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The Lagrangian and Eulerian acceleration properties of fluid particles in homogeneous
turbulence with uniform shear and uniform stable stratification are studied using direct
numerical simulations. The Richardson number is varied from Ri = 0, corresponding to
unstratified shear flow, to Ri = 1, corresponding to strongly stratified shear flow. The
probability density functions (pdfs) of both Lagrangian and Eulerian accelerations have a
stretched-exponential shape and they show a strong and similar influence on the Richardson
number. The extreme values of the Eulerian acceleration are stronger than those observed
for the Lagrangian acceleration. Geometrical statistics explain that the magnitude of the
Eulerian acceleration is larger than its Lagrangian counterpart due to the mutual cancel-
lation of the Eulerian and convective acceleration, as both vectors statistically show an
antiparallel preference. A wavelet-based scale-dependent decomposition of the Lagrangian
and Eulerian accelerations is performed. The tails of the acceleration pdfs grow heavier
for smaller scales of turbulent motion. Hence the flatness increases with decreasing scale,
indicating stronger intermittency at smaller scales. The joint pdfs of the Lagrangian and
Eulerian accelerations indicate a trend to stronger correlations with increasing Richardson
number and at larger scales of the turbulent motion. A consideration of the terms in the
Navier-Stokes equation shows that the Lagrangian acceleration is mainly determined by
the pressure-gradient term, while the Eulerian acceleration is dominated by the nonlinear
convection term. A similar analysis is performed for the Lagrangian and Eulerian time
rates of change of both fluctuating density and vorticity. The Eulerian time rates of change
are observed to have extreme values substantially larger than those of their Lagrangian
counterparts due to the advection terms in the advection-diffusion equation for fluctuating
density and in the vorticity equation, respectively. The Lagrangian time rate of change
of fluctuating vorticity is mainly determined by the vortex stretching and tilting term
in the vorticity equation. Since the advection-diffusion equation for fluctuating density
lacks a quadratic term, the Lagrangian time rate of change pdfs of fluctuating density
show a more Gaussian shape, in particular, for large Richardson numbers. Hence, the
Lagrangian acceleration and time rates of change of fluctuating density and vorticity
reflect the dominant physics of the underlying governing equations, while the Eulerian
acceleration and time rates of change are mainly determined by advection.
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I. INTRODUCTION

An understanding of the Lagrangian acceleration properties of a fluid particle in turbulent motion
is of fundamental importance and numerous applications exist in geophysical, environmental, and
engineering flows. It aids in the study of transport and mixing, as well as in the characterization
of geometric properties and intermittency at various scales of turbulent motion. As proposed by
Tsinober et al. [1] and Tsinober [2], the Lagrangian description of turbulent flows may be a more
natural approach to the study of turbulence, as it is more directly related to the dynamics of fluid
particles, which are subjected to different forces, e.g., due to the fluctuating pressure gradient,
buoyancy, viscous stresses, or other forcing terms.

Studying Lagrangian acceleration has some history. After early work by Heisenberg [3] and
Yaglom [4], more recent studies range from theoretical investigations (e.g., Tsinober et al. [1],
Tsinober [2]) to applications such as the modeling of particle dispersion (e.g., Pope [5]) highly
relevant to turbulent combustion. Such studies are carried out using both experimental (e.g., La
Porta et al. [6]) and computational (e.g., Yeung and Pope [7], Yeung [8], or Toschi and Bodenschatz
[9]) approaches.

The majority of previous investigations focused on Lagrangian properties of isotropic turbulence.
The Lagrangian acceleration was found to be strongly intermittent and heavy tails were observed
in its probability density functions (pdfs). For example, extreme values as high as 1500 times the
acceleration of gravity were observed for the Lagrangian acceleration of fluid particles by La Porta
et al. [6] and numerical simulations by Toschi and Bodenschatz [9] confirmed these results.

Acceleration fluctuations and the different contributions have been studied by Pinsky et al. [10]
and Tsinober et al. [1] in isotropic turbulence. Their work is motivated by the random Taylor
hypothesis or sweeping decorrelation hypothesis “of small eddies in turbulent flow being passively
“swept” past a stationary Eulerian observer [1]. It is based on the prediction of Tennekes [11]
that states that the Lagrangian acceleration must be small, justified by considering Eulerian and
Lagrangian time scales. He predicted that the rms value of the Lagrangian acceleration is a factor
Re−1/2

λ smaller than the Eulerian value. Lin [12] showed that there is no general justification to
extend Taylor’s hypothesis to turbulent shear flow. He gives some perspectives that this may still
hold for large wave numbers (small scales), which will be the topic of future work.

Tsinober et al. [1] analyzed direct numerical simulation data of isotropic turbulence for different
Reynolds numbers and the Lagrangian acceleration, called the total acceleration in Tsinober’s
work, was decomposed into the Eulerian acceleration (called the local acceleration in [1]) and the
convective contribution. Possible cancellation properties between the Eulerian and the convective
contributions may yield reduced values of the Lagrangian acceleration. The authors found that the
variance of the Lagrangian acceleration is much smaller than that of the Eulerian (local) acceleration
and the advection term due to their strong negative alignment (or correlation) for sufficiently high
Rλ, here 140. They also observed that the Lagrangian acceleration is strongly correlated with the
pressure gradient. Their results are thus in support of the random Taylor hypothesis.

Note that the convective contribution of the acceleration becomes large when the flow is nonuni-
form, i.e., if the velocity changes along a streamline. The convective acceleration term is nonlinear,
which causes mathematical difficulties in flow analysis; also, even in steady flow (which is perfect
for Taylor’s hypothesis), the convective acceleration can be large if spatial gradients of velocity are
large. If it is antialigned with the local acceleration, it can be balanced and the total acceleration can
still be small. This implies that the rate of Eulerian decorrelation is higher than that of Lagrangian
decorrelation, which is crucial for two-point closures, see also the review on space-time correlations
in turbulence by He et al. [13].

