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a b s t r a c t

We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional
incompressible fluid flows. The temporal and spatial discretizations of the Navier–Stokes equations in
vorticity stream-function formulation are based on classical fourth-order Runge–Kutta scheme and com-
pact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a
new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down
to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penal-
ization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body
which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated
on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swim-
ming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear
beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy
of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The quantification and simulation of the flow around biological
swimmers is one of the challenges in fluid mechanics (Sotiropoulos
and Yang, 2014). At the same time bio-inspired design of
swimming robots are in growth (El Rafei et al., 2008). The costs
of experimental studies (Belkhiri, 2013) lead the researchers to
develop efficient predictive numerical algorithms for hydrody-
namic analyses of fish swimming. Difficulties of numerical simula-
tions of fish-like swimming are due to different reasons. One
problem is efficient quantification of the kinematics of different
species (more than 32,000) which seems to be far from the simple
laws proposed in different studies. Efficient simulation of incom-
pressible flows is also an important problem, where the efficiency
of the elliptic solver is crucial. The third bottleneck in numerical
simulations of fish-like swimming is the coupling of the fluid sol-
ver with deformable, moving and rotating bodies. Fishes swim by
exerting force and torque against the surrounding water. This is
normally done by the fish contracting muscles on either side of
its body in order to generate moving waves from head to tail. These
waves generally are getting larger as they go toward the tail
(Wikipedia contributers, 2014). The resultant force exerted on
the water by such motion generates a force (even oscillatory)
which pushes the fish forward. Most fishes generate thrust moving
their body and fins. In general these movements can be divided
into undulatory and oscillatory motions. Mechanisms of locomotion
using body and fins are divided into groups that differ in the frac-
tion of their body that is displaced laterally (Breder, 1926). Anguil-
liform swimmers are long and slender, in which there is little
increase in the amplitude of the flexion wave as it passes along
the body. In carangiform swimmers, there is a more remarkable
increase in wave amplitude along the body with the vast majority
of the work being done by the rear half of the fish. In thunniform
fishes almost all the lateral movement is in the tail. Ostraciiform
fishes have no appreciable body wave when they employ caudal
locomotion, only the tail fin itself oscillates rapidly to create thrust.
However there are other minorities (Wikipedia contributers,
2014). The tail beat creates a reversed Kármán street of vortices
and generates thrust, leaving thus a momentumless wake back.
By varying the frequency and amplitude of the oscillation a variety
of wakes, like classical Kármán, two pairs (2P) (Van Rees et al.,
2013), two pairs plus two single (2P+2S), etc. Schnipper et al.
(2009) can be observed (Williamson and Roshko, 1988). Anguilli-
form fishes add a constant curvature to their backbone for turning,
i.e., they use their body like a rudder for torque generation. Yeo
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et al. (2010) studied numerically the straight swimming/cruising
and sharp turning manoeuvres in two-dimensions. It was shown
by Yeo et al. (2010) that a carangiform-like swimmer execute a
sharp turn through an angle of 70� from straight coasting within
a space of about one body length. Gazzola et al. (2012) investigated
the C-start escape patterns of a larval fish by using a remeshed vor-
tex particle method and the volume penalization. The deformation
of the fish, based on the mid-line curvature values, is optimized via
an evolutionary strategy by Hansen et al. (2003) to maximize the
escape distance. Bergmann and Iollo (2011) performed numerical
simulations of fish rotation and swimming toward a prescribed
goal. They considered the average profile of the fish backbone
aligns over a circle with an estimated radius to perform a rotation.
The radius of the circle tends to infinity r !1ð Þ in a forward gait.
The considered fish by Bergmann and Iollo (2011) is constructed by
a complex valued mapping like the Kutta–Joukowski transform
superposed to the fish backbone with prescribed undulatory
motion. Here we will present a simple law for turning control of
an anguilliform fish. Our rotation control law (Bontoux et al.,
2014) is similar to that presented by Yeo et al. (2010), and
Bergmann and Iollo (2011), in which the feedback is based on
the angle between the line-of-sight and the direction of surge.
But instead of adding a radius to the backbone, we envisage to
use curvature which seems to be more efficient. We use the
method proposed by Boyer et al. (2006) which is based on quater-
nions for efficient description of the fish backbone kinematics.

We apply the rotation control to two-dimensional swimming.
Even if due to the shape and deformation style of the fish-like
swimmers the surrounding flow is fully three dimensional, most
of the fundamental features of swimming are included in two-
dimensional analyses. For incompressible flows the Navier–Stokes
equations can be reformulated in terms of vorticity-velocity
(Gazzola et al., 2011) or vorticity stream-function (Spotz and
Carey, 1995). For two-dimensional problems the vorticity formula-
tion is reduced to a scalar valued evolution equation. Hence only
the vorticity transport equation has to be advanced in time. The
choice of finite differences in this paper is related to the use of an
immersed boundary method in which a Cartesian grid can be used.
Therefore the use of finite differences is efficient and straightfor-
ward. Among finite difference methods high-order compact dis-
cretizations, (Hirsh, 1975; Lele, 1992), are more advantageous in
terms of accuracy and reasonable cost. We refer to Abide and
Viazzo (2005) and Boersma (2011) for high-order compact discret-
izations of the incompressible Navier–Stokes equations in primitive
variables and to Bontoux et al. (1978), Roux et al. (1980), and Spotz
and Carey (1995) for compact high-order solutions of the vorticity
and stream-function formulation. Solving the incompressible
Navier–Stokes equations typically implies an elliptic Poisson equa-
tion which is the most time consuming part of the algorithm. Direct
methods like diagonalization or FFT based solvers can be used. Iter-
ative methods, namely, point successive over relaxation (PSOR)
with read-black sweeper, multigrid or Krylov subspace solvers are
other alternatives. Using high-order discretizations iterative meth-
ods are less attractive because the resulted matrices are less sparse,
thus the rates of convergence are slow. However iterative methods
can cover all types of boundary conditions, we refer to Spotz and
Carey (1995) for a fourth-order compact discretization of the Pois-
son equation. On the other hand, in direct methods the memory
limitation is restrictive for simulations on a fine grid. Therefore
decoupling of the directions by FFT based methods can be advanta-
geous, even if this method implies some limitations in the boundary
conditions. We propose a direct fourth-order solver for the Poisson
equation which is a combination of a compact finite difference with
a sine FFT. The main advantages of our method are fourth-order
accuracy, efficiency, the possibility to parallelize and convergence
down to zero machine precision over an optimal grid. Other
advantages and limitations of the proposed solver are discussed
in the paper. A difficulty in numerical simulations of fish swimming
is the analysis of fluid/solid interaction, which can be handled by
strong or loose coupling according to implicit or explicit time
advancement, cf. (Sotiropoulos and Yang, 2014) for a detailed dis-
cussion. We use the volume penalization method, known also as
Darcy-Brinkmann penalization (Brinkmann, 1947), proposed by
Arquis and Caltagirone (1984), Angot et al. (1999) and Khadra
et al. (2000), which belongs to the diffuse-interface immersed
boundary methods (IBMs). It consists of modeling the immersed
body as a porous medium, thus getting rid of the Dirichlet boundary
conditions by considering both the fluid and the body as one
domain with different permeabilities. So one can consider a rectan-
gular solution domain in which the body is immersed and can even
move. The penalization method leads to between first and second
order accuracy near the body and is an efficient method in dealing
with deformable, moving and rotating bodies immersed in a fluid. A
development to deal with rigid bodies colliding with each other in
incompressible flows is performed by Coquerelle and Cottet (2008).
An extension to include elasticity of the solid interacting with fluid
via the volume penalization method is represented by Engels et al.
(2013). One advantage of this class of penalization schemes for
fluid–structure interaction problems is that it enables the use of
time and space adaptivity via multiresolution analysis as recently
demonstrated by Gazzola et al. (2014) and Ghaffari et al. (2014).
We refer to the review of Mittal and Iaccarino (2005) for a complete
classification and description of immersed boundary methods.

In the present work, we will focus on some numerical aspects of
efficient turning laws for anguilliform swimmers, a topic which is
less studied so far. To this end the geometrically exact theory of
nonlinear one-dimensional beams based on quaternions (Boyer
et al., 2006) is adapted to the backbone kinematics description.
Starting by the code developed by Sabetghadam et al. (2009) we
apply compact finite differences to the vorticity stream-function
formulation of the Navier–Stokes equations including the penaliza-
tion term. An efficient direct method is presented for solving the
Poisson equation. Thus different numerical aspects of the algo-
rithm like accuracy in space and the error introduced by the penal-
ization method will be examined. The code is developed in
FORTRAN and is open access (Ghaffari). The paper is organized as
follows. First our methodology including the governing equations,
discretization, kinematics of an anguilliform swimmer and the
algorithm for fluid interaction with forced deformable bodies will
be presented. Next a validation of the algorithm will be carried
out, the errors will be assessed and their convergence will be stud-
ied. Then the results for swimming and rotation control are
reported. Finally, the results will be discussed and some guidelines
for future works will be addressed.
2. Methodology

2.1. Governing equations of incompressible flow

The governing equations of incompressible flows are the
Navier–Stokes equations. In two-dimensional problems the vortic-
ity and stream-function formulation in comparison to the primi-
tive variable formulation has the advantage that it not only
eliminates the pressure, but also ensures a divergence-free velocity
field (mass conservation, i.e., r � u ¼ 0) if the Poisson Eq. (2) is
properly satisfied (Bontoux et al., 1978; Roux et al., 1980). One
encounters two scalar valued quantities, i.e., the vorticity x and
the stream-function w, instead of the velocity vector and the pres-
sure field, thus it makes the computations more efficient. With this
formulation, it is possible to use a collocated grid without adding
any explicit numerical dissipation, which reduces the arithmetics
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considerably, while keeping the expected accuracy. Moreover,
there is no need for pressure grid staggering, neither fully nor par-
tially. The boundary conditions of the elliptic Eq. (2) are of Dirichlet
type instead of Neumann for Eq. (5), which can lead to a singular-
ity. Therefore we continue with this formulation, but the concepts
can also be extended to the primitive variable formulation. By tak-
ing the curl of the Navier–Stokes equations, one obtains the vortic-
ity transport equation:

