic–hyperbolic parameters, with ch > 0. 

In [6], ch is defined as

ch = ch(t) := cCFL
min(�x,�y)

�t
, (4)

where cCFL ∈ (0, 1), �x and �y are the space steps in the x- and y-direction, respectively, �t is the time step. If the 
parameter ch is defined, as for instance in Eq. (4), then cp is a free parameter in Eq. (3i). We follow a choice proposed 
in [6] to avoid that cp is strongly dependent on the mesh size and the scheme used. Their numerical experiments showed 
that choosing c2

p/ch = 0.18 mirrors properly the ratio between hyperbolic and parabolic effects. With this choice in the 
one-dimensional case the damping of divergence errors occurs on the time scale cp

√
t and the transport of the divergence 

errors to the boundary takes place on the time scale cht (as discussed in [6], Appendix A.16 and A.19). However, other 
possible choices of these parameters can be found in [31,7] and for the CTU-GLM approach in [21].
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Considering the vector of conservative quantities Q = (ρ, E, ρu, B, ψ), the GLM–MHD system could be written compactly 
as a conservation law with source terms,

∂Q

∂t
+ ∇ · F(Q) = S(Q),

where F(Q) is the physical flux and S(Q) contains all source terms.

4. Adaptive space and time discretization

A finite volume discretization of the GLM–MHD system is applied, which results in a system of ordinary differential 
equations. Approximate solutions at a sequence of time instants tn are obtained by using an explicit ordinary differential 
equation solver. Here, an explicit Runge–Kutta scheme of second order is used.

In the GLM–MHD Finite Volume (FV) reference scheme, we consider the initial value of the variable ψ as zero. The 
parameter ch has a strong influence on the correction. In each time step, we compute the parameter ch , then the GLM–MHD 
system is solved. First, a dimensional splitting is performed in x-direction, where the fluxes of the interface are treated and 
the solution is updated. This procedure follows the steps:

1. The component of the magnetic field Bx in the x-direction flux (Eq. (3f)), and the divergence constraint equation 
(Eq. (3i)), are decoupled from the other variables. These two equations form the system

∂ Bx

∂t
+ ∂ψ

∂x
= 0, (5)

∂ψ

∂t
+ c2

h
∂ Bx

∂x
= − c2

h

c2
p
ψ, (6)

such that the local Riemann problem can be solved analytically, where the numerical flux at the interface is (ψm, c2
h Bx,m)

for Bx and ψ . Similarly as what is described in [6], we have(
Bx,m

ψm

)
=

(
Bx,L

ψL

)
+

(
1
2 (Bx,R − Bx,L) − 1

2ch
(ψR − ψL)

1
2 (ψR − ψL) − ch

2 (Bx,R − Bx,L)

)
, (7)

where the sub-indices L and R are related to the left or right-hand state.
2. The numerical flux is evaluated in two steps. First we compute the numerical flux not considering the Bx and ψ

equations as described above. Then we add the numerical flux at the interface. In this work, we use the Harten–Lax–
van Leer-Discontinuities numerical flux (HLLD) with four intermediary states Q�

L , Q��
L , Q��

R and Q�
R , divided by the waves 

with speeds SL , S�
L , SM , S R , and S�

R , discussed in Appendix A. The states Q� and Q�� are defined as

Q�
α = (ρ�

α, E�
α,ρ�

αu�
α,B�

α,ψ�
α) and Q��

α = (ρ��
α , E��

α ,ρ��
α u��

α ,B��
α ,ψ��

α ),

with α denoting left (L) or right (R) states.
3. The same procedure is applied for B y in the y-direction.
4. The computed values of ψ are used to update the mixed correction source term for ψn+1, computing

ψn+1 = exp

(
−ch�tn ch

c2
p

)
ψ.

The adaptive Multiresolution (MR) method of the present paper has been designed to speed up finite volume schemes for 
conservation laws. In the following, a brief summary of this technique is given. For a detailed description of these strategies, 
we refer to [27,14,12,11,13].