Many applications of Lagrangian dynamics target the transport and mixing of natural and
anthropogenic substances in the geophysical environment. Such flows are often characterized by the
presence of shear and stratification. A homogeneous turbulent stratified shear flow with a constant
vertical stratification rate Sρ = ∂�/∂y and a constant vertical shear rate S = ∂U/∂y represents the
simplest flow configuration in order to study the competing effects of shear and stratification.
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This flow has been investigated extensively in the past. Experimental studies include work by
Komori et al. [14], Rohr et al. [15], Piccirillo and Van Atta [16], and Keller and Van Atta [17].
Numerical simulations have been performed by Gerz et al. [18], Holt et al. [19], Jacobitz et al. [20],
Jacobitz [21], and Portwood [22]. Hanazaki and Hunt [23] analyzed this flow using linear theory.
More recently, the mixing properties of turbulent stratified shear flow have been considered by, for
example, Salehipour et al. [24] and Venayagamoorthy and Koseff [25]. For a review, we refer to
Gregg et al. [26].

More recently, Jacobitz et al. [27] considered Lagrangian and Eulerian accelerations in rotating
and sheared homogeneous turbulence. It was found that the Lagrangian acceleration was mainly
determined by the pressure-gradient term in the Navier-Stokes equation, while the Eulerian ac-
celeration shows stronger tails due to the advection term. In the case of strong rotation, linear
effects are dominant and the Lagrangian acceleration pdf takes an approximately Gaussian shape. A
comparison of linear theory with direct numerical simulation of rotating and sheared homogeneous
turbulence was performed by Salhi et al. [28].

The goal of this work is to investigate the acceleration statistics and to analyze the different con-
tributions to the acceleration in turbulent stratified shear flows using direct numerical simulations.
A key question is the understanding of the properties of Lagrangian acceleration fluctuations and
their Eulerian counterpart and the influence of the Richardson number.

In the following, the numerical approach taken in this study is introduced first. Then the
Richardson number dependence of the Lagrangian and Eulerian acceleration pdfs is presented
along with geometrical statistics of the alignment angles of the different contributions. Us-
ing a wavelet-based scale-dependent decomposition, the Lagrangian and Eulerian accelerations
are studied at various scales of the turbulent motion and their spatial fluctuations are ana-
lyzed. The corresponding Lagrangian and Eulerian time rates of change pdfs for the fluctuating
density are discussed. Finally, a summary and conclusion of the present work is provided. Results
for the Lagrangian and Eulerian time rates of change for the fluctuating vorticity as well as the
Lagrangian and Eulerian acceleration component are discussed in the Appendixes.

II. APPROACH

In this section, the equations of motion and their direct numerical solution are described,
variance estimates for the Lagrangian and Eulerian accelerations are given, the wavelet-based
scale-dependent decomposition of the accelerations is introduced, and geometrical statistics to study
the alignment of the different acceleration contributions are motivated.

A. Equations of motion

The mean flow with velocity (U,V,W ) and density � considered in this study has a constant
vertical shear rate S = ∂U/∂y and a constant vertical stratification rate Sρ = ∂�/∂y, respectively,

U = Sy, V = W = 0, � = ρ0 + Sρy, (1)

where ρ0 is the ambient density.
This study is based on the incompressible Navier-Stokes equations for the fluctuating velocity

and an advection-diffusion equation for the fluctuating density:

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u + Sy
∂u
∂x

+ Svex,= − 1

ρ0
∇p − g

ρ0
ρey + ν∇2u, (3)

∂ρ

∂t
+ u · ∇ρ + Sρv = α∇2ρ. (4)
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TABLE I. Overview of the simulation cases, including the Richardson number Ri, the shear rate S,
the Brunt–Väisälä frequency N , the Taylor-microscale Reynolds number Reλ, The viscosity ν, the turbulent
velocity fluctuation q, the dissipation rate of kinetic energy ε, the cutoff wave number kmaxη, the overturning
scale Loverturn, the Ellison scale LEllison, the Ozmidov scale LOzmidov, the Taylor microscale λ, and the Kolmogorov
scale η. All values are given at nondimensional time St = 10. All symbols are defined in the text.

Ri

0 0.1 0.2 0.5 1

S 5.3345 5.3345 5.3345 5.3345 5.3345
N 0.0000 1.6869 2.3856 3.7720 5.3345
Reλ 156.90 104.08 76.60 42.84 32.83
ν 0.0010 0.0010 0.0010 0.0010 0.0010
q 1.5856 1.0779 0.7969 0.4428 0.3028
ε 1.2838 0.6230 0.3436 0.1048 0.0390
kmaxη 1.1992 1.4368 1.6673 2.2437 2.8723
Loverturn 3.1052 2.0101 1.4728 0.8288 0.7119
LEllison 0.2619 0.1835 0.1324 0.0619 0.0312
LOzmidov N/A 0.3603 0.1591 0.0442 0.0160
λ 0.09895 0.09656 0.09613 0.09675 0.10841
η 0.00528 0.00633 0.00735 0.00988 0.01265

Here, u = (u, v,w) is the fluctuating velocity, p the fluctuating pressure, ρ the fluctuating density,
ν the kinematic viscosity, and α the scalar diffusivity. Taking the curl of the momentum equation,
(3), leads to the vorticity equation:

∂ω

∂t
+ u · ∇ω + ∇ ×

(
Sy

∂u
∂x

+ Svex

)
= ω · ∇u − ∇ ×

(
g

ρ0
ρey

)
+ ν∇2ω. (5)

B. Numerical approach

For their numerical solution, the equations of motion, (2)–(4), are transformed into a frame
of reference moving at the mean velocity (see Rogallo [29]). This transformation enables the
application of periodic boundary conditions for the fluctuating components of velocity and density.
A spectral collocation method is used for the spatial discretization and the solution is advanced in
time with a fourth-order Runge-Kutta scheme.