@txþ ðu � rÞx ¼ mr2xþr� F; x 2 X 2 R2 ð1Þ

where xðx; tÞ ¼ r� u ¼ vx � uy denotes the vorticity component
which is normal to the considered two-dimensional plane, X is
the spatial domain of interest, given as an open subset of R2, which
can be bounded or unbounded in general, uðx; tÞ is the velocity field,
m ¼ l=qf > 0 is the kinematic viscosity of the fluid, qf is the density
and Fðx; tÞ is a source term. For a complete description of a partic-
ular problem, the above equation needs to be complemented to
describe an initial/boundary value problem (IBVP). The vorticity
transport Eq. (1) is parabolic and the velocity components are
ðu;vÞ ¼ ð@yw;�@xwÞ, with w satisfying the Poisson equation

�r2w ¼ x ð2Þ

which is an elliptic equation. The penalization (Arquis and
Caltagirone, 1984; Angot et al., 1999 and Khadra et al., 2000) term
is representative of the immersed body

F ¼ �g�1vðu� uPÞ ð3Þ

where uPðx; tÞ is the velocity field of the immersed body. The
Navier–Stokes equations are written for unit mass of the fluid,
therefore the dimension of the source term F is acceleration per unit
mass of the fluid, i.e., ½LT�2�. The penalization parameter g is the per-
meability coefficient of the immersed body with dimension ½T�. The
mask (characteristic) function v is dimensionless and describes the
geometry of the immersed body

vðx; tÞ ¼
1 x 2 Xb

0 x 2 Xf

�
ð4Þ

where Xf represents the domain of the fluid and Xb represents the
immersed body in the domain of the solution. The solution domain
X ¼ Xf [Xb is governed by the Navier–Stokes equations in the fluid
regions and by Brinkmann (1947) law in the penalized regions,
when g! 0. An equation for the pressure can be derived by
applying the divergence operator to the momentum equations
and making use of the mass conservation,
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Fig. 1. Plots of the scaled modified wavenumber for the first (left) and second (right) de
different central finite difference methods presented by Lele (1992) and Kim (2007).
r � ðrpÞ ¼ �qr � ðu � rÞu½ � � q
g
r � vðu� upÞ

� �
ð5Þ

For fluid/solid interaction problems the simulations start with the
body uPðx;0Þ ¼ 0, and fluid at rest, i.e., xðx;0Þ ¼ wðx;0Þ ¼ 0 and
free-slip boundary conditions are imposed at the surrounding walls
(wj@X ¼ xj@X ¼ @p=@nj@X ¼ 0).

2.1.1. Spatial discretization
In the present investigation an explicit central second order and

an implicit fourth order compact finite difference method (Hirsh,
1975) is used for discretization of the spatial derivatives. The
advantage of compact methods over explicit finite differences is
illustrated in terms of the scaled modified wavenumber w ¼ kDx
in Fig. 1. For a given periodic function f ðxÞ ¼ eikx; x 2 ½0;2p� with
known exact derivatives f 0ðxÞ ¼ ikeikx

; f 00ðxÞ ¼ �k2eikx, a numerical
approximation of the derivatives at point xj has the form
f 0ðxjÞ ¼ ik0eikxj and f 00ðxjÞ ¼ �k002eikxj . The difference between the
exact and numerical approximation of the wavenumber is a mea-
sure of the discretization error which is purely dispersive for the
first derivative and dissipative for the second derivative, if the con-
sidered function is periodic and the discretization is central. The
scaled modified wavenumbers are computed via different explicit
and implicit differentiation methods and are illustrated in Fig. 1
for the first and second derivatives. For the second derivative the
scaled modified wavenumbers w00 are compared in Fig. 1(b) with
analytical values given by Lele (1992). A good agreement between
the numerical approximations of the scaled modified wavenum-
bers and the analytical values can be observed. It must be noted
that the error in terms of the modified wavenumber is not neces-
sarily sensitive to the formal order of the truncation error obtained
by Taylor expansion analysis. The desired characteristics of finite
difference schemes are better studied by directly optimizing the
scheme in Fourier space rather than looking for the lowest trunca-
tion error. For example spectral like five-diagonal finite difference
schemes designed by Lele (1992) or Kim (2007) are formally fourth
order, see Fig. 1(a). Given the values of a function f on a uniformly
spaced mesh xi ¼ ði� 1Þh, for ði ¼ 1; . . . ;NÞwith h ¼ Lx=ðN � 1Þ, fol-
lowing (Hirsh, 1975; Lele, 1992) a fourth-order approximation of
the first and second derivatives are obtained by the classical
Padé schemes:

f 0i�1 þ 4f 0i þ f 0iþ1 ¼ 3ðf iþ1 � f i�1Þ=h ð6Þ
f 00i�1 þ 10f 00i þ f 00iþ1 ¼ 12ðf iþ1 � 2f i þ f i�1Þ=h2 ð7Þ

for i ¼ 2; . . . ;N � 1, near the boundaries a third-order forward/back-
ward stencil can be used, we refer to Lele (1992) for more details. A
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Fig. 2. (top) The trigonometric basis functions for a complex FFT of a periodic
function. (mid) The trigonometric basis functions for a sine FFT of a function with
homogeneous Dirichlet boundary conditions. (down) The trigonometric basis
functions for a cosine FFT of a function with homogeneous Neumann boundary
conditions. Picture from Press et al. (1992).

S.A. Ghaffari et al. / International Journal of Heat and Fluid Flow 51 (2015) 88–109 91
direct solver (based on LU-decomposition) can be applied to the tri/
penta-diagonal system of linear equations along each line. The com-
putational cost of a tridiagonal implicit method is in general three
times the one of an explicit method and for a pentadiagonal linear
system it is twice that of the tridiagonal one.

2.1.2. Time integration
A classical fourth-order Runge–Kutta (RK4) method is used for

time integration of the penalized vorticity transport Eq. (1). By
assembling all spatial derivatives in the operator kðx;wÞ, one has

xnþ1 ¼ xn þ Dt
6
ðk1 þ 2k2 þ 2k3 þ k4Þ ð8Þ

where

kðx;wÞ ¼ �@yw @xxþ @xw @yxþ mr2xþ @xFy � @yFx ð9Þ

at each time step Eq. (9) must be evaluated four times where Eq. (2)
must be solved for updating the stream-function
(xi ¼ xn þ aiDtki�1 and �r2wi ¼ xi) with a1 ¼ 1=2;a2 ¼ 1=2 and
a3 ¼ 1. Details are given in the time integration part of Algorithm
1. For technical discussions of Runge–Kutta methods we refer to
Press et al. (1992). However, Dt is limited by the CFL (Courant–
Friedrichs–Lewy) condition which implies that

UDt
Dx
6 CFL � ri

w0max
ð10Þ

where U is an advection velocity (or a phase speed). In the presence
of nonlinearity in space more attention must be payed. Viscous
terms imply an additional constraint of the form

mDt
Dx2 6 VSL � rr

w00max
ð11Þ

on the time-step, where rr ¼ 2:9 and ri ¼ 2:85 are real and imagi-
nary limits of the stable region in the complex plane, of the RK4
method. Here w0max ¼ 1:74 and w00max ¼ 6 are the maximum values
of the scaled modified wavenumbers for the first and second deriv-
atives calculated via the fourth-order Padé scheme, plotted in Fig. 1.
It can be seen that w0max 2 ½1;p� and w00max 2 ½4;p2� for the different
approximations of the spatial derivatives. For an explicit second-
order discretization we have w0max ¼ 1 and w00max ¼ 4. Therefore with
the use of a high-order method for the spatial discretization smaller
time-steps must be used. In the presence of moving bodies the dis-
placement of the moving body must not exceed the grid spacing,
i.e., Dt 6 Dx=uB. Moreover, by using the explicit penalization
method another constraint, Dt 6 g, must be respected. Among the
four above-mentioned constraints, the smallest Dt must be chosen.
In Gazzola et al. (2011) an implicit penalization method (via
operator splitting) is used for simulation of fluid–solid interaction
problems, the time accuracy is reported to be first-order. This is
independent of the time accuracy of the underlying method for time
integration of the Navier–Stokes equations. We use explicit penali-
zation, i.e., the penalization term is kept in the right hand side of the
vorticity transport Eq. (9). However the accuracy and the larger sta-
bility bound of RK4 is still attractive to enhance the time step of the
flow solver. The overall accuracy of explicit RK4-penalization is
observed to be better than implicit RK4-penalization via operator
splitting in the simulations of the fish in forward gait. A rigorous
error analysis must be done. However, implicit penalization is
unconditionally stable and allows for smaller penalization parame-
ters g. We refer to section the penalization model in Coquerelle and
Cottet (2008) for a discussion on the time integration and the
appendix of Morales et al. (2014).

2.1.3. Fourth-order fast Poisson solver
In solving the incompressible Navier–Stokes equations, an

elliptic Poisson equation is frequently encountered which is the
most time consuming part of the algorithm. The common case is
the pressure Poisson equation normally used with homogeneous
Neumann boundary conditions, for the pressure correction in
projection methods. In the vorticity stream-function formulation,
Eq. (2) has to be solved with Dirichlet boundary condition for vor-
ticity and stream-function. Free slip (x ¼ 0) boundary conditions
in a closed rectangular domain (w ¼ 0, all around) is applied in
all the test cases studied in the present investigation. Numerical
tests reveal that there is no significant difference between no-slip
and free-slip boundary conditions, in dealing with fluid structure
interaction problems, see the discussion in Section 3.2. In the
presence of periodic boundary conditions, FFT based direct solvers
can be used to efficiently solve the Poisson equation with high
accuracy. Even if the flow is not periodic in all directions, like in
most of the practical problems, in accordance with the boundary
conditions for the elliptic equation (homogeneous Dirichlet/Neu-
mann) sine or cosine FFTs can be used in one or two directions,
see Fig. 2 and the discussions by Kim and Moin (1985), Orlandi
(2000), Laizet et al. (2010).