The key ingredient of MR schemes are the decay properties of the wavelet coefficients of the numerical solution. The 
decay rate indicates the local regularity of the solution. In regions where the solution is smooth the coefficients are of small 
magnitude and thus coarser meshes can be used. In regions where the coefficients are significant the numerical solution is 
less smooth and strong gradients or even jumps are present and a fine mesh must be used [5]. Stopping the refinement in 
a cell at a certain scale level, where the wavelet coefficients are non-significant, leads to an adaptive MR representation.

For a finite volume scheme the uniform cell-average representation is replaced by cell-averages on an adaptive locally 
refined mesh, which is formed by the cells whose wavelet coefficients are significant and above a given threshold. An 
example of an adaptive Cartesian mesh is shown in Fig. 1. In MHD solutions localized structures are present, such as 
discontinuities or shocks. They could appear in different space positions in the different variables. Thus, the adaptive mesh 
of the MHD system is a union of the individual adaptive meshes of each quantity.

Tree structures are the natural way to store the reduced MR data. Mesh adaptivity is then related to an incomplete 
tree and the refinement can be interrupted at intermediate scale levels. In other words, using the tree terminology, an MR 
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Fig. 1. Zoom in a dyadic adaptive two-dimensional Cartesian mesh. Regions where the mesh is refined are associated with detected structures in the 
solution, i.e., where the wavelet coefficients are larger than a given threshold parameter, and therefore, they are considered as significant, and the mesh 
must remain refined.

mesh is formed by leaves, which are nodes without children. These leaves correspond to the cell which is being evolved 
in time. In summary, there are three steps in the application of an MR scheme: refinement, evolution, and coarsening. 
The refinement operator accounts for possible translations of the solution or the creation of finer scales in the solution 
between two subsequent time steps. Since the localized structures and thus the local regularity of the solution may change 
with time, the MR mesh at time tn may not be sufficient any more at the next time step tn+1. Hence, before evolving the 
solution in time, the representation of the solution should be interpolated onto an extended mesh that is expected to be a 
refinement of the adaptive mesh at tn , and to contain the adaptive mesh at tn+1. After that, the time evolution operator is 
applied to the leaves of the extended mesh. The numerical fluxes between cells of different levels are computed by adding 
extra cells, called virtual leaves, which will however not be used in the time evolution. Conservation is ensured by the fact 
that the fluxes are always computed on a higher level, the value being projected onto the leaves of a lower level. Then, 
wavelet thresholding is applied in order to unrefine the cells in the extended mesh (coarsening) that are not necessary 
for an accurate representation of the solution at tn+1. This data compression is based on the definition of deletable cells, 
where the wavelet coefficients which are not significant, i.e., their magnitudes are below the threshold parameter ε
 , where 

 denotes the cell scale, are called deletable cells. The data compression is given by

Dc =
100

N∑
i=1

Cn(i)

2L N
,

where N is the total number of iterations and Cn(i) is the number of cells in the adaptive mesh at iteration i ∈ {1, · · · , N}. 
The number of cells on the finest mesh is defined as 2L , where L is the finest scale level. However, to compute the flux in 
a conservative form, additional neighbor cells at the same level are also necessary. These neighbor cells are not necessarily 
present on the adaptive mesh. Thus, if this is the case, we add these neighbor cells to the adaptive mesh, nevertheless they 
are not evolved in time. Therefore, the memory used is the sum of the cells of the adaptive mesh plus these neighbor cells. 
More details can be found in [28,27].

In order to control the L1-norm, Harten’s thresholding strategy is used, where

ε
 = ε0

|�|2d(
−L+1), 0 ≤ 
 ≤ L − 1, (8)

and d = 2 is the space dimension and, in this two-dimensional case |�| is the area of the domain. Therefore, in Harten’s 
strategy, we use a smaller value of the parameter ε in the coarser scales than in finer scales. For comparison, we shall also 
consider level independent threshold parameters: ε
 = ε , for all 
. Herein, the multiresolution analysis corresponds to a 
prediction operator based on third order polynomial interpolation of the cell-averages [27]. We recall that time integration 
is performed by a second order Runge–Kutta scheme.