Table I provides an overview of the simulations performed for this study. The Richardson
number Ri = N2/S2 is varied from Ri = 0, corresponding to unstratified shear flow, to Ri = 1,
corresponding to strongly stratified shear flow. While both the mean shear rate S = ∂U/∂y and the
mean stratification rate Sρ = ∂�/∂y are constant for a given simulation, the Richardson number
variation is obtained by a change of the Brunt-Väisälä frequency N with N2 = −g/ρ0Sρ , while
keeping the mean shear rate S constant.

The initial conditions are taken from a separate simulation of isotropic turbulence without density
fluctuations, which was allowed to develop for approximately one eddy turnover time. The initial
values of the Taylor-microscale Reynolds number Reλqλ/ν = 89 and the shear number SK/ε = 2
are fixed. Here q is the rms of the fluctuating velocity with q2 = uiui, λ the Taylor microscale with
λ2 = 5q2ν/ε, K = q2/2 the kinetic energy, and ε = ν∂u j/∂xk∂u j/∂xk the dissipation rate.

Table I provides an overview of the eventual values of Reλ, q, and ε at time St = 10. The table
also lists the values of a variety of length scales, including the overturning scale Loverturn = q3/ε,
the Ellison scale LEllison = ρ/Sρ , the Ozmidov scale LOzmidov with L2

Ozmidov = ε/N3, the Taylor
microscale λ, and the Kolmogorov scale η with η4 = ν3/ε, indicating an appropriate resolution
of the simulations at St = 10 at both the large and the small scales of the turbulent motion.
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The simulations are performed on a parallel computer using 512 × 512 × 512 grid points. To
increase the resolution, instead of the classical dealiasing with a cutoff at 2/3 of the maximum wave
number, a cosine-filter dealiasing is applied. The cosine filter is only applied to wave numbers larger
than 2/3 of the maximum wave number. Its transfer function starts with 1 at 2/3 of the maximum
wave number, goes to 0 at the maximum wave number, and follows the shape of the first quarter
of the cosine function period. The maximum wave number kmax can be defined when the cosine is
equal to the value 1/2. For the current resolution with N = 512 we thus have kmax = 227 (instead
of the value 170 obtained for classical dealiasing). All simulations are well resolved and we have
kmaxη > 1.2 in the eventual evolution for the unstratified case. A discussion of the influence of
dealising in pseudospectral codes is given by Hou and Li [30]. The authors show that the classical
2/3 rule does not necessarily yield the best results and other filtering techniques, different from the
cosine-dealiasing used here, are more efficient, supporting our choice.

C. Variance estimates for the Lagrangian and Eulerian accelerations in stratified shear flow

The Lagrangian and Eulerian accelerations are defined as

aL = ∂u
∂t

+ u · ∇u and aE = ∂u
∂t

, (6)

respectively. Both accelerations are computed as a volume average at a fixed time, which is an
appropriate choice for homogeneous flows. The effects of shear and buoyancy are considered as
external forces.

In [27] we provided estimates of the variances of the Lagrangian and Eulerian accelerations,
writing the Navier-Stokes equations in the form

∂u
∂t

= −N − � − �, (7)

where the terms on the right-hand side are given by

N = aC = u · ∇u,

� = aP = ∇(p/ρ0),

� = �S + �B + �V = Svex + g

ρ0
ρey − ν∇2u. (8)

Here, N is the nonlinear or advection term, � the pressure-gradient term, and � the linear term with
contributions from shear, buoyancy, and viscous effects. The notation aC for the nonlinear term and
aP for the pressure gradient match the notation of Tsinober et al. [1] to denote the convective and
pressure contributions, respectively, to the accelerations.

According to [27] we have also, in the case of stratified shear flow, the identity

〈‖N + � + �‖2〉 = 〈‖N + �‖2〉 − 〈‖�‖2〉. (9)

Here, ‖ · ‖ denotes the magnitude of a vector and 〈·〉 the volume average for a homogeneous field.
This directly implies the exact identities for the variances of the Eulerian acceleration aE (called

the local acceleration by Tsinober et al. [1]),

a2
E ≡

〈
‖∂u

∂t
‖2

〉
= 〈‖N + � + �‖2〉 = 〈‖N + �‖2〉 − 〈‖�‖2〉, (10)

and of the Lagrangian acceleration aL (called the total acceleration by Tsinober et al. [1]),

a2
L ≡

〈
‖∂u

∂t
+ u · ∇u‖2

〉
= 〈‖� + �‖2〉. (11)

The variance estimates provided in [27] for rotating shear flows are now extended to stratified
shear flows, again with the underlying assumption and crucial simplification of isotropy of the flow.
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The main difference arises in the linear term �, which now includes a buoyancy force, instead of a
Coriolis force. Neglecting the friction force, the variance of the linear term can be written as


2 = 1

3
S2

[
1 + 3

(
g

ρ0

)2 1

S2

ρ2

u2

]
u2. (12)

Using the ratio of potential to kinetic energy

Kρ

K
=

− 1
2

g
ρ0

ρ2

Sρ

1
2 u2

= − g

ρ0

1

Sρ

ρ2

u2
, (13)

the variance for the linear term can be written as


2 = 1

3
S2

[
1 + 3Ri

Kρ

K

]
u2. (14)

Hence, the variance estimate of the linear term retains the ratio of potential to kinetic energy.

D. Scale-dependent decomposition of Lagrangian and Eulerian accelerations

To gain insight into the scale dependence of the Lagrangian and Eulerian accelerations, we de-
compose both accelerations into an orthogonal wavelet series. Wavelets are well-localized functions
in space and in scale (or wave number) (see, e.g., [31]), and different wavelet-based diagnostics,
including the scale-dependent energy distribution and its spatial fluctuations, intermittency measures
such as the scale-dependent flatness and anisotropy measures, have been proposed. For a review we
refer the reader to [32].