We propose a direct fourth-order solver for the Poisson Eq. (2)
which is a combination of a compact finite difference with a sine
FFT (suitable for imposing free-slip boundary condition at least in
one direction). The advantages of our method are fourth-order
accuracy, convergence down to machine zero over an optimal grid,
compact tridiagonal stencil, possibility of extension to three
dimensions, reduced arithmetics and memory usage in comparison
to iterative methods. Moreover, the parallelization is straightfor-
ward because the operations in different directions are decoupled.
Nearly linear strong scaling (speed up) and efficiency is reported by
Laizet et al. (2010) for a direct solver by decoupling of the
operators in different directions. They introduced a dual domain
decomposition (or pencil) method, in which information along a
line is accessible for a CPU by alternative decomposition of the
domain in three directions. The limitation of our method (in addi-
tion to the boundary conditions) is the use of a uniform grid in the
direction in which the FFT is applied. When the solver of the para-
bolic part is based on finite-differences, one uses typically a FDM
discretization in one direction without loss of accuracy and effi-
ciency via a direct tridiagonal solver. The advantage of this
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approach is the possibility of applying general boundary conditions
in one direction and using a refined mesh. For the second-order
version of this solver we refer to Orlandi (2000). For deriving a
compact fourth-order collocated discretization (with Nx � Ny grid
points) of the Poisson equation �r2w ¼ x, in the x-direction

@2w
@x2 ¼ d2

xw�
Dx2

12
@4w
@x4 þ OðDx4Þ ð12Þ

can be used, where d2
x represents a central second-order approxima-

tion of the second derivative. Replacing wxx by (12) in the Poisson
Eq. (2) we obtain

d2
x �

Dx2

12
@4

@x4 þ @yy

 !
w ¼ �x ð13Þ

Because of the presence of the Dx2 factor behind the fourth-order
derivative, this term cannot be dropped and must be evaluated with
second-order accuracy. Therefore, the whole approximation yields
fourth-order accuracy. The fourth-order derivative can be evaluated
by using the original Poisson equation �r2w ¼ x, and successive
differentiation with respect to x (i.e., @xx@xxw ¼ �@xx@yyw� @xxx).
Replacing @xx by d2

x , we find

d2
x þ

Dx2

12
d2

x@yy þ @yy

� �
w ¼ �x� Dx2

12
d2

xx ð14Þ

By applying a Fourier transform in the y-direction on Eq. (14) and
replacing second derivatives @yyw by �k2

y ŵ in Fourier space, we have

d2
x �

Dx2

12
d2

x k02y � k02y

� �
ŵ ¼ �x̂� Dx2

12
d2

xx̂ ð15Þ

Usually the exact wavenumber is replaced by the modified wave-
number k02y which permits to adapt the spectral approximation of
the second derivative with the considered finite difference method
(Orlandi, 2000). For a fourth-order explicit finite difference discret-
ization, an analytical relation for the scaled modified wavenumber
of the second derivative is given by Lele (1992) as follows

k02y ¼
1

Dy2

8
3

1� cos
kyp
Ny

� �� �
� 1

6
1� cos

2kyp
Ny

� �� �� �
ð16Þ

Comparison with numerical values in Fig. 1(b) confirms that Eq.
(16) is exact. The final tridiagonal system to be solved in Fourier
space for each wavenumber of w in the y-direction is

bŵiþ1;m � ð2bþ k02y Þŵi;m þ bŵi�1;m ¼ �ðx̂iþ1;m þ 10x̂i;m þ x̂i�1;mÞ=12

ð17Þ

for i ¼ 2; . . . ;Nx � 1, where b ¼ Dx�2 � k02y =12. In summary, first a
one-dimensional direct-FFT of the forcing function is performed
along all the lines, j ¼ 1; . . . ;Ny in the y-direction. Next for each line
in the x-direction the tri-diagonal system (17) must be solved to
find the solution w in wavenumber space. Finally an inverse-FFT
of the solution is performed line by line in the y-direction. For the
real data with zero value at the boundaries (homogeneous Dirichlet,
i.e., w ¼ x ¼ 0, corresponding to free-slip boundary conditions), the
natural Fourier transform to use is the sine transform, see Fig. 2
from Press et al. (1992). The direction of FDM and FFT can be chan-
ged to consider no-slip boundary conditions in the y-direction. In
order to take into account inflow/outflow boundary conditions the
mean flow must be reduced from the total velocity field
u ¼ U� U1 in the vorticity transport Eq. (1) to impose w ¼ 0 at
the boundaries. This is equivalent to move the grid with U1 and
writing the Navier–Stokes equations in a moving reference frame
for the perturbed velocity field u, instead of a Galilean inertial frame
(Rossinelli et al., 2010).

For validation of the developed fourth-order Poisson (r2u ¼ f )
solver an exact solution (see Fig. 3) with Dirichlet boundary
conditions is considered. The solution is obtained with N2 ¼ 332

grid points via the fourth-order direct solver and is illustrated in
Fig. 3(a). The corresponding error contours Eðx; yÞ ¼ juðx; yÞ
�uexactðx; yÞj; ðx; yÞ 2 X in comparison with the exact solution are
illustrated in Fig. 3(b). The convergence of different errors for sec-
ond and fourth order direct Poisson solvers are illustrated in
Fig. 3(c). The CPU-time scaling in log–log scale for different meth-
ods including, second and fourth order direct, multi-grid (MG) and
point successive over relaxation (PSOR) with red–black sweeper
are compared in Fig. 3(d). The cost of computations (in terms of
CPU-time) of direct and multi-grid methods are proportional to
the number of grid points (N2 in two-dimensions) but for iterative
methods this is increasing exponentially CPUtime ¼ 5 expð0:01NÞ,
which is very restrictive for computations with fine grids. The
multi-grid solver developed by Paknejad (2010) is the best in terms
of CPU-time, but by optimizing the FFT the proposed direct method
can do better. The memory allocation of the multi-grid solver
developed by Pankejad (2010) is restrictive with fine grids, the fin-
est possible resolution on the available machine is 10242. The res-
olution of the finest possible grid of the proposed solver on the
available machine is 40962. From parallelization view point the
multi-grid solver is the most difficult but the iterative methods
are the easiest to be parallelized. The proposed direct method
can be parallelized by the pencil rotation method as done by
Laizet et al. (2010) for a direct method, where nearly linear strong
scaling (speed up) is reported.

2.2. Algorithm of fluid–structure interaction

A summary of the algorithm for the fluid interaction with a
forced deformable body, applied to fish-like swimming, is given
in Algorithm 1. Each part of the algorithm is discussed in detail
in the following.

2.2.1. Kinematics of the fish
The swimming mechanism in the majority of anguilliform and

carangiform fishes can be modeled with a sinusoidal wave
enveloped by a profile, lying over the backbone of the fish, which
moves from the head to the tail. The geometrically exact theory
of nonlinear beams, is developed by Simo (1985) and extended
for fish vertebral by Boyer et al. (2006). In this theory, the beam
is considered as a continuous assembly of rigid sections of infini-
tesimal thickness, i.e., a one-dimensional Cosserat medium. We
summarize the kinematics of the fish backbone in three dimen-
sions, for interested readers and future developments, but all the
cases in this paper are limited to two dimensions. Following
Boyer et al. (2006), El Rafei et al. (2008) and Belkhiri (2013) starting
with the head orientation, position and velocities as boundary
conditions, the kinematics of the backbone for anguilliform fishes
can be determined by integration along the arclength n 2 ½0; lfish�.
The variation of the orientation along the backbone in terms of
quaternions are obtained by

@Q
@n
¼ 1

2
M_ðKÞQ ð18Þ

where Q ¼ cos /
2 ; ax sin /

2 ; ay sin /
2 ; az sin /

2

	 
T
are unit vectors, normal-

ized ðq2
0 þ q2

1 þ q2
2 þ q2

3Þ
1=2 ¼ 1 quaternions that represent the body

frame orientation with respect to the inertial frame and M_ðKÞ is
an anti-symmetric tensor

M_ðKÞ ¼

0 �k1 �k2 �k3

k1 0 k3 �k2

k2 �k3 0 k1

k3 k2 �k1 0

2
6664

3
7775 ð19Þ
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Fig. 3. (a) Solution of the Poisson equation (r2u ¼ f ) with the forcing term f ðx; yÞ ¼ �ðn2p2=L2
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ubðx; yÞ ¼ cosðxÞ sinðnpy=LyÞ; ðx; yÞon@X (n ¼ 3), via the proposed direct fourth-order solver. (b) The corresponding error contours Eðx; yÞ ¼ juðx; yÞ � uexactðx; yÞj; ðx; yÞ 2 X in
comparison with exact solution. (c) Error analysis for direct Poisson solvers via second and fourth order compact methods. (d) CPU-time scaling of different iterative (Multi-
Grid/Point Successive Over Relaxation) and direct methods.
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where k2 and k3 in K ¼ ðk1; k2; k3ÞT stand for the fish backbone
transversal curvature and k1 represents the rate of rotation (twist)
of the section around the backbone with the normal aligned with
the n-direction. The geometry R ¼ ðx; y; zÞT in the Galilean reference
frame is given by

@R
@n
¼ RotðQÞC ð20Þ

where C ¼ ðc1; c2; c3Þ
T represents the local transversal shearing of

the sections whose first component is the stretching rate along
the n-direction. The rotation matrix in terms of the quaternions is
then given by

Rot ¼ 2
q2

0 þ q2
1 � 1

2 q1q2 � q0q3 q1q3 þ q0q2

q1q2 þ q0q3 q2
0 þ q2

2 � 1
2 q2q3 � q0q1

q1q3 � q0q2 q2q3 þ q0q1 q2
0 þ q2

3 � 1
2

2
64

3
75 ð21Þ

The variation of mean linear V ¼ ðv1;v2; v3ÞT and angular
X ¼ ðx1;x2;x3ÞT velocities in the local frame, i.e., the frame
attached to the body are given by

@

@n

V

X

� �
¼ � K_ C_

0 K_

" #
V

X

� �
þ

_C
_K

" #
ð22Þ
where (�) represents the time derivative, (_) stands for the
anti-symmetric matrix constructed from a given vector, e.g.,

K_ ¼
0 �k3 k2

k3 0 �k1

�k2 k1 0

2
64

3
75 ð23Þ

The acceleration can also be deduced from the time derivative of
Eq. (22). For more details we refer to Boyer et al. (2006), El Rafei
et al. (2008), and Belkhiri (2013). To find the velocities in the frame
attached to the body from the velocities VG in the Galilean reference
frame and inverse,

ðv1;v2;v3ÞT ¼ RotTðvx; vy;vzÞT ð24Þ

can be used. By considering N (1; . . . ;Npoints) discrete points on the
fish backbone, Eqs. (18), (20) and (22) altogether must be integrated
in space by a proper numerical method (Neq ¼ 13 in 3D). We use a
fourth-order Runge–Kutta method for integration and comparisons
with a first-order Euler method show that RK4 is more precise espe-
cially when the number of points along the fish backbone is less
than Npoints ¼ 30.
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2.2.2. Lagrangian structured grid
The first choice to start the parameterization of the swimmer

body is a symmetric shape. The geometry of a two-dimensional
swimmer can be characterized by the half width wðnÞ of the body
along its arclength (midline) n 2 ½0; lfish�. Following the work of
Kern and Koumoutsakos (2006) and Carling et al. (1998), the half
width wðnÞ is defined as

wðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2whn� n2

p
0 6 n < sb

wh � ðwh �wtÞ n�sb
st�sb

� 2
sb 6 n < st

wt
lfish�n
lfish�st

st 6 n 6 lfish

8>>>>>><
>>>>>>:

ð25Þ

where lfish is the body length, wh ¼ sb ¼ 0:04lfish; st ¼ 0:95lfish and
wt ¼ 0:01lfish. The shape of the fish before deformation is plotted
in Fig. 4. In the mid part of the fish a linear function can also be used
as done by Gazzola et al. (2011). A structured grid formed by normal
to backbone lines with thickness given by (25) covers the body. Two
examples are shown in Figs. 6 and 7. The velocity components of
each point on the Lagrangian grid V shape with ðI; JÞ indexes are given
by

V
!

shapeðI; JÞ ¼ V
!