5. Numerical experiments

We present here a 2D Riemann numerical experiment to illustrate the efficacy of our method compared to the traditional 
FV scheme. For the 2D Riemann initial condition we have used the values of the MHD variables presented in Table 1. The 
computational domain is [−1, 1] × [−1, 1] and Neumann boundary conditions have been applied. This example is proposed 
in [6], except for the boundary conditions.

We have also chosen γ = 5/3, the final time of the computations is t = 0.1 and t = 0.25, the CFL parameter CCFL =
0.3, and c2

p/ch = 0.18. We have tested different threshold values ε
 = ε = 0.010, 0.008, and 0.005 and Eq. (8) with ε0 =
0.05, 0.03, and 0.01.
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Table 1

Initial condition of the 2D Riemann problem. The domain is [−1, 1] × [−1, 1] with Neumann boundary conditions and γ = 5

3
.

x > 0

y < 0 y > 0

ρ ρ ux ρ u y ρ uz ρ ρ ux ρ u y ρ uz

1.0304 1.5774 −1.0455 −0.1016 0.9308 1.4557 −0.4633 0.0575
E Bx B y Bz E Bx B y Bz

5.7813 0.3501 0.5078 0.1576 5.0838 0.3501 0.9830 0.3050

x < 0

y < 0 y > 0

ρ ρ ux ρ u y ρ uz ρ ρ ux ρ u y ρ uz

1.0000 1.7500 −1.0000 0.0000 1.8887 0.2334 −1.7422 0.0733
E Bx B y Bz E Bx B y Bz

6.0000 0.5642 0.5078 0.2539 12.999 0.5642 0.9830 0.4915

Fig. 2. FV reference solution for the 2D Riemann problem using GLM–MHD with mixed correction. Shown are variables ρ , B y , u y and uz obtained at time 
t = 0.1 with L = 11.

The reference GLM–MHD FV code used in this work has been developed in C++ language, inspired by the Fortran 90 
code developed by [9], including an upgrade in the routines and new features for the implementation of the numerical flux 
HLLD. The GLM–MHD MR code developed in [16] is based on the hydrodynamics MR Carmen code developed in [27,28]. 
The implementation has been optimized improving the memory allocation and unrolling the for-loops for the allocation of 
the variables. The CPU time is improved about a factor 4, for the test case studied here with L = 8 adaptive scales and 
ε0 = 0.01.

For the numerical error analysis we have used a reference solution computed with a GLM–MHD FV scheme with L = 11
scales using the same numerical scheme in space, implemented in the AMROC code [8], which is parallelized. We computed 
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Fig. 3. MR solution with ε0 = 0.01 for the 2D Riemann problem using GLM–MHD with mixed correction. Shown are variables ρ , B y , u y and uz obtained 
at time t = 0.1 with L = 10.

the L1-error for the density solution (Le
1(ρ)). The CPU time for the MHD-FV reference is obtained with another code which 

is not parallel.
The reference solution and numerical MR solution for ε0 = 0.01 and L = 10 at t = 0.1 are presented in Figs. 2 and 3, 

respectively. For a later time, t = 0.25, the numerical MR solution with L = 9 is presented in Fig. 7. In the solutions, we 
can observe that the structures are not always aligned, e.g., we can identify a structure that appears in the density but 
not in the y-component of the magnetic field in the right part of the domain. In this region, the latter variable is almost 
constant. This is expected because in plasma processes the discontinuities may not necessarily occur at the same position 
for all quantities. The Bx component and p (not shown here) have a similar behavior as ρ , and the uz component has a 
similar behavior as Bz . These observations are expected and they increase the number of cells in the adaptive mesh in the 
MHD case compared to the hydrodynamic case. Fig. 4 presents an example of the adaptive mesh for ε0 = 0.01 at the initial, 
intermediate and final computational time. We can observe that the adaptive meshes correspond to the structures present 
in the solutions.