We consider a generic vector field a = (a1, a2, a3) at a fixed instant in time and decompose each
component aα (x) into an orthogonal wavelet series,

aα (x) =
∑

λ

ãα
λ ψλ(x), (15)

where the wavelet coefficients are given by the scalar product ãα = 〈aα, ψλ〉. The wavelets ψλ with
the multi-index λ = ( j, i, d ) are well localized in scale L02− j (where L0 corresponds to the size
of the computational domain), around position L0i/2 j , and oriented in one of the seven directions
d = 1, . . . , 7, respectively. The scale is directly related to the wave number k j = k02 j , where k0 is
the centroid wave number of the chosen wavelet family. For Coiflet 12 wavelets used in the present
work we have k0 = 0.77. Large scales correspond to small values of the scale index j and to a
well-localized wavelet in Fourier space around wave number k j . In contrast, for small scales, which
correspond to large values of j, the wavelet becomes less localized in Fourier space around the mean
wave number k j .

Reconstructing the three components aα at scale 2− j by summing only over the position i and
direction d indices in Eq. (15) yields the acceleration a j at scale index j. In terms of filtering the
acceleration at a given scale corresponds to a bandpass-filtered field, with a bandpass filter having a
constant relative bandwidth. This means that the filter width becomes larger at larger wave numbers,
corresponding to decreasing scale. By construction we have a = ∑

j a j , where the a j are mutually
orthogonal.

The scale-dependent moments, including the scale-dependent flatness and scale-dependent pdfs,
can thus be computed from a j using classical statistical estimators. For instance, the qth-order
moment of a j (x) can be defined by

Mq[a j] = 〈(a j )q〉, (16)

and by construction the mean value vanishes, 〈a j〉 = 0. The moments are thus central moments.
These scale-dependent moments are directly related to the qth-order structure functions [33] where
the increment size is 2− j .
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The scale-dependent flatness, which measures the intermittency of a j at scale 2− j , is defined by

Fl[a j] = M4[a j]

(M2[a j])2 . (17)

For a Gaussian distribution the flatness equals 3 at all scales.

E. Geometrical statistics

To understand the magnitude of Eulerian and Lagrangian accelerations, we statistically assess,
following Tsinober et al. [1], the alignment properties of aE , aC = N, and its sum corresponding to
the Lagrangian acceleration aL = aE + aC . For convenience, we partly use the notation introduced
in [1] in this section. When the vectors of the Eulerian acceleration aE and the convective terms aC

are antiparallel, then the magnitude of the Lagrangian acceleration aL is small compared to those of
the Eulerian and convective contributions, since

〈aL, aL〉 = 〈aE + aC, aE + aC〉 = 〈aE , aE 〉 + 〈aC, aC〉 + 2 cos(aE , aC ) ||aE || ||aC ||. (18)

Here 〈·, ·〉 denotes the scalar product.
If aE and aC are antialigned the cosine is negative and the norm of aE + aC is minimal. To

verify the random Taylor hypothesis Tsinober et al. [1] computed the cosine of the angle of the
Eulerian acceleration and the convective term, motivated by the prediction of Tennekes [11] that the
Lagrangian acceleration must be small for the hypothesis to hold. We expect this result to hold with
modification due to shear and stratification.

For the pressure gradient term aP = �, the alignment with the Eulerian and Lagrangian accel-
eration can be likewise assessed. For sufficiently high Reynolds numbers we anticipate a strong
antialignment of aP with aL, showing that the flow is driven by the pressure gradients and that linear
effects are negligible. However, buoyancy may change this result for strong stratification and its
impact will be assessed using the simulation results.

For Gaussian divergence-free random fields Tsinober et al. [1] found similar alignment properties
and they concluded that the cancellation of aE and aC is mostly a kinematic effect and not due to
Navier-Stokes dynamics. A justification of these findings is given by Millionshchikow’s zero–fourth
cumulant hypothesis [34], which decomposes fourth-order moments into a series of second-order
moments.

III. RESULTS

In this section, the flow evolution is briefly described first. Then results for the probability
density functions of the Lagrangian and Eulerian accelerations are provided, related to the remaining
terms in the Navier-Stokes equations, and their scale-dependent properties are presented. A similar
analysis is performed for the Lagrangian and Eulerian time rates of change of fluctuating density
and in Appendix A also for fluctuating vorticity. In the following, the accelerations and time rates
of change are analyzed at the instant St = 10. Table I provides an overview of the series of five
simulations performed.

A. Turbulence evolution

In order to provide a context for the present study, the energetics of the flow is briefly discussed.
More details on turbulent stratified shear flows can be found in [20] and [21].

Figure 1 (left) shows the evolution of the turbulent kinetic energy normalized by its initial value
K/K0. All cases result in an initial decay phase due to the isotropic initial conditions. Then, as the
Richardson number Ri is increased, the eventual evolution of the turbulent kinetic energy changes
from growth to decay, with a critical value of Ricr ≈ 0.15.
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FIG. 1. Evolution of the turbulent kinetic energy K in nondimensional time St (left) and dependence of
the normalized production rate P/(SK ), buoyancy flux B/(SK ), and dissipation rate ε/(SK ) on the Richardson
number at St = 10 (right).

The normalized transport equation for the turbulent kinetic energy evolution can be written as

γ = 1

SK

dK

dt
= P

SK
− B

SK
− ε

SK
. (19)

Here, γ is the growth rate of the turbulent kinetic energy, P/(SK ) is the normalized production term
with P = −Su1u2, B/(SK ) is the normalized buoyancy flux with B = g/ρ0u2ρ, and ε/(SK ) is the
normalized dissipation rate.