BNðIÞ þ X
!

BNðIÞ � rðI; JÞ ð26Þ

where V
!

BN and X
!

BN are the linear and angular velocities of the
backbone, respectively given by Eq. (22). The radius (jrj < w) is
measured over the transversal lines of the structured grid normal
to the backbone. Fig. 6 shows an example of the Lagrangian grid
covering the fish after deformation in which the corresponding
velocities of each point are also illustrated. The information of the
Lagrangian structured grid covering the deformable body must be
transfered to the Eulerian–Cartesian grid by interpolation to find
vði; jÞ and upði; jÞ. To determine vði; jÞ on the Eulerian grid whose
first point ðx; yÞð1;1Þ ¼ ð0; 0Þ is located at the origin, the coordinates
of each point on the Lagrangian grid XshapeðI; JÞ are divided by Dx
and Dy. After applying a correction to the integer part of the results
they give the indexes ði; jÞ of the mask function v on the Eulerian
grid for which v ¼ 1 is assigned.

After determining the mask function vði; jÞ on the Eulerian grid,
following (Forestier, 2000; Minguez, 2008; Kolomenskiy and
Schneider, 2009) the mask function is mollified by the Shuman
(1957) filter

�vi;j ¼ ð2vi;j þ viþ1;j þ vi�1;j þ vi;jþ1 þ vi;j�1Þ=6 ð27Þ

which is equivalent to raised cosine filter in Fourier space, we refer
to Pasquetti et al. (2008) for more details. The effect of smoothing
with Eq. (27) is demonstrated in Fig. 5 over a box function
vðxÞ ¼ 1; x 2 ½4:5;5:5� which is represented by a red-solid line. The
mollified box function �v is plotted with a green-dashed line. An
example of the transfered geometry v to the Eulerian grid, after
smoothing by Eq. (27) is illustrated in Fig. 7, where the boundary
of the Lagrangian grid is also added over the contours of the
smoothed mask function �v. It can be seen that it lies between max-
imum and minimum values of the mask function. The smoothing of
the mask function �v reduces the stiffness of the vorticity transport
equation thus larger time steps can be used. Moreover, it increases
the regularity of the pressure and velocity field. Furthermore, in
X
0 0.2 0.4 0.6 0.8 1

Fig. 4. Shape of the fish given by Eq. (25) before deformation.
dealing with moving boundaries the oscillations of the hydrody-
namic coefficients are less, when the mask function is smoothed.
However, without filtering of the mask function, by applying the
explicit second-order finite difference method the solution
converges. But by using fourth and higher order discretizations
smoothing of the mask function is necessary, if not Gibbs phenom-
enon or divergence in the solution are expected, especially when
the mask function v is moving. Note also that the interpolated
velocity field up over the Eulerian grid is not divergence-free, we
refer to Gazzola et al. (2011) for a complete theoretical and numer-
ical discussion about this subject. In the present investigation, we
do not consider this issue under the assumption that the body is
slender. We use a two-dimensional linear interpolation, to transfer
the velocities of the Lagrangian grid given by Eq. (26) to the Eulerian
grid, by considering

f ðx; yÞ ¼ axyþ bxþ cyþ d ð28Þ

and using the four nearest points of the Lagrangian grid Eq. (28)
leads to a 4� 4 linear system for each point with �v – 0 over the
Eulerian grid. To determine the unknowns the system is solved by
a direct method, i.e., Gauss-Jordan elimination (Press et al., 1992).
For all points in the interior of the fish we have �vði; jÞ ¼ 1 on the
Eulerian grid. For the points of the Eulerian grid in which �v ¼ 1
the four nearest points of the Lagrangian grid are used to find the
coefficients of the linear system formed by (28). In some points of
the Eulerian grid, due to mollifying of the mask function v by Eq.
(27) we have 0 < �v < 1, therefore the interpolation automatically
becomes an extrapolation. Some points are completely outside of
the original Lagrangian shape. Just one point at the start and the
end singularities of the Lagrangian grid can be used to find the
penalized velocities up over the Eulerian grid, if not the interpola-
tion matrix will have a zero determinant (singular). However, the
start and the end points are used in the determination of the mask
function. An example of the interpolated velocity components on
the Eulerian grid is illustrated in Fig. 7.

The spacing of the grid points on the Lagrangian grid must be
fine enough in comparison to DX and DY to accurately represent
the deformation of the body over the Eulerian grid, i.e., DX 6 Dx.
However, the ratio Dx=DX cannot be determined exactly because
DX are varying even if Dx and Dy are fixed. Nevertheless in Figs. 6
and 7 the Lagrangian and the Eulerian grids are schematically illus-
trated for a fine and a coarse Lagrangian grid. If the Lagrangian grid
is very fine, the computational effort in the procedure of evolving
the mask function v and determining the corresponding velocities
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up will increase. The additional cost does not lead to considerable
enhancement in the accuracy of the mask function v or the inter-
polated velocities of the body up over the Eulerian grid. However,
a very fine Lagrangian grid leads to singular matrices in the inter-
polation procedure via Eq. (28) because the four points chosen for
interpolation will be very close. For a very fine Lagrangian grid,
zero order interpolation must be used, i.e., the velocities of the
nearest point on the Lagrangian grid must be assigned to the Eule-
rian grid. On the other hand if a very coarse Lagrangian grid is used
the information of the body will be lost. Especially the rotational
velocity field due to the deformation of the body which has a great
importance in the accuracy of the simulations, will be inaccurate
and even divergence of the simulations is expected. Moreover,
the values of the mask function will not reach the value one inside
the fish with insufficient resolution of the Lagrangian grid, see
Fig. 7. The geometry also will be not accurate near singular points
(like the tail) or boundaries with high curvature (like the head).
The hydrodynamic coefficients can also be inaccurate whenever a
coarse grid is used for the Lagrangian grid. An optimal value is pro-
posed for the size of the Lagrangian grid;

Dx
10

< DX <
Dx
2

2.2.3. Hydrodynamic coefficients evaluation
With the use of the volume penalization method (Arquis and

Caltagirone, 1984; Angot et al., 1999; Khadra et al., 2000) the
hydrodynamic forces and the torque acting on the body, which
are usually evaluated via surface integrals of the stress tensor
rðu; pÞ ¼ lðruþ ðruÞTÞ � p I, can be computed directly by inte-
grating the penalized velocity over the considered volume (surface
in two-dimensions). Thus the hydrodynamic forces in [Newton]
are given by

FH ¼
I
@Xs

r � ndl ¼ lim
g!0

qf

g

Z
Xs

vðu� uBÞdsþ qf Spen
€Xref ð29Þ
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for the unit mass (m ¼ qf Spen) of the fluid. By definition F ¼ FH=m,
we have

FH �
1

gSpen

Z
Xs

vðu� uBÞdsþ €Xref ð30Þ

The torque in two-dimensions can be evaluated by

Mref ¼
I
@Xs

r� r � ndl

¼ lim
g!0

qf

g

Z
Xs

vr� ðu� uBÞdsþ
qf

qb
Jref

€href ð31Þ

in ½N �m�, where r ¼ ðx� Xref Þ is the distance vector from the refer-
ence point, Jref ¼

R
r2dm is the polar moment of inertia (J ¼ Izz)

taken around the reference point which can be the center of gravity
(cg) of the immersed body, n is the unit outward vector normal to
@Xs; h is the angle of rotation with respect to the reference point.
The dots denote derivatives with respect to time and Spen is the sur-
face of the penalized area.
Fig. 8. Flowchart of the fluid/solid interaction (FSI) algorithm.
2.2.4. Denoising of the hydrodynamic coefficients
In dealing with fluid/solid interaction problems, the oscillations

of the hydrodynamic forces and the torque during successive iter-
ations computed from Eqs. (30) and (31) cause some troubles in
correctly predicting the accelerations. The hydrodynamic forces
and the torque acting on the body are used to evaluate the linear
and angular accelerations which in turn have an impact on the
predicted velocity vector and the trajectory of the solid. The oscil-
lations are due to the nature of the penalization method see the
discussion by Kolomenskiy and Schneider (2009), insufficient
resolution, the approximative nature of Eqs. (30) and (31). The
oscillations are like a noise and lead to invalid results and even
divergence of the simulations. An efficient method to eliminate
them is to apply a low-pass filter like exponential smoothing which
is usually used in denoising of time series. This filter is used by
Kern and Koumoutsakos (2006) to denoise the hydrodynamic
forces and the torque. Simple exponential smoothing does not per-
form well if there is a trend in the data (e-Handbook of Statistical
Methods, 2012). In such situations, several methods were devised
like second-order (double) exponential smoothing (Holt, 1957)

F̂n ¼ aFn þ ð1� aÞðF̂n�1 þ bn�1Þ n ¼ 3;4; . . . ð32Þ
bn ¼ bðF̂n � F̂n�1Þ þ ð1� bÞbn�1 ða;bÞ 2 ½0;1� ð33Þ

where F̂1 ¼ F1, for n ¼ 2 one can use Eqs. (32) and (33) with
a ¼ b ¼ 1. Then a ¼ 1� ð1� dÞ2 and b ¼ d2=a can be used in which
d is a small band. Imposing b ¼ 0 in Eq. (32) leads to first-order fil-
tering. A comparison of the first and second order filtering of the
hydrodynamic coefficients is done in the Section 3.3 for the falling
ellipse in the fluttering regime, see Fig. 16. According to our experi-
ence d ¼ 10�3 performs well for denoising of the hydrodynamic
coefficients of the moving bodies. However d ¼ 10�3 has a strong
damping effect, larger values, i.e., d ¼ 5� 10�3 have less damping
effect but there is a risk of divergence in the simulations. A sensitiv-
ity analysis must be done for each test case, see also the discussion
of the results in Sections 3.3 and 3.4. By using a projection/fictitious
domain approach the instantaneous linear and angular velocities of
the fish can be recovered directly from the flow (Gazzola et al.,
2011), avoiding the evaluation of the hydrodynamic coefficients
and thus the use of denoising schemes. Denoising of the hydrody-
namic coefficients needs a preliminary sensitivity analysis and can
be considered as a drawback for the present methodology.
2.2.5. Body dynamics
The dynamics of an arbitrary solid or deformable body moving

in a viscous incompressible fluid is governed by Newton’s second
law

RðFH þ FGÞ ¼ m€Xref ð34Þ

where the applied forces can be split into two components; the
hydrodynamic forces FH and the forces due to gravity
FG ¼ Spenðqb � qf Þg. Newton’s law can be integrated directly to give
the position of the center of gravity as a function of time. Holding F
constant over the discrete physical time step (tn; tnþ1) yields