Using the GLM–MHD method with mixed correction, the divergence of the magnetic field is not necessarily zero. How-
ever, this correction improves the convergence of the numerical solution of the MHD system to the expected physical 
solution, as discussed in [6]. Fig. 5 presents |∇ · B| for the FV reference solution for L = 11 and two MR solutions for L = 10
with ε0 = 0.01 at time t = 0.1 and ε0 = 0.005 at time t = 0.25. We observe that the maximum values of divergence are in 
the front transition regions, near the central part of the domain.

To check the time evolution of the divergence of the magnetic field, we consider the quantity

Bdiv(t) = max{|∇ · B| : (x, y) ∈ [−1,1]2},
where ∇ · B is again evaluated using centered finite differences. Fig. 6 shows the time evolution of Bdiv(t) up to t = 0.1 for 
the FV reference solution with L = 11 (d) and three series of MR computations with L = 8, 9, 10 (a, b, c) considering the 
following threshold, values ε = 0, 0.010, 0.008, 0.005 and ε0 = 0.050, 0.030, 0.010. For the reference solution we observe a 
rapid decay of the initial value, around 37, during the first iterations, followed by a relaxation towards the value 3 which 
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Fig. 4. Cell midpoints of the adaptive mesh with L = 10 of the MR computation for the 2D Riemann problem using GLM–MHD with mixed correction at 
time t = 0 with 2.30% of the cells, at t = 0.1 with 26.65% and ε0 = 0.01; and at time t = 0.25 with 18.37% of the cells and ε0 = 0.05.

Fig. 5. Values of |∇ · B| for the 2D Riemann problem obtained with: (a) FV reference scheme using GLM–MHD with mixed correction for L = 11; (b) MR 
scheme with ε0 = 0.01 using GLM–MHD with mixed correction for L = 10 at time t = 0.1; and (c) MR scheme with ε0 = 0.05 using GLM–MHD with mixed 
correction for L = 10 at time t = 0.25. Note that the values of this quantity are mesh-dependent.

is reached at about 0.04. Afterwards, this value remains almost constant. For the MR computations we find that not only 
the initial but also the relaxation values of Bdiv(t) depend on the finest level L, and hence on the mesh size. For larger 
values of L the divergence becomes larger but in all cases we find that after a certain time Bdiv(t) becomes constant or 
oscillates around a mean value. Using Harten’s strategy with ε0 these oscillations almost disappear. In Fig. 8 we consider 
the evolution of Bdiv(t) for longer times, up to t = 0.25, in the MR case with L = 9 for ε = 0 and 0.05, and ε0 = 0.05. 
After t = 0.1 no oscillations can be observed for ε = 0, while for both ε0 = 0.05 and ε = 0.05 again some oscillations 
appear.

One main conclusion in analyzing Bdiv(t) for the different cases is that no growth in time can be observed, thus the 
divergence error seems to be controlled by the divergence cleaning, as discussed in [20].

Considering the conservative quantities [32], we compute the energy,

E =
∫ ∫ (

|v|2 + |B|2
)

dx dy,

and find the value 3.69 at the initial time. At time t = 0.1 we find for all FV solutions with L = 8, 9 and 10 the value 3.48. 
For the MR computations we obtain 3.46, 3.47 and 3.48 for L = 8, 9 and 10, respectively. These results are independent of 
the actual value of the threshold (ranging from 0.01 down to 0) and there is no significant influence if a fixed or level 
dependent value is used. This means that in all computations about 94% of the energy is conserved. At later time, t = 0.25, 
we observe some decay, but still about 86% of the energy is conserved.

The total magnetic helicity is also a conservative quantity of the ideal MHD equations [3] and we consider its time rate 
of change, defined as,

∂ H

∂t
= 2

∫ ∫
B · (u × B) dx dy.