Figure 1 (right) shows the dependence of P/(SK ), B/(SK ), ε/(SK ), and γ on the Richardson
number Ri at nondimensional time St = 10. The normalized production rate P/(SK ) decreases
with increasing Richardson number Ri and it assumes a slightly negative value for large-Ri cases,
indicating a positive Reynolds shear stress (or counter-gradient flux). The normalized buoyancy
flux B/(SK ) remains relatively small and it converts kinetic to potential energy for most of the Ri
range. The normalized dissipation rate ε/(SK ) remains relatively unaffected by the Ri variation. The
growth rate γ follows the trend of the normalized production rate P/(SK ), offset by the contributions
of B/(SK ) and ε/(SK ). Note that positive values of γ correspond to an increase in K , while a
negative value of γ indicates decay of the turbulent kinetic energy.

The evolution of the ratio of potential to kinetic energy is shown in Fig. 2 (left). The simulations
are initialized without potential energy and a strong initial growth is observed. The ratio of potential
to kinetic energy eventually reaches an approximately constant value, which still depends on the
Richardson number Ri. This dependence of the ratio Kρ/K on Ri at nondimensional time St = 10
is presented in Fig. 2 (right). The ratio Kρ/K first increases strongly and then reaches a maximum
of Kρ/K ≈ 0.3 for Ri = 1.

B. Lagrangian and Eulerian accelerations

Figure 3 (top) shows the probability distribution functions of the Lagrangian acceleration aL (left)
and of the Eulerian acceleration aE (right). The pdfs of both accelerations have stretched-exponential
shapes and they exhibit a strong and similar influence on the Richardson number Ri. For small Ri,
the extreme values of the Eulerian acceleration are above those of the Lagrangian acceleration,
which is consistent with previous observations for sheared and rotating turbulence [27] and likewise
observed for isotropic turbulence by Tsinober et al. [1].

Figure 3 (bottom) shows the pdfs normalized with the corresponding standard deviations of
the two accelerations. For a core region of about five standard deviations, both the Lagrangian
and the Eulerian accelerations show approximately the same shape. The tails of the pdfs of both
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FIG. 2. Evolution of the ratio of turbulent potential to kinetic energy Kρ/K in nondimensional time St (left)
and dependence of this ratio on the Richardson number at St = 10 (right).

FIG. 3. Pdfs (top) and pdfs normalized with the corresponding standard deviations (bottom) of Lagrangian
acceleration aL (left) and Eulerian acceleration aE (right) at nondimensional time St = 10. Note that all pdfs
are estimated using histograms with 100 bins, and they are plotted in log-lin representation. Note that pdfs for
the vector quantities are shown.
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TABLE II. Lagrangian acceleration statistics at nondimensional time St = 10 showing the rms of the
Lagrangian acceleration aL , the flatness FlaL , and the ratio of the componentwise variances and the total
variance. The variance and flatness values of the time rates of change of fluctuating density sL and FlsL and
fluctuating vorticity cL and FlcL are likewise listed.

Ri

0 0.1 0.2 0.5 1

aL 19.427 9.833 5.519 1.808 0.942
FlaL 27.814 26.041 13.115 9.364 4.111
a2

Lx/a2
L 0.335 0.318 0.306 0.320 0.327

a2
Ly/a2

L 0.325 0.327 0.331 0.356 0.390
a2

Lz/a2
L 0.340 0.355 0.363 0.324 0.242

sL 0.00117 0.00070 0.00091 0.00101 0.00119
FlsL 7.220 6.148 5.152 3.989 3.249
cL 490.484 232.508 128.472 44.395 19.725
FlcL 65.574 53.766 21.168 14.123 9.177

accelerations weaken with increasing Ri. For small Ri, the tails of the Lagrangian acceleration are
heavier than the tails of the Eulerian acceleration.

Tables II and III provide statistical information on the Lagrangian and Eulerian accelerations as
a function of the Richardson number at nondimensional time St = 10. The magnitudes (rms values)
of both accelerations decrease with increasing Ri and the magnitude of aE always remains larger
than the magnitude of aL, also observed for isotropic turbulence by Tsinober et al. [1]. At small Ri,
the heavier tails observed for the normalized pdfs of aL compared to aE result in a larger flatness
of the Lagrangian acceleration pdf compared to its Eulerian counterpart. The flatness values of both
accelerations generally decrease with increasing Ri, indicating a decreased importance of nonlinear
effects which is related to the decreasing Reynolds number. However, unlike in the presence of
strong rotation considered in [27], the flatness values do not reach a value close to 3, characteristic
for a Gaussian distribution, in the case of strong stratification. For Ri = 0 the flatness values of aL

and aE are comparable with DNS data on isotropic turbulence [2] at Reλ = 140, where the values
of 24.4 and 12.8 were found, while we find, respectively, 27.81 and 14.41 in the case of pure shear.
Note that for the variances Tsinober et al. [1] found the values (normalized with ε3/2ν−1/2 = 24.84,

TABLE III. Eulerian acceleration statistics at nondimensional time St = 10 showing the rms of the Eulerian
acceleration aE , the flatness FlaE , and the ratio of the componentwise variances and the total variance. The
variance and flatness values of the time rates of change fluctuating density sE and FlsE and of fluctuating
vorticity cE and FlcE are likewise listed.

Ri

0 0.1 0.2. 0.5. 1

aE 26.100 11.689 6.258 1.975 1.075
FlaE 14.414 13.413 11.028 9.510 5.691
a2

Ex/a2
E 0.302 0.320 0.339 0.408 0.434

a2
Ey/a2

E 0.329 0.312 0.292 0.261 0.273
a2

Ez/a2
E 0.369 0.368 0.369 0.331 0.293

sE 0.00577 0.00239 0.00231 0.00138 0.00129
FlsE 24.992 24.624 21.960 16.053 5.475
cE 2,020.203 781.238 372.030 91.830 34.461
FlcE 37.813 35.619 27.855 24.893 17.724
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FIG. 4. Pdfs of the shear (top left), buoyancy (top right), pressure-gradient (bottom left), and advection
(bottom right) terms in the Navier-Stokes equations at nondimensional time St = 10.

where ε = 1.20 and ν = 0.0028) of 2.75 for aL and 8.19 for aE (and 10.96 for aC), while we find
respectively the values 8.20 for aL and 14.81 for aE (and 22.39 for aC) in the case of pure shear
using the same normalization with ε3/2ν−1/2. This shows that the order is consistent and the values
are comparable.