DXref ¼
1
2

Fn

m
Dt2 þ VnDt ð35Þ

and Vnþ1 ¼ Vn þ €XDt. The rotational motion is described by Euler’s
equation

RMref ¼
d
dt
ðJref

_hÞ ð36Þ

where M is the applied torque around the reference point. If the ref-
erence point does not coincide with the center of gravity (cg) the
torque due to the gravity force (buoyancy) must be added to
RMref in Eq. (36). In the presence of the body forces, choosing (cg)
as the reference point can simplify the evaluation of the exerted
torque, i.e., only the torque due to the hydrodynamic forces FH ,
must be integrated around the reference point. In the present inves-
tigation, the center of gravity is choosen as the reference point in
the simulations of the falling cylinder and ellipse. However, in the
simulations of the swimming fish (qb ¼ qf ) the buoyancy is equal
to zero and thus plays no role. Choosing the head as the reference
point can simplify the integration of the backbone kinematics via
Eqs. (18), (20) and (22), without evaluation of the torque due to
buoyancy. Time integration of Eq. (36) regardless of changes in
the moment of inertia and Mref , yields the new angle of the body
with respect to a given reference

Dh ¼ 1
2

€hnDt2 þ _hnDt ð37Þ
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where €h ¼ M=J and _hnþ1 ¼ _hn þ €hDt (the dot denote derivation with
respect to time). Eqs. (35) and (37) describe a motion with three
degrees of freedom (3DOF) for the considered body. In these
equations second-order terms can be eliminated as done in
Gazzola et al. (2011) but we keep these terms. Eqs. (30) and (31)
provide the exerted forces and the torque necessary to integrate
the system of ODEs formed by Eqs. (34) and (36). Denoising of the
hydrodynamic coefficients is done according to Eq. (32).
Appropriate initial conditions are necessary. In the present
computations we use a first-order scheme for time integration of
the dynamics equations which seems to be adequate because of
the error introduced by the volume penalization method which is
between first and second order. The same time integration method
is also used in Kolomenskiy and Schneider (2009) and Gazzola et al.
(2011) for the dynamics of the body where the volume penalization
is also used. A summary of the algorithm for the fluid/structure
interaction is given in Algorithm 1. The flowchart is illustrated in
Fig. 8.

Algorithm 1. Fluid/structure interaction
Y

-0.4

-0.2

0

0.2

0.4

R1

R2 χ=0

χ=1

χ=1
1. START FROM AN INITIAL CONDITION

2. BODY KINEMATICS

(a) (Just for the fish) Create Eel’s backbone by integrating
Eqs. (18), (20) and (22)

(b) (Just for the fish) Cover the shape by a Lagrangian
structured grid & compute velocities at each point
with Eq. (26)

(c) Compute the mask vði; jÞ and smooth it by Eq. (27)
(d) Compute the moment of inertia J around the reference

point
(e) Compute the velocity components of the body

upði; jÞ;vpði; jÞ on the Eulerian grid by interpolation
(Lagrange ! Euler)

3. TIME INTEGRATION OF FLOW FIELD VIA RK4
(a) x0 ¼ xn , w0 ¼ wn

For i = 1, 2, 3

(b) Compute kiðx;wÞi�1 from Eq. (9)
(c) xi ¼ xn þ ai Dt ki

(d) Solve Eq. (2); �r2wi ¼ xi for updating (u; v)
End For

(e) Compute k4ðx3;w3Þ from Eq. (9)
(f) Update vorticity from Eq. (8)

(g) Solve Eq. (2); �r2wnþ1 ¼ xnþ1

4. SOLVE FOR THE BODY DYNAMICS

(a) Compute the hydrodynamic coefficients of the body
from Eqs. (30) and (31)

(b) Denoise the coefficients by Eq. (32)
(c) Compute the displacements from Eq. (35)
(d) Compute the rotation from Eq. (37)

5. WRITE NECESSARY DATA TO FILE

6. IF T < Tend , GO TO STEP 2

7. END
X
-0.4 -0.2 0 0.2 0.4

Fig. 9. Schematic representation of the penalized unit square domain for modeling
the Taylor–Couette flow with the volume penalization method (v ¼ 0 represents
the fluid domain and v ¼ 1 is imposed in the solid domains). The radius of the inner
cylinder is R1 ¼ 0:15 and that of the outer cylinder is R2 ¼ 0:4. The angular velocity
of the inner cylinder is X1 ¼ 0:2 and that of the outer is equal to zero, the kinematic
viscosity is set to m ¼ 0:01, thus resulting in Ta ¼ R1ðX2 �X1Þ2ðR2 � R1Þ3m�2 � 1.
3. Validation

In this section first the spatial error of the solver including the
penalization term is verified using a Taylor–Couette flow for which
an analytical solution is available. Then the ability of the algorithm
for dynamical analysis of falling bodies, due to terrestrial gravity
field, in a quiescent fluid is examined. Finally, a test case of fish
swimming in forward gait is compared with the results of
Gazzola et al. (2011).
3.1. Spatial convergence for Taylor–Couette flow

For a rigorous study of the error due to the penalization term
added to the Navier–Stokes equation in vorticity and stream-func-
tion formulation an exact solution is necessary. The Taylor-Couette
configuration is a good choice, first and foremost, because of
known Dirichlet boundary conditions everywhere, and secondly,
because of the presence of curved walls contrary to other existing
analytical solutions usually available for Cartesian domains which
thus coincide with the underlying Cartesian grid used to discretize
the governing equations. Although the solver is adapted to a Carte-
sian domain the mask function which represents the penalized
area for the Taylor–Couette flow is curved (see Fig. 9) as it is the
case for flow around an ellipse or complex geometries which will
be considered in the following. Here an explicit second-order finite
difference method is used for discretization of the governing
equations including the curl of the penalization term r� F.
Taylor–Couette flow (Taylor, 1923) consists of a viscous fluid
confined between two concentric cylinders with radii (R1;R2) in
rotation with different angular velocities (X1;X2). For Taylor num-
bers Ta ¼ R1ðX2 �X1Þ2ðR2 � R1Þ3m�2 below the critical value
Tac � 1708, the flow is steady and purely azimuthal, i.e.,
uz ¼ ur ¼ 0. This state is known as circular Taylor–Couette flow
and for which an analytical solution exists (Monin and Yaglom,
1971). The solution is given in cylindrical coordinates, the
azimuthal velocity is

uhðrÞ ¼ Ar þ B=r; ðr; hÞ 2 ½R1;R2� � ½0;2p�

where A ¼ ðX2R2
2 �X1R2

1Þ=ðR
2
2 � R2

1Þ and B ¼ R2
1R2

2ðX1 �X2Þ=ðR2
2 � R2

1Þ
are known. The vorticity between the two cylinders is constant
(xz ¼ 2A) and the stream-function is given by wðrÞ ¼ �Ar2=2
�B lnðrÞ þ c0 where c0 must be determined with respect to an arbi-
trary reference point. By using the volume penalization method, the
velocity components must be enforced in the penalized regions
from known angular velocities (i.e., X1 and X2),

uhðrÞ ¼ rX; ðr; hÞ 2 ½0;R1� [ ½R2;Rmax� � ½0;2p�

The vorticity inside the rotating regions is constant and is equal to
twice of the domain angular velocity (xz ¼ 2X) and the stream-
function is given by, wðrÞ ¼ X=2r2 þ c, where c must be determined
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for each domain in accordance with c0. A unit square domain is
considered as the solution domain, the time-step of the RK4 method
is calculated by the constraints presented in the Section 2.1.2 and
the kinematic viscosity is fixed to m ¼ 0:01. The radii are chosen
R1 ¼ 0:2 and R2 ¼ 0:4, respectively. At t ¼ 0 the fluid domain is at
rest and the inner-cylinder is set into movement with a fixed angu-
lar velocity (X1 ¼ 0:2) while the angular velocity of the outer cylin-
der is kept equal to zero (X2 ¼ 0). The Taylor number for this
configuration (Ta ¼ 0:64) is below the critical value, thus the flow
is purely azimuthal. The L1-error kuexact � unum

g k for u which is the
x-component of the considered velocity field, is calculated for
different penalization parameters g and resolutions (N in x and y
directions). The simulations are carried out until a steady state is
reached, so that the error is independent of the time discretization.
The simulations are stopped when the time tend ¼ 10 is reached.
Original and mollified mask function at the midline y ¼ 0:5 are
illustrated in Fig. 10(a), comparison of the computed vorticity x,
stream-function w and the u velocity component with exact solu-
tions for N ¼ 128 grid points in each direction are plotted in
Fig. 10(a) and (b). The convergences of the L1-error of u versus the
grid resolution, for different penalization parameters g are shown
in Fig. 10(c), where between first and second order convergence
can be seen. Suppose unum

g denotes the numerical solution of the
penalized equation, for quantifying the numerical error of unum

g
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Fig. 10. (a) Original and mollified mask function for the Couette flow, comparison of com
direction. (b) Comparison of the computed stream-function w and the u velocity compone
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resolutions N.
compared to uexact (the solution to the original Navier–Stokes prob-
lem), the error can be estimated by

kuexact � unum
g k 6 kuexact � ugk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Oð ffiffigp Þ þ kug � unum
g k|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

OðDxpÞ

ð38Þ

The first term at the right-hand side is the error due to the penali-
zation term and the second term represents the discretization error
(p being the formal order of accuracy of the numerical method used
to discretize the equation). Here k � k is an appropriate norm. A com-
promise between the two errors is to choose Dx � ffiffiffigp , which leads
to a first-order convergence kuexact � unum

g k 6 OðDxÞ (Nguyen van
yen et al., 2014). The convergence of the L1-error of u versus differ-
ent penalization parameters g is shown in Fig. 10(d) for different
grid resolutions, where the order

ffiffiffigp convergence can be observed.
For these calculations the expected formal accuracy is p ¼ 2 and
thus the convergence is between first and second order in space
as a function of the resolution N, confirming the theoretical analysis
of Carbou and Fabrie (2003) and the numerical results of Morales
et al. (2014). We also observe a saturation of the convergence error
for larger N, due to dominance of the penalization error. An optimal
resolution can be found for each g and vice versa. As can be seen in
Fig. 10(c) by using a fine grid a smaller g is needed. In general for
fine grids, decreasing g leads to an accuracy enhancement but for
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Fig. 11. Vorticity isolines (dashed lines are used for negative values) of the falling
cylinder in a quiescent fluid, g ¼ �9:81 m=s2;qb=qf ¼ 1:01;D ¼ 0:005 m,
ðx; yÞ 2 ½0;0:04 m� � ½0;0:32 m� ¼ ½0;8D� � ½0;64D�;2nd-order solver is used, free-
slip BC is imposed, Dt ¼ 1:25� 10�4, the resolution is set to 512� 4096, the
penalization parameter g ¼ 10�3, the filter parameter for denoising of the hydro-
dynamic coefficients is d ¼ 0:001; m ¼ 8� 10�7 m2=s and Re � 156.
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an explicit penalization, the time step Dt ¼ OðgÞ is limited by g as
discussed in Section 2.1.2.