As shown in Fig. 8, right, the reference solution conserves perfectly the total magnetic helicity and ∂ H/∂t yields values 
close to machine precision. For the three MR solutions there is an initial peak at about 4 · 10−12 which immediately decays 
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Fig. 6. The quantity Bdiv(t) over time for the 2D Riemann problem, with: (a, b, c) GLM–MHD with mixed correction using the MR scheme with ε
 = ε =
0.010, 0.008, 0.005 and ε0 = 0, 0.05, 0.03, 0.01 for L = 8, 9, 10; (d) GLM–MHD with mixed correction using the FV scheme for the reference solution with 
L = 11.

to near zero machine precision, and remains zero for ε = 0. For the two others threshold values some intermittent spikes 
with amplitude below 2 · 10−13 are observed.

Table 2 presents a summary of the CPU time, memory compression, Dc and Le
1(ρ) for all experiments at time t = 0.1. 

For ε
 = ε = 0.005 and ε0 = 0.05 the results are close, independent of the maximum level L. However, the case ε = 0.005
has slightly better CPU time and memory compression with respect to Le

1(ρ). In these cases, for L = 10, the CPU time is 
about 7–14% of the FV CPU time and the errors are approximately of order 10−2. As expected, the error increases for a 
scale-independent threshold ε
 = ε with ε being large, because it does not control well the error. However, as we decrease 
the value of ε , the error becomes smaller. Thus, the choice of ε is an important ingredient. We can observe that if we 
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Fig. 7. MR solution for the 2D Riemann problem using GLM–MHD with mixed correction for ε0 = 0.05. Shown are variables ρ , B y , u y and uz obtained at 
time t = 0.25 with L = 9.

choose a sufficiently small ε , both strategies have similar behavior. However, we can optimize this process by using Harten’s 
strategy, which corresponds to a level dependent ε .

In Table 3 we show the CPU time, memory compression, Dc , and Le
1(ρ) results for all experiments done at time t = 0.25. 

We present the simulations for ε
 = ε = 0.005 and ε0 = 0.05. The results at t = 0.25 show that the MR approach does not 
introduce growing instabilities and it is possible to compute the solution for larger values of t .

6. Conclusions and perspectives

Starting from the ideal MHD equations completed with generalized Lagrangian multipliers to control the incompressibil-
ity of the magnetic field, we have developed an adaptive multiresolution method in two space dimensions on a Cartesian 
mesh with local mesh refinement. The space discretization is based on finite volumes with an HLLD numerical flux. For 
time integration an explicit Runge–Kutta scheme has been applied. To introduce a locally refined spatial mesh and also for 
local interpolation of the flux values Harten’s cell average multiresolution analysis has been used.

To assess the efficiency and quality of this new adaptive scheme, we have considered a two-dimensional Riemann prob-
lem. We compared this numerical solution with adaptive MR results for different threshold values and two strategies of 
varying resolution levels. The numerical results show that the divergence cleaning can indeed work successfully with adap-
tive space discretizations. The MR method with constant threshold exhibits better CPU time performance but worse precision 
when compared to the level dependent threshold. The only drawback with respect to the level dependent threshold com-
putations is that the number of cells on the adaptive mesh is increased. We also observed that energy and the time rate of 
change of magnetic helicity, both conserved quantities in the ideal MHD equations, remain indeed approximately conserved 
in our adaptive MR computations.
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Fig. 8. The quantity Bdiv(t) and the time rate of change of magnetic helicity over time for the 2D Riemann problem, obtained with GLM–MHD with the 
mixed correction MR scheme using ε
 = ε = 0, 0.005 and ε0 = 0.05 for L = 9 and for the reference solution.

Table 2
CPU time, memory, Dc , and density error Le

1(ρ) for the 2D Riemann problem computed with 
the MR scheme using GLM–MHD with mixed correction and either with constant or level 
dependent threshold for t = 0.1.