Figure 4 shows pdfs of the shear term (top left), the buoyancy term (top right), the pressure-
gradient term (bottom left), and the advection term (bottom right) in the Navier-Stokes equation. The
shear and buoyancy terms depend linearly on the fluctuating velocity components and density and
their pdfs hence have a Gaussian shape. While the magnitude of the shear term pdf decreases with
increasing Ri, the magnitude of the buoyancy term pdf increases. The pdfs of the pressure-gradient
and advection terms show a stretched-exponential shape due to the quadratic nature of the terms.
The magnitudes of both terms decrease with increasing Ri. For small Ri, the pressure-gradient
and advection terms clearly dominate the shear and buoyancy terms, but this dominance some-
what diminishes with increasing Ri. Hence, the pressure-gradient term is the generally dominant
contribution to the Lagrangian acceleration, while the advection term is important for the Eulerian
acceleration.

Table IV lists the variances of the contributions to the linear term from the shear term 
2
S , the

buoyancy term 
2
B, and the viscous term 
2

V . An estimate of the variance of the linear term 
2
DNS is

computed using the triangle inequality. The table also lists the variance of the velocity q2, the ratio of
potential to kinetic energies Kρ/K , and a theoretical estimate of the linear term 
2 based on Eq. (14)
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TABLE IV. Variance of the contributions to the linear term from the shear term 
2
S , buoyancy term 
2

B,
and viscous term 
2

V , an estimate for the variance of the linear term using the triangle inequality 
2
DNS , the

variance of the velocity q2, the ratio of potential to kinetic energies Kρ/K , and an estimate for the linear term

2 given in Eq. (14) at nondimensional time St = 10.

Ri

0 0.1 0.2 0.5 1


2
S 14.5746 6.3796 3.2517 0.8430 0.3596


2
B 0.0000 0.2728 0.5681 0.7767 0.7886


2
V 6.8850 2.5158 1.1384 0.2568 0.0723


2
DNS 21.4596 9.1682 4.9581 1.8764 1.2205

q2 2.5142 1.1619 0.6350 0.1961 0.0917
Kρ/K 0.0000 0.0825 0.1571 0.2783 0.3021

2 23.8427 11.2910 6.5897 2.6358 1.6579

at nondimensional time St = 10. The variances of the linear term computed from the simulation
results 
2

DNS and the theoretical estimate 
2 agree well, despite the assumption of isotropy used
in the derivation of Eq. (14). The variance of the linear term decreases with increasing Richardson
number Ri. The Taylor-microscale Reynolds number Reλ listed in Table I yields a measure of the
general importance of nonlinear effects in a turbulent flow. Reλ decreases with increasing Ri. The
results suggest that nonlinear effects contribute the least to the turbulence evolution for the case with
a Richardson number Ri = 1.

The joint pdfs of the Lagrangian and Eulerian accelerations are shown in Fig. 5 for two cases
with Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) at nondimensional time St = 10. The
correlation between Lagrangian and Eulerian accelerations is observed to increase with increasing
Ri. The stronger correlation of the Eulerian and Lagrangian acceleration for Ri = 1 is due to the
reduced nonlinearity.

In order to quantify this observation, the Pearson product-moment correlation coefficient for the
Lagrangian and Eulerian accelerations in dependence of the Richardson number Ri is given in the
first row of data in Table V at nondimensional time St = 10. For unstratified shear flow with Ri =
0, the Lagrangian and Eulerian accelerations are almost decorrelated as indicated by r = 0.0284.
With increasing stratification strength, the Pearson product-moment correlation coefficient increases

FIG. 5. Joint pdfs of Lagrangian acceleration aL and Eulerian acceleration aE for Richardson numbers
Ri = 0.1 (left) and Ri = 1 (right) at nondimensional time St = 10 using a linear color scale.
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TABLE V. Mean value of the cosine of the angle cos and Pearson product-moment correlation coefficient
r between the Lagrangian accelerations aL , the Eulerian acceleration aE , the convective contribution aC = N,
and the pressure gradient aC = � at nondimensional time St = 10. The correlation coefficient is determined
for all three components of the vector fields.

Ri

0 0.1 0.2 0.5 1

r(aL, aE ) 0.0284 0.0510 0.0882 0.2852 0.6634
r(aL, aC ) 0.5823 0.6205 0.6232 0.5493 0.2741
r(aE , aC ) −0.7961 −0.7516 −0.7241 −0.6443 −0.5378
r(aL, aP ) −0.9728 −0.9545 −0.9211 −0.7014 −0.2843
cos(aL, aE ) 0.1617 0.1957 0.2397 0.4347 0.7033
cos(aL, aC ) 0.4199 0.4579 0.4582 0.3749 0.1964
cos(aE , aC ) −0.6573 −0.5945 −0.5563 −0.4561 −0.3538
cos(aL, aP ) −0.9110 −0.8761 −0.8157 −0.5273 −0.2659

monotonically. A high value of r = 0.6634 is observed for Ri = 1. This can be explained by the
decreasing importance of the nonlinearity, quantified by the decreasing Reynolds number.