3.2. Fluid/solid interaction via a falling cylinder

In this section we attempt to perform a simulation of a two-
dimensional cylinder falling (due to the gravity) in a quiescent
fluid to validate the two-way fluid/solid interaction. We compare
our results with those of Gazzola et al. (2011) and Namkoong
et al. (2008) which have the same physical parameters. A rigid
2D cylinder of diameter D ¼ 0:005 m with qb ¼ 1:01qf , is released
from rest in a fluid with density qf ¼ 996 kg=m3 and kinematic vis-
cosity m ¼ 8� 10�7 m2=s and accelerates due to gravity
(g ¼ �9:81 m=s2) until it reaches its asymptotic terminal velocity.
The size of the domain is set to ðx; yÞ 2 ½0;0:04 m� � ½0;0:32 m�.
The spatial resolutions in our simulations are set to 512� 4096
and 1024� 8192, the penalization parameter g 2 ½10�4;10�3�, the
time step Dt 2 ½10�4;10�3� and the filter parameter for denoising
of the hydrodynamic coefficients is d 2 ½0:001;0:005�. Second and
fourth order discretizations are used in the simulations. In the sim-
ulations of Gazzola et al. (2011) the resolution is 1024� 8192, the
penalization parameter g ¼ 10�4 and the Lagrangian CFL is set to
0.01.

The snapshots of the vorticity isolines generated by the falling
cylinder in a fully quiescent and slightly perturbed fluid are illus-
trated in Figs. 11 and 12, respectively. A qualitative agreement
with the simulations of Gazzola et al. (2011) can be observed. Com-
parison of the vorticity structures at t ¼ 13 between the simulation
with slightly perturbed initial condition (u0 � 0:001
�randomnumber � u1) represented in Fig. 12(h) and that of fully
quiescent initial condition represented in Fig. 11(d), shows that
the presence of perturbations in the initial condition can trigger
the transition in the early stages of falling, i.e., t � 3. It is particu-
larly important to obtain comparable results with other simula-
tions with different numerical methods where the added
numerical dissipation is not necessarily the same. Without adding
any initial perturbation, the transition can be triggered (e.g., at
t � 10) by the numerical errors which perform like a perturbation
(see Fig. 11). This kind of transition is not controlled, it depends on
grid resolution and the numerical implementation and explains the
delayed streamwise velocity overshoot and the different transient
flow fields.

Fig. 13 shows the time evolution of the streamwise and lateral
velocities obtained with the present method and those of
Namkoong et al. (2008) and Gazzola et al. (2011). As can be seen
the streamwise velocity shows the same dynamics as the reference
simulations. In particular the streamwise velocity obtained by
simulation with perturbed initial condition overshoots above the
terminal velocity and then slows down when the vortices start
shedding. It can also be seen that there is no significant difference
between the streamwise velocities by imposing no-slip and free-
slip boundary conditions at the boundaries of the rectangular Carte-
sian grid. After transition the amplitude of the oscillations of the
lateral velocity ulateral ¼ �0:002 m/s is in agreement with those of
Namkoong et al. (2008) and Gazzola et al. (2011) but a phase shift
can be observed due to a short delay in the transition in our
simulation. The terminal streamwise velocity in the simulation
with perturbed initial condition is ustreamwise ¼ 0:024 m/s resulting
in Reynolds number Re � 150 while using unperturbed initial con-
dition ustreamwise ¼ 0:025 m/s resulting in Reynolds number
Re � 156. In the former an overshoot can be observed in the stream-
wise velocity while in the later the overshoot takes place in a larger
time interval or it is entirely eliminated. The terminal velocity
differs maximum 5% from the reference terminal velocity in the
case of perturbed initial conditions and coincides in the case of an
unperturbed initial condition. The differences are due to different
Poisson solvers which is unbounded in the simulation of Gazzola
et al. (2011), the boundary conditions which is free-slip and no-
penetration in our simulations, different penalization parameters
and resolutions. In the authors’ viewpoint the take-home message
here is that the near one relative solid/fluid density leads to a small
buoyancy where invalid approximation of the hydrodynamic coef-
ficients especially in the early stages of the fall yields the simulation
to a failure. To cope with this challenge the process of denoising of
the hydrodynamic coefficients with a proper filter parameter dfilter is
devised in the proposed algorithm to eliminate the non physical
oscillations of the hydrodynamic coefficients.

3.3. Validation of the solid dynamics via a falling ellipse

For further validation of the proposed algorithm to deal with
rotating objects interacting with incompressible flows, the sedi-
mentation of an ellipse due to terrestrial gravity field is considered
in this section. Different behaviors like steady falling, fluttering,
tumbling and chaotic motion can be observed by varying the
ellipse aspect ratio a=b, density ratio qb=qf and the viscosity m of
the fluid. These parameters can be summarized in a dimensionless
moment of inertia

J�cg ¼ 2Jcg=ðpa4qf Þ ¼ ða2 þ b2Þðb=2a3Þðqb=qf Þ

and the Reynolds number Re ¼ utL=m, where ut is the sedimentation
average velocity estimated by

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bgðqb=qf � 1Þ

q
ð39Þ
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Fig. 12. Vorticity isolines (dashed lines are used for negative values) of the falling cylinder in a slightly perturbed fluid, g ¼ �9:81 m=s2;qb=qf ¼ 1:01;D ¼ 0:005 m,
ðx; yÞ 2 ½0;0:04 m� � ½0;0:32 m� ¼ ½0;8 D� � ½0;64D�, performed by the 4th-order solver, free-slip BC is imposed, Dt ¼ 1:25� 10�4, resolution 4096 � 512, penalization
parameter g ¼ 5� 10�4;Dt ¼ 1:25� 10�4; dfilter ¼ 10�3; m ¼ 8� 10�7 m2=s and Re � 150.
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in Gazzola et al. (2011). Kolomenskiy and Schneider (2009) replaced
the coefficient 4 in the definition of the reference velocity Eq. (39)
by p. In our opinion the definition of the reference velocity by Eq.
(39) is questionable and needs more investigation. Using Eq. (39)
for evaluation of the reference velocity leads to under prediction
of the Reynolds number. We think that the average velocity
ut ¼ ð�U2

cg þ �V2
cgÞ

1=2
in the final stage of the fall would be a better
choice. For the moment we prefer to use the ellipse aspect ratio,
density ratio and the viscosity of the fluid as influencing parame-
ters, for classification of the ellipse behavior.

The results of three simulations performed by the second order
solver for the falling ellipse corresponding to steady fall, fluttering
and tumbling are reported in the following. The domain of the solu-
tion for steady fall and fluttering is ðx; yÞ 2 ½0;5L� � ½0;20L� where
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L ¼ 2a ¼ 1 and H ¼ 2b ¼ 0:2 are the major and minor diameters of
the ellipse, respectively. The resolution of the grid is
Nx � Ny ¼ 512� 2048. For simulation of the tumbling regime a lar-
ger domain and a finer grid are needed. Therefore
ðx; yÞ 2 ½0;10� � ½0;10� and Nx � Ny ¼ 2048� 2048 is used. Decreas-
ing the kinematic viscosity from m ¼ 0:03 m2=s to m ¼ 0:01 and
m ¼ 0:003 results in different falling regimes. Snapshots of vorticity
isolines of the falling ellipse in steady, fluttering and tumbling
regimes are illustrated in Fig. 14. Other parameters used in the
simulations are as follows; the polar moment of inertia around
the center of gravity Izz ¼ Jcg ¼ 0:25pabða2 þ b2Þqb ¼ 0:0157, the
initial position ðx0; y0Þ ¼ ð0:5Lx; Ly � 3aÞ and the initial angle of the
major diameter with respect to the horizon is h0 ¼ p=4. The density
ratio is set to qb ¼ 1:538qf , the filter parameter for denoising of the
hydrodynamic coefficients d ¼ 0:001, the gravity in the y-direction
g ¼ �9:81 m=s2 and the penalization parameter is g ¼ 10�3.
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A qualitative agreement of the (cg) trajectories in different fall-
ing regimes with the simulations of Gazzola et al. (2011) can be
observed in Fig. 15. The differences in the trajectories are because
of the slightly different parameters used and the chaotic behavior
of ellipse in the tumbling regime. The amplitude of the oscillations
(a) Picture from Gazzola et al. [43]
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Fig. 15. Comparison of the (cg) trajectories of the falling ellipse between the results
of the present investigation and those of Gazzola et al. (2011) (coordinates are
reported in cord lengths in (a) from Gazzola et al. (2011)).
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in the fluttering regime is also sensitive to the used parameters.
The corresponding hydrodynamic coefficients and velocity
components of the falling ellipse in the fluttering regime are
plotted in Fig. 16. A comparison of the first and second order filter-
ing of the hydrodynamic coefficients is shown in Fig. 16(a) –(c). As
can be seen the second-order filtering is more efficient for
denoising of the hydrodynamic forces in comparison to the first-
order filtering. The hydrodynamic coefficients in the fluttering
regime show an oscillatory behavior with a principal frequency
f 1 � 0:24. However in the side force a harmonic frequency with
f 2 ¼ 2f 1 � 0:48 can be seen which is due to the shedding of the
vortices. The chosen reference point in the simulation of the falling
ellipse is the center of gravity (cg) for calculation of the polar
moment of inertia, rotation angle and the torque. This choice is
advantageous for simplification of the Euler Eq. (36) to not include
the torque due to the buoyancy. For the simulations of the swim-
ming fish (qb ¼ qf ) the buoyancy is equal to zero. Thus, without
evaluation of the torque due to the body forces in Eq. (36), the
reference point can move to the head, which is more suitable for
construction of the fish geometry and its kinematics, starting by
the information of the head as initial conditions for Eqs. (18),
(20) and (22).