L = 8 MR FV

ε
 = ε ε0

0.01 0.008 0.005 0.05 0.03 0.01

CPU time (%) 22.74 23.47 24.55 26.71 27.80 30.33 100
Memory (%) 44.18 45.38 47.70 51.03 53.12 56.47 100
Dc (%) 29.74 30.67 32.50 34.94 36.60 39.28 100
Le

1(ρ) · 10−2 3.680 3.669 3.657 3.657 3.652 3.651 3.640

L = 9 MR FV

ε
 = ε ε0

0.01 0.008 0.005 0.05 0.03 0.01

CPU time (%) 13.63 14.66 15.91 17.67 19.00 20.46 100
Memory (%) 27.03 28.79 31.24 34.34 36.01 39.20 100
Dc (%) 17.70 18.97 21.01 23.51 24.92 27.42 100
Le

1(ρ) · 10−2 2.086 2.039 1.981 1.974 1.958 1.953 1.9409

L = 10 MR FV

ε
 = ε ε0

0.01 0.008 0.005 0.05 0.03 0.01

CPU time (%) 7.73 8.71 9.85 12.00 13.03 14.67 100
Memory 14.66 16.02 18.82 22.40 24.46 27.48 100
Dc (%) 9.25 10.07 12.01 14.66 16.49 19.25 100
Le

1(ρ) · 10−2 1.090 1.031 0.932 0.905 0.875 0.851 0.841

NOTE: The results are computed with second-order Runge–Kutta for the MR scheme. The CPU 
time for the GLM–MHD FV method is 277 sec., 2326 sec. and 314 min., for L = 8, 9 and 10, for 
an Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz, CPU 1596 MHz, cache size 12 288 KB and 4 cores. 
CPU time, memory, and Dc performances are computed with the corresponding non-adaptive 
FV solution using L = 8, 9 and 10 scales on a uniform level. For the error, in all cases, we use a 
reference solution computed with a GLM–MHD FV scheme with L = 11 for the same numerical 
scheme implemented in the AMROC code [8].

In future work, we plan to complete the adaptive method with time adaptivity using local and controlled time stepping 
and to perform thus fully adaptive simulations in three space dimensions. A second interesting direction is to move to non-
ideal MHD, taking into account resistive effects and finite values of the fluid viscosity to study the physics of reconnection 
of current sheets, especially in space physics applications.
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Table 3
CPU time, memory, Dc , and density error Le

1(ρ) for the 2D Riemann prob-
lem simulated with the MR scheme using GLM–MHD with mixed correction 
and with constant or level dependent threshold for t = 0.25.

L = 9 MR FV

ε
 = 0.005 ε0 = 0.05

CPU time (%) 18.79 22.61 100
Memory (%) 38.12 45.25 100
Dc (%) 23.80 29.03 100
Le

1(ρ) · 10−2 3.887 3.826 3.694
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Appendix A. HLLD Riemann solver

In the following solver, we consider the one-dimensional GLM–MHD equations in their primitive form

∂ρ

∂t
+ ∂ρux

∂x
= 0, (9a)

∂ E

∂t
+ ∂

∂x

[(
E + p + B2

2

)
ux − (

ux Bx + u y B y + uz Bz
)

Bx

]
= 0, (9b)

∂ (ρux)

∂t
+ ∂

∂x

[
ρu2

x + p +
(

B2

2

)
− B2

x

]
= 0, (9c)

∂
(
ρu y

)
∂t

+ ∂

∂x

(
ρuxu y − Bx B y

) = 0, (9d)

∂ (ρuz)

∂t
+ ∂

∂x
(ρuxuz − Bx Bz) = 0, (9e)

∂ Bx

∂t
+ ∂ψ

∂x
= 0, (9f)

∂ B y

∂t
+ ∂

∂x

(
ux B y − Bxu y

) = 0, (9g)

∂ Bz

∂t
+ ∂

∂x
(ux Bz − Bxuz) = 0, (9h)

∂ψ

∂t
+ c2

h
∂ Bx

∂x
= − c2

h

c2
p
ψ. (9i)

Considering the above system we can obtain the Jacobian matrix. From the structure of this matrix one can verify that the 
equations of Bx and ψ can be decoupled from the remaining system and we can obtain the Jacobian matrix for the 1D 
MHD system [6, pp. 651–653]. The eigenvalues of this matrix are ux , ux ± cs , ux ± ca and ux ± c f , where cs , c f are the slow 
and fast magneto-acoustic waves and ca is the Alfvén wave.