To provide further information, geometrical statistics are performed and the vector alignment
properties of the different acceleration contributions are studied, as introduced in Sec. II E. For
different Richardson numbers we consider the pdf of the cosine of the angle of two acceleration
vectors, shown in Fig. 6, the mean value of the cosine as a quantitative measure, and the correlation
coefficient, assembled in Table V. The choice of the cosine is motivated by the fact that for
random fields in three dimensions the cosine of the angle is uniformly distributed and not the angle
itself. Figure 6 (bottom left) shows a strong antialignment of the Eulerian acceleration aE and the
convective term aC = N reflected in a peak in the pdf at cos = −1, corresponding to an angle
of 180◦. This explains why the Lagrangian acceleration is smaller than the Eulerian one and also
smaller than the convective term, as the antialignment implies that the two vectors aE and aC = N
are antiparallel. The Lagrangian acceleration aL and the pressure gradient � in Fig. 6 (bottom
right) even show a stronger antialignment, which confirms that the negative pressure gradient is the
driving force of the flow dynamics. In both cases the antialignment is most pronounced for Ri = 0
and becomes weaker for increasing Richardson numbers. This can be further quantified by the mean
values of the cosine of the angle and also the correlation coefficient between the two vectors; the
results are listed in Table V.

The Lagrangian acceleration is positively aligned with the Eulerian one (Fig. 6, top left) and also
with the convective acceleration (Fig. 6, top right). For aE this alignment becomes stronger with
increasing Richardson number, while for aC it becomes weaker, as the nonlinear term diminishes.
These results are consistent with those of Tsinober et al. [1] obtained for isotropic turbulence, in
the case of Reλ = 141 (compared to our value for unstratified shear flow, 157). For example, for
the average cosine of the angle between aL and aE Tsinober et al. [1] report a value of 0.105 (for
unstratified shear flow we find 0.162); for aL and aC , 0.353 (0.420); and for aE and aC , −0.762
(−0.657).

Let us also mention that Tsinober et al. [1] showed that Gaussian random fields satisfy similar
alignment properties for aE and aC = N and concluded that this is essentially a kinematic effect.

Figure 7 presents the scale-dependent pdfs of the Lagrangian acceleration aL (left) and Eulerian
acceleration aE (right) for two cases with Ri = 0.1 (top) and Ri = 1 (bottom) at nondimensional
time St = 10. The pdfs have stretched-exponential shapes and the tails become heavier with
increasing scale index j or decreasing scale of the turbulent motion. For the weakly stratified
case with Ri = 0.1, the tails of the Lagrangian acceleration are generally heavier than those of the
Eulerian acceleration. For the strongly stratified case with Ri = 1, however, the tails of the Eulerian
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FIG. 6. Pdfs of the cosine of the angles between different acceleration contributions: cos(aL, aE ) (top left),
cos(aL, aC ) (top right), cos(aE , aC ) (bottom left), and cos(aL, aP ) (bottom right) for different Ri values at
nondimensional time St = 10.

acceleration are generally heavier than those of their Lagrangian counterpart. This observation
reflects the trend for the total acceleration pdfs with increasing Richardson number discussed above.

In order to quantify the above observations, scale-dependent statistics are listed in Tables VI and
VII for two cases with Richardson numbers Ri = 0.1 and Ri = 1, respectively. While the magnitude
of the total Eulerian acceleration aE is larger than the magnitude of the total Lagrangian acceleration
aL, the ordering is reversed for the accelerations at some scales of the turbulent motion. For the case
with Ri = 0.1, the original ordering holds at the scale with the largest magnitude, which is j = 6

TABLE VI. Scale-dependent Lagrangian and Eulerian acceleration statistics for Ri = 0.1 at nondimen-
sional time St = 10 showing the rms of the Lagrangian and Eulerian acceleration, aE and aL , and the flatness,
FlaE and FlaL , for the total and the scale-dependent contributions at scale 2− j .

j

Total 0 1 2 3 4 5 6 7 8

aL 9.833 0.156 0.361 0.769 1.787 3.672 5.666 5.773 3.491 1.280
FlaL 26.041 4.933 3.468 4.706 4.968 6.844 10.979 39.138 119.480 252.821
aE 11.689 0.150 0.360 0.682 1.589 3.477 6.026 7.137 5.344 2.364
FlaE 13.413 4.296 3.304 4.103 5.061 5.981 8.114 12.607 27.600 65.829
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FIG. 7. Scale-dependent normalized pdfs of Lagrangian acceleration aL (left) and Eulerian acceleration aE

(right) for Richardson numbers Ri = 0.1 (top) and Ri = 1 (bottom) at nondimensional time St = 10. Note that
the flat sections in the pdfs around 0 are artifacts of an even number of bins chosen in the computation of the
pdfs. Additionally, pdfs of quantities with large variances only show fewer bins in the figure.

for both accelerations. At that scale, the pdfs of the total accelerations are also most similar to
the pdfs of the accelerations at that scale. For the case with Ri = 1, the ordering observed for the
magnitudes of the total accelerations holds more generally at different scales of the turbulent motion.
The pdfs of the total accelerations are again most similar at the scales with the largest magnitudes,
which are j = 4 for the Lagrangian acceleration and j = 5 for the Eulerian acceleration. The flatness
of the accelerations generally increases with scale index j, indicating more intermittency at the

TABLE VII. Scale-dependent Lagrangian and Eulerian acceleration statistics for Ri = 1 at nondimensional
time St = 10 showing the rms of the Lagrangian and Eulerian acceleration, aE and aL , and the flatness, FlaE

and FlaL .

j

Total 0 1 2 3 4 5 6 7 8

aL 0.942 0.079 0.257 0.328 0.405 0.450 0.435 0.336 0.190 0.058
FlaL 4.111 5.690 3.210 4.042 4.064 4.248 6.316 11.850 15.906 38.999
aE 1.075 0.079 0.257 0.330 0.410 0.473 0.530 0.483 0.254 0.062
FlaE 5.691 5.700 3.210 4.021 4.034 4.166 6.524 10.411 21.338 66.034

074609-15



FRANK G. JACOBITZ AND KAI SCHNEIDER

FIG. 8. Scale-dependent joint pdfs of Lagrangian acceleration aL and Eulerian acceleration aE for Richard-
son numbers Ri = 0.1 (left) and Ri = 1 (right) and at large scale with scale index j = 3 (top) and at small scale
with j = 7 (bottom) at nondimensional time St = 10 using a linear color scale.

smallest scales of motion. Note that for the Lagrangian acceleration, flatness values close to 3 are
observed for the larger scales with j = 1, indicating that the Lagrangian acceleration at large scale
is mainly determined by linear effects.