3.4. Fish in forward gait

Anguilliform swimming presented by Gazzola et al. (2011) is
considered for validation of the proposed algorithm to deal with
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Fig. 16. (a) Hydrodynamic coefficients of a falling ellipse in the fluttering regime, I� ¼ 0
first-order filter Eq. (32) with b ¼ 0 and a ¼ 0:2. (c) After applying the second-order filte
deformable bodies interacting with incompressible flows. A
periodic swimming law is defined by fitting the backbone of the
fish to a given curve yðx; tÞ while keeping the backbone length
lfish fixed. Let n be the arclength over the curvilinear coordinate of
the deformed backbone (0 6 n 6 lfish). For points being uniformly
distributed with Dn ¼ lfish=ðN � 1Þ, over the backbone, y is given by

yðx; tÞ ¼ aðxÞ sinð2pðx=kþ ftÞÞ ð40Þ

where k is the wavelength of the imposed deformation, f represents
the frequency of the backbone beat and the envelope aðxÞ is given by

aðxÞ ¼ a0 þ a1xþ a2x2 ð41Þ

where x is defined by inverting the arclength integral, i.e.,

Dx ¼ Dn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@y=@xÞ2

q
. The wavelength of the fish is defined in

accordance with the geometry of the backbone in the Cartesian
coordinate. The pointwise curvature of the backbone is needed to
use the geometrically exact theory of nonlinear beams, described
in Section 2.2.1. One must switch from the Cartesian system to
the curvature, thus the second derivative of Eq. (40) gives

kðn; tÞ ¼ ð2a2 � ð2p=kÞ2aðnÞÞ sinð2pðn=kþ ftÞÞ þ ð4pða1

þ 2a2nÞ=kÞ cosð2pðn=kþ ftÞÞ ð42Þ

where aðnÞ ¼ a0 þ a1nþ a2n
2. Using the curvature of the backbone

provides a general framework which is independent of the
Cartesian coordinates, this is especially interesting to prevent the
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:16;qb=qf ¼ 1:538; a=b ¼ 1=5 and m ¼ 0:01 before denoising. (b) After applying the
r via Eqs. (32) and (33) with d ¼ 0:001. (d) The corresponding velocity components.
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ambiguity in definition of the geometry when the fish performs a
complete rotation. The parameters used by Kern and
Koumoutsakos (2006) and Gazzola et al. (2011) for the kinematics
of the fish are as follows; k ¼ 1; f ¼ 1; a2 ¼ 0; a1 ¼ 0:125=ð1þ cÞ;
a0 ¼ 0:125c=ð1þ cÞ and c ¼ 0:03125. The profile of the fish is given
by Eq. (25) and plotted in Fig. 4. The buoyancy is equal to zero, i.e.,
qb ¼ qf . The viscosity of the fluid is set to m ¼ 1:4� 10�4 resulting in
an approximative Reynolds number Re � 3800, with an asymptotic
mean velocity Uforward � 0:52.

The simulations of Gazzola et al. (2011) are carried out on a
rectangular domain ðx; yÞ 2 ½0;8lfish� � ½0;4lfish� with resolution
4096� 2048 and a penalization parameter g ¼ 10�4. We perform
our simulations on a rectangular domain ðx; yÞ 2 ½0;10lfish�
�½0;5lfish� by imposing a penalization parameter inside the body
equal to g ¼ 10�3 with resolutions 2048� 1024� 1024� 512
and Dt ¼ 10�3. The centroid of the fish is initially positioned at
xcg ¼ 0:9Lx and ycg ¼ 0:5Ly. Two snapshots of vorticity isolines at
t ¼ 1 and t ¼ 9 with the aforementioned parameters are illustrated
in Fig. 19. The forward velocities of the center of gravity (cg) of the
fish, computed with different methods and parameters are com-
pared with those of Kern and Koumoutsakos (2006) and Gazzola
et al. (2011) in Fig. 18. We impose two degrees of freedom fixing
the angular velocity of the fish around the center of gravity equal
to zero. But this does not result in a motion without slaloming.
Deformation of the fish in addition to the lateral displacement cre-
ates slaloming. The overall angular velocity of the fish comes from
two components, one accounting for the vanishing rotational
impulse and the other imparted by the flow. Both components
are evolving in time in Gazzola et al. (2011) and are not equal to
zero. Fixing the angular velocity of the fish around (cg) is the differ-
ence between our simulation and that of Gazzola et al. (2011) but
the results are in good agreement. The simulations start with the
body uPðx;0Þ ¼ 0 and fluid at rest, i.e., xðx;0Þ ¼ wðx;0Þ ¼ 0. Free-
slip boundary conditions are imposed at the four surrounding
walls (wj@X ¼ xj@X ¼ 0). The motion of the fish is initialized by
gradually increasing the amplitude of the backbone through a
sinusoidal function (plotted in Fig. 17), from zero to its designated
value during the first period T ¼ 1=f in the reference simulations,
(Kern and Koumoutsakos, 2006; Gazzola et al., 2011). Here we do
not consider this and start by a sudden movement given by Eq.
(40). That is the reason why a deviation from the reference solution
t
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Fig. 17. Smooth step function CrðtÞ ¼ t0 � sinð2pt0Þ=ð2pÞ; t 2 ½ti; tf � with
t0 ¼ ðt � tiÞ=ðtf � tiÞ; ti ¼ 0; tf ¼ 1 for gradually starting the motion proposed by
Boyer et al. (2006). At t ¼ 0 and t ¼ 1 the left-and right-hand limits are equal for the
function Cr and its first Cr0 and second Cr00 derivatives.
can be seen in the first period. This deviation will continue
systematically until the asymptotic velocity is reached at t ¼ 7.

The reference simulation of Kern and Koumoutsakos (2006) is
based on a body fitted finite volume method which is first-order
in time and second-order in space. The Navier–Stokes equations
were solved using the commercial package STAR-CD which uses
arbitrary Lagrangian–Eulerian grids. The solution of the Newton’s
equations of motion and the deformation and displacement of
the Lagrangian grid are implemented in user defined subroutines
linked to STAR-CD. The implemented explicit coupling procedure
is a staggered integration algorithm proposed by Farhat and
Lesoinne (2000). The simulation of Gazzola et al. (2011) is based
on a remeshed vortex particle code coupled with Brinkman penal-
ization which handles arbitrarily deforming bodies and especially
the corresponding divergent velocity field inside the body. A
projection method is used by Gazzola et al. (2011), the resulting
Poisson equations for rotational (solenoidal) and potential (diver-
gent) components of the velocity fields are solved in an unbounded
domain, FFT based solver over Cartesian grids. A second-order
finite difference discretization in two dimensions and a fourth-
order finite difference discretization in three dimensions are used
for all spatial derivatives. The time step is adapted by a Lagrangian
CFL condition. The difference on the final forward velocity of the
fish reported by Gazzola et al. (2011) by taking into account the
divergence of the velocity field inside the fish due to deformation
of the fish is visible in Fig. 18. Even though the average divergence
over the fish volume is zero (i.e. the volume is conserved), locally
inside the fish, the velocity field is not divergence free. We do
not deal with this issue in this paper under the assumption that
the body is slender.

In our simulations a grid independent solution is obtained with
2048� 1024 grid points. The difference of the forward velocity in
two simulations with 2048� 1024 and 1024� 512 grid points
can be seen in Fig. 18. Filtering of the hydrodynamic coefficients
is necessary to prevent the simulation from divergence and
non-physical results. We use a second-order exponential filtering
(32) instead of the first-order filtering used by Kern and
Koumoutsakos (2006) (see the discussion in Sections 2.2.4 and
3.3). This process is like adding a damper to the system therefore
a proper value for d must be chosen via numerical tests to obtain
reliable and physical results. We propose values in the range of
d 2 ½0:0001;0:01� for fluid/solid interaction problems, however this
t
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Fig. 18. Forward velocity U of a 2D anguilliform swimmer’s (k ¼ f ¼ 1). Solid lines
indicate the reference simulations performed by (green) Kern and Koumoutsakos
(2006) and (pink and brown) Gazzola et al. (2011). Dashed lines represent the
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Fig. 19. Snapshots of vorticity isolines obtained during a simulation where
ðx; yÞ 2 ½0;10lfish� � ½0;5lfish � by imposing a penalization parameter inside the body
equal to g ¼ 10�3;Dt ¼ 10�3, with resolution 2048� 1024, the filter parameter
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can also depend on the manner of non-dimensionalization of the
forces. In Fig. 18 the effect of filtering with two filter parameters,
i.e., d ¼ 0:001 and d ¼ 0:005, can be seen. The simulations with a
smaller filter parameter, e.g., d ¼ 0:001, are more stable but instead
will lead to smaller amplitudes in the oscillations of the terminal
velocity. A sensitivity analysis is thus necessary.
4. Application and results