The Harten–Lax–van Leer-Discontinuities (HLLD) solver for MHD was firstly developed by Miyoshi and Kusano [22] and 
it can be considered as an extension of the Harten–Lax–van Leer (HLL) solver presented in [19]. The HLLD solver is based 
on four intermediary states Q�

L , Q��
L , Q��

R and Q�
R , divided by five waves SL , S�

L , SM , S�
R and S R , as illustrated in Fig. 9. These 

waves are related to entropy, fast and Alfvén waves. The HLLD numerical flux can resolve isolated discontinuities in the 
solution of the MHD system. This solver preserves positivity and is more robust and efficient than the linearized solver, 
with an equally good resolution.

The states Q� and Q�� for the GLM–MHD system are defined as

Q�
α = (ρ�

α, E�
α,ρ�

αu�
α,B�

α,ψ�
α) and Q��

α = (ρ��
α , E��

α ,ρ��
α u��

α ,B��
α ,ψ��

α ),
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Fig. 9. Schematic of the Riemann fan structure with four intermediate states used in the HLLD flux. Adapted from [22].

with α denoting left (L) or right (R) states. In this approach, we compute the numerical flux for ψ directly. Then we 
consider ψ� = ψ�� = ψ here in the intermediary vector states, recalling that the HLLD is originally designed for the MHD 
system, where the vector state Q does not include the variable ψ .

The numerical flux function is given by

FHLLD =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FL, if SL > 0,

F�
L, if SL ≤ 0 ≤ S�

L,

F��
L , if S�

L ≤ 0 ≤ SM ,

F��
R , if SM ≤ 0 ≤ S�

R ,

F�
R , if S�

R ≤ 0 ≤ S R ,

FR , if S R < 0.

(10)

The flux vectors FL = F(QL), FR = F(QR) are exact, while F�
L , F�

R are approximate fluxes at intermediary states Q�
L , Q�

R , and 
F��

L , F��
R are approximate fluxes at intermediary states Q��

L , Q��
R .

By the following process, we present the variables of the states Q�
α and Q��

α , allowing us to compute the HLLD flux in 
the intermediary states

F�
α = Fα + Sα (Q�

α − Qα),

F��
α = Fα + S�

α Q��
α − (S�

α − Sα)Q�
α − Sα Qα, (11)

where α = R and L denote right and left, respectively.
The following description of the HLLD flux is related to the x-direction, considering B�

x = B��
x = Bx . In two-dimensions, a 

similar expression can be obtained in the y-direction, considering B�
y = B��

y = B y .
There are different possibilities to approximate the propagation speeds Sα ; for instance, we use

SL = min(uL, uR) − max(c f L , c f R ), S R = max(uL, uR) + max(c f L , c f R ), (12)

where uα are the plasma velocities, c fα are the magnetic acoustic waves [25]. The choice of SM is made to estimate the 
average normal velocity and it is given by

SM = (S R − uxR )ρR uxR − (SL − uxL )ρL uxL − pT R + pT L

(S R − uxR )ρR − (SL − uxL )ρL
. (13)

The velocity is assumed to be constant over the Riemann fan, i.e.,

u�
xL

= u��
xL

= u��
xR

= u�
xR

= SM . (14)

The total pressure pT = p + B·B
2 is also kept constant,

p�
T L

= p��
T L

= p��
T R

= p�
T R

= p�
T . (15)

Under these conditions tangential and rotational discontinuities can be formed in the Riemann fan.
From the choice of SM , the pressure p�

T can be written as

p�
T = (S R − uxR )ρR pT L − (SL − uxL )ρL pT R

(S R − uxR )ρR − (SL − uxL )ρL
+ ρL ρR(S R − uxR )(SL − uxL )(uxR − uxL )