Figure 8 shows the scale-dependent joint pdfs of the Lagrangian and Eulerian accelerations
for two cases with Ri = 0.1 (left) and Ri = 1 (right) as well as at large scale with scale index
j = 3 (top) and at small scale with j = 7 (bottom) at nondimensional time St = 10. Consistent
with the observation for the total accelerations discussed above, the correlation increases with the
stratification strength at the two scales shown. In addition, the correlation decreases with increasing
scale index j or decreasing scale of the turbulent motion considered.

This observation is shown more quantitatively using the Pearson product-moment correlation
coefficient in Table VIII. The correlation coefficient tends to increase with increasing Richard-
son number Ri. Similarly, at all Richardson numbers, the correlation coefficient decreases with
decreasing scale or increasing scale index j. The components at the largest scale index j or smallest
scale of motion are characterized by very high flatness values. This indicates strong intermittency
present in the motion, with the localized activity impacting the correlation coefficient. Note that
with increasing Ri, the Taylor microscale Reynolds number Reλ decreases. Starting from the same
initial conditions, an increase in the Richardson number Ri necessarily results in a decrease in the
Taylor microscale Reynolds number Reλ due to the effect of stratification. Hence it is difficult to
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TABLE VIII. Pearson product-moment correlation coefficient r for the scale-dependent Lagrangian and
Eulerian accelerations at nondimensional time St = 10. The correlation coefficient is determined for all three
components of the accelerations.

Ri

0 0.1 0.2 0.5 1

r ( j = 0) 0.8584 0.9716 0.9892 0.9969 0.9995
r ( j = 1) 0.8065 0.9347 0.9625 0.9957 0.9990
r ( j = 2) 0.5208 0.6709 0.8287 0.9728 0.9921
r ( j = 3) 0.1988 0.3427 0.5072 0.8257 0.9512
r ( j = 4) 0.0884 0.1380 0.2141 0.4959 0.7765
r ( j = 5) 0.0308 0.0478 0.0739 0.2002 0.4528
r ( j = 6) 0.0116 0.0196 0.0304 0.0993 0.2919
r ( j = 7) 0.0037 0.0097 0.0248 0.1248 0.3337
r ( j = 8) −0.0052 0.0200 0.0261 0.1707 0.3837

determine whether the origin of the increased intermittency is due to the increased stratification or
decreased Reλ, as the two effects are linked.

C. Lagrangian and Eulerian time rates of change of fluctuating density

The time rates of change of fluctuating density can also be defined using Lagrangian and Eulerian
approaches as

sL = ∂ρ

∂t
+ u · ∇ρ and sE = ∂ρ

∂t
, (20)

respectively.
Figure 9 (top) shows the pdfs of the Lagrangian time rate of change of fluctuating density (left)

and of the corresponding Eulerian time rate of change (right). The difference in the pdfs of the
time rates of change is much more pronounced than the difference obtained for the accelerations.
Figure 9 (bottom) shows the normalized pdfs of the two time rates of change. While the shape of the
Eulerian time rate of change pdf is again found to be stretched exponential, the Lagrangian time rate
of change pdf has a more Gaussian shape. The extreme values of the Eulerian time rate of change
of fluctuating density are substantially larger than those of the Lagrangian time rate of change.

Tables II and III, respectively, provide the dependence of the magnitudes of the Lagrangian and
Eulerian time rates of change on the Richardson number Ri. Note that for Ri = 0, the density is
a passive scalar (zero gravity) with a mean gradient. Again, the magnitude of sE always remains
larger than the magnitude of sL, consistent with the findings for the accelerations.

The flatnesses of the Lagrangian and Eulerian time rates of change are also listed in Tables II
and III, respectively. The flatness of sE is always larger than that of sL and their values generally
decrease with increasing Ri. For strong stratification, the flatness of the Lagrangian time rate of
change assumes values of around 3 for Ri = 1, while the Eulerian time rate of change yields a value
of 5.475.

Figure 10 shows pdfs of the buoyancy term (left) and advection term (right) in the advection-
diffusion equation for fluctuating density. The buoyancy term pdf has a Gaussian shape, as
it is linearly related to the fluctuating density. Its variance increases with increasing Ri, be-
cause the stratification rate Sρ increases. The more Gaussian shape of the Lagrangian time
rate of change of fluctuating density can be explained by the lack of a quadratic term in the
advection-diffusion equation for fluctuating density. The large difference observed between the
Lagrangian and the Eulerian time rates of change of fluctuating density is due to the advection
term.
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FIG. 9. Pdfs (top) and normalized pdfs (bottom) of Lagrangian time rate of change of fluctuating density
sL (left) and Eulerian time rate of change sE (right) at nondimensional time St = 10.

FIG. 10. Pdfs of the buoyancy (left) and advection (right) terms in the advection-diffusion equation for
fluctuating density at nondimensional time St = 10.
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IV. CONCLUSIONS

A series of direct numerical simulations was performed in order to study the Lagrangian and
Eulerian acceleration properties in stably stratified turbulent shear flows. With increasing Richard-
son number Ri, the evolution of the turbulent kinetic energy K changes from growth to decay and
the variances of the Lagrangian acceleration aL and the Eulerian acceleration aE decrease. The
acceleration pdfs were observed to have a stretched-