In this section we attempt to propose an efficient law for
rotation control of an anguilliform swimmer. Fish maneuvering
to attain a predefined fixed goal is done by adding a constant cur-
vature koffsetðhdes; tÞ all along the fish backbone n 2 ½0; lfish�, to the
primary propulsion mode, i.e.,

k3 ¼ kðn; tÞ þ koffset ð43Þ

However, the change of the added curvature koffset given by Eq. (45)
must be gradually, i.e., OðDtÞ to perform a physically reasonable
motion. For the fish in forward gait koffset is set equal to zero. To
Fig. 20. Schematic representation of desired angle for curvature control in rotation, hde

passing through the target and the head (�p < hdes < p), picture adopted from Bergman
perform a rotation, a desired curvature kdes must be evaluated by
the following relation,

kdesðhdesÞ ¼
�sgnðhdesÞ kmax jhdesjP hlimit

�sgnðhdesÞ kmax
hdes
hlimit

� 2
else

8<
: ð44Þ

where sgn represents the sign function, i.e., sgnðhdesÞ ¼ hdes=jhdesj,
positive and negative values of hdes in the head frame will push
the fish to turn left and right, respectively. For a schematic repre-
sentation of hdes see Fig. 20. In each time step, first a desired angle
hdes should be calculated according to the position and direction
of the head by considering the goal. Next by using Eq. (44) a desired
curvature kdes must be found. Then koffset will be evaluated with the
following relation,

knþ1
offsetðkdesÞ ¼

kn
offset þ Dk k < kdesired

kn
offset � Dk else

(
ð45Þ

where Dk ¼ Dtp=T . After that koffset must be added to the backbone
curvature given by Eq. (43) for performing a rotation. Finally know-
ing the direction, position and the velocities of the head by consid-
ering Imb ¼ 251 discrete points on the backbone of the fish, Eqs.
(18), (20) and (22) altogether must be integrated in space to give
the position and the velocities of the backbone. In the lateral direc-
tion, Jmb ¼ 39 points are used to construct the Lagrangian grid
which covers the fish. By choosing kmax ¼ p in Eq. (44) the fish lies
over a semicircle when it turns with its maximum curvature. As in
Bergmann and Iollo (2011) we use hlimit ¼ p=4. The time derivative
of the curvature dk=dt is needed in Eq. (22) for velocity calculation
and can be calculated numerically. A simulation is performed to
show the ability of the proposed law for rotation control of a swim-
mer toward a predefined goal. The domain size is ðx; yÞ 2 ½0;5lfish�
�½0;5lfish�, the resolution is set to 1024� 1024, the penalization
parameter g ¼ 10�3, filter parameter d ¼ 0:005, tail beat frequency
f ¼ 1, wavelength of deformation k ¼ 1; a2 ¼ 0; a1 ¼ 0:125=ð1þ cÞ;
a0 ¼ 0:125c=ð1þ cÞ and c ¼ 0:03125. The profile of the fish is given
by Eq. (25) and plotted in Fig. 4. The kinematic viscosity is
m ¼ 1:4� 10�4, initial position of the head is ðx0; y0Þ ¼
ð0:1Lx; 0:5LyÞ and initial angle of the head is h0 ¼ 0. Fig. 21 shows
snapshots of vorticity isolines obtained during a simulation of
swimming fish toward a predefined goal which is located at
ðxf ; yf Þ ¼ ð0:9Lx;0:5LyÞ. The simulations start with the body
uPðx;0Þ ¼ 0 and surrounding fluid at rest, i.e., xðx;0Þ ¼ wðx; 0Þ
¼ 0. Free-slip boundary conditions are imposed at surrounding
walls (wj@X ¼ xj@X ¼ 0). The motion of the fish is initialized by grad-
ually increasing the curvature of the backbone, given by Eq. (43),
through a sinusoidal function (plotted in Fig. 17), from zero to its
designated value during the first period T. After reaching the vicin-
ity (rgoal ¼ 0:5lfish) of the goal the curvature of the backbone, given
by Eq. (43), will tend to zero (see Fig. 22) by multiplying it with
the following function,

CðtÞ ¼ tf � t
tf � ti

þ 1
2p

sinð2p t � ti

tf � ti
Þ; t 2 ½ti; tf � ð46Þ
s ¼ hgoal � hHead is the difference of the angles between head direction and the line
n and Iollo (2011) with slight modification.
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Fig. 21. Snapshots of vorticity isolines obtained during a simulation of swimming fish toward a predefined target which is located at ðxf ; yf Þ ¼ ð0:9Lx;0:5LyÞ. At t ¼ 0 the fish
and the surrounding fluid are in rest. After reaching the vicinity (r ¼ 0:5lfish) of the target the curvature of the backbone will tend to zero by Eq. (46). The domain of the
solution is ðx; yÞ 2 ½0;5lfish � � ½0;5lfish�, the resolution of the Eulerian grid 1024� 1024, resolution of the Lagrangian grid (Imb � Jmb ¼ 251� 39), g ¼ 5� 10�4 and kinematic
viscosity is equal to m ¼ 1:4� 10�4. Samples of the backbone of the fish are plotted in Fig. 24.
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Fig. 22. Snapshots of pressure isolines obtained during a simulation of swimming fish (represented by black contour corresponding to v ¼ 0:2) toward a predefined goal
which is located at ðxf ; yf Þ ¼ ð0:9Lx;0:5LyÞ. At t ¼ 0 the fish and the surrounding fluid are at rest. After reaching the vicinity (r ¼ 0:5lfish) of the target the curvature of the
backbone will tend to zero by Eq. (46). The domain of the solution is ðx; yÞ 2 ½0;5lfish � � ½0;5lfish�, the resolution of the Eulerian grid 1024� 1024, resolution of the Lagrangian
grid (Imb � Jmb ¼ 251� 39), g ¼ 5� 10�4 and kinematic viscosity is equal to m ¼ 1:4� 10�4.
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which is the mirror of the function presented in Fig. 17, with
ti ¼ treached; tf ¼ treached þ T for gradually decreasing the curvature
of the backbone during one period. Samples of the backbone of
the fish are plotted in Fig. 24. As can be seen in Fig. 21, the values
of the vorticity start from zero and go up very fast
x 2 ½�200;220� during the rotation. In the forward gait the range
of the vorticity is x 2 ½�60;70� and finally it goes down by stopping
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Fig. 23. Saddle points denoted by green dashed circles and vortices denoted by
purple solid circles forming dipoles (i.e., strong jets) during the rotation.
the stroke in the vicinity of the goal to be in the range of
x 2 ½�28;25�. Saddle and center points in the separated flow from
the fish are seen in Fig. 23 successively. These are the common char-
acteristics of separated flows. For evaluation of the pressure field,
the Poisson Eq. (5) can be simplified for the current application as
follows

r2p ¼ 2ðuxvy � uyvxÞ � r � g�1vðu� upÞ
� �

ð47Þ

where Neumann Boundary conditions @p=@nj@X ¼ 0 must be
imposed at the boundaries of the rectangular domain. By using a
second-order forward finite difference discretization one has

p1 ¼ ð4p2 � p3Þ=3

over the left boundary. Similar backward/forward relations can be
derived for right, up and down boundaries. A point successive over
relation (PSOR) method (Press et al., 1992) with red–black sweeper
is used for calculation of the pressure field every 500 iterations. The
value of pressure in the center of the cavity is set to one, p1 ¼ 1, at
each iteration, i.e.,

pðNx=2;Ny=2Þ ¼ p1

which avoids the singularity due to imposed Neumann boundary
conditions. Snapshots of pressure isolines are illustrated in Fig. 22.
High and low pressure regions in the right and the left sides of
the fish can be seen alternatively. As expected the pressure contours
are normal to the boundary of the fish and the boundaries of the
computational domain. The centers of the vortices correspond to
low pressure regions. The deviation of the pressure from p1 ¼ 1
goes up to p 2 ½�21;27� after starting the stroke at t ¼ 5 and goes
down instantaneously when the fish reaches the vicinity of the goal
(t ¼ 15), thus stopping the stroke. This is in clear contradiction to
the vorticity field which is very persistent even after stopping the
stroke and proves the global nature of the pressure field against
the local nature of the vorticity field. A high pressure region is seen
between the head and the tail of the fish at t ¼ 2:25 when it turns
with the maximum authorized curvature k ¼ p forming a c-shape
which corresponds to what observed by Gazzola et al. (2012). C-
bent maneuver before the escape is explained to be effective in
trapping and accelerating larger volumes of fluid by Gazzola et al.
(2012). Despite industrial self-propelled objects in which the
X

Y

0 1 2 3 4 5
0

1

2

3

4

5

1.3 L

Initial position of the head

Fig. 24. Samples of the backbone of a swimming fish toward a predefined goal
which is located at ðxf ; yf Þ ¼ ð0:9Lx;0:5LyÞ obtained during a simulation, t 2 ½0;15�.
After reaching the vicinity (r ¼ 0:5lfish) of the goal the curvature of the backbone
will tend to zero by Eq. (46). The snapshots of the corresponding vorticity and
pressure isolines are plotted in Figs. 21 and 22, respectively. Starting from rest the
fish performs a 180� rotation within an area of about 1.3 its length.
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maximum pressure occurs at the head facing the free-stream, in the
swimming fish the high and low pressure regions occur in either
side of the fish alternatively. However, at the final stage of the
motion after stopping the stroke, a high-pressure region at the head
of the fish is observed at t ¼ 15 in Fig. 22. Smoothing of the mask
function �v by Eq. (27) results in a smooth pressure field, there is
no oscillation inside and around the fish and the pressure distribu-
tion is regular. With the proposed law for rotation which adds a
time-dependent curvature (which is constant all along the camber
line) to the primary propulsion mode, starting from rest the fish
executes a sharp 180� turn within an area of about 1.3 its body length.
5. Conclusion

In this paper an efficient algorithm for simulation of deformable
bodies interacting with two-dimensional incompressible fluid
flows is presented. By using a uniform Cartesian grid a direct
fourth-order solver for the solution of the Poisson equation is pro-
posed. In order to introduce a deformable body in fluid flow, the
volume penalization method is applied to the solution of the
Navier–Stokes equations as a forcing term. Even if the penalization
method is shown to have between first and second order accuracy
in space, an advantage of this method is that the evaluation of the
hydrodynamic coefficients is straightforward. Proper denoising of
the hydrodynamic coefficients is crucial in dealing with fluid/solid
interaction problems via the volume penalization method. An effi-
cient law for curvature control of an anguilliform swimmer toward
a predefined goal is proposed which is based on geometrically
exact theory of nonlinear beams. With the proposed law, the
motionless fish executes a sharp 180� turn within an area of about
1.3 its body length. Validation of the developed method shows the
efficiency and the expected accuracy of the algorithm for rotation
control of an anguilliform swimmer and also for a variety of
fluid/solid interaction problems. Some perspectives for future
works are adding a multi-resolution analysis to the algorithm for
grid adaptation, we refer to Gazzola et al. (2014) and Ghaffari
et al. (2014), enhancement of the rotation control law, paralleliza-
tion and extension to three dimensions. The FORTRAN code is open
source and is accessible upon request (Ghaffari). Interested users
are first encouraged to try the second-order solver over the finest
possible grid, then to investigate the effect of increasing the order
from second to fourth over the same or a coarser grid. However,
increasing the accuracy order of the immersed boundary method
is a challenging task. For high-order IBMs implemented in finite
difference solvers we refer to Linnick and Fasel (2005), Bonfigli
(2011), and Seo and Mittal (2011).
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