(S R − uxR )ρR − (SL − uxL )ρL
. (16)

Given SM and p�
T , the states Q�

α = (ρ�
α, p�

α, u�
xα

, u�
yα

, u�
zα

, B�
xα

, B�
yα

, B�
zα

) are bordered by the states Qα and they can be 
obtained from the jumps along Sα , where α = L or R represents the left or right state. Therefore, one can derive the 
variables of the states Q�

α as
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ρ�
α = ρα

Sα − uxα

Sα − SM
, (17a)

u�
yα

= u yα − Bx B yα

SM − uxα

ρα(Sα − uxα )(Sα − SM) − B2
x
, (17b)

u�
zα

= uzα − Bx Bzα

SM − uxα

ρα(Sα − uxα )(Sα − SM) − B2
x
, (17c)

B�
yα

= B yα

ρα(Sα − uxα )2 − B2
x

ρα(Sα − uxα )(Sα − SM) − B2
x
, (17d)

B�
zα

= Bzα

ρα(Sα − uxα )2 − B2
x

ρα(Sα − uxα )(Sα − SM) − B2
x
. (17e)

Consequently, we can compute E�
α

E�
α = (Sα − uxα )Eα − pTα uxα + p�

T SM + Bx(uα · Bα − u�
α · B�

α)

Sα − SM
. (18)

During the computations some divisions by zero of the type 0/0 can appear when S M = uxα , Sα = uxα ± c fα , 
B yα = Bzα = 0 and B2

x ≥ γ pα . In these cases, we have to replace u�
yα

= u yα , u�
zα

= uzα , and B�
yα

= B�
zα

= 0.
Similarly, it is possible to obtain the equations related to the states

Q��
α = (ρ��

α , p��
α , u��

xα
, u��

yα
, u��

zα
, B��

xα
, B��

yα
, B��

zα
).

Due to the relation described by Eq. (14), starting with the jump condition of the continuity equation over an arbitrary 
value S , where SL < S < SM or SM < S < S R , we have

ρ��
α = ρ�

α. (19)

The propagation velocities of the Alfvén waves in the intermediary states are estimated by

S�
L = SM − |Bx|√

ρ�
L

, S�
R = SM − |Bx|√

ρ�
R

. (20)

Considering the jump conditions to the tangential components of the velocity and magnetic field over S M , and if Bx 	= 0, 
we can obtain the following relations

u��
yL

= u��
yR

≡ u��
y , u��

zL
= u��

zR
≡ u��

z , (21a)

B��
yL

= B��
yR

≡ B��
y , B��

zL
= B��

zR
≡ B��

z . (21b)

If Bx = 0, it is impossible to calculate the remaining variables of the states Q��
α . Replacing Eqs. (19)–(21) into the integral 

conservation laws over the Riemann fan, we can derive the variables

u��
y = u�

yL
+ √

ρ�
R u�

yR
+ (B�

yR
− B�

yL
)sign(Bx)√

ρ�
L + √

ρ�
R

, (22a)

u��
z =

√
ρ�

L u�
zL

+ √
ρ�

R u�
zR

+ (B�
zR

− B�
zL

)sign(Bx)√
ρ�

L + √
ρ�

R

, (22b)

B��
y =

√
ρ�

L B�
yR

+ √
ρ�

R B�
yL

+ √
ρ�

Lρ
�
R(u�

yR
− u�

yL
)sign(Bx)√

ρ�
L + √

ρ�
R

, (22c)

B��
z =

√
ρ�

L B�
zR

+ √
ρ�

R B�
zL

+ √
ρ�

Lρ
�
R(u�

zR
− u�

zL
)sign(Bx)√

ρ�
L + √

ρ�
R

, (22d)

where sign(Bx) is 1 for Bx > 0, and −1 for Bx < 0. Consequently, the equation of the energy in Q�� is given by

E��
α = E�

α ∓ √
ρ�

α

(
u�

α · B�
α − u��

α · B��
α

)
sign(Bx). (23)

The same procedure is applied for the y-direction.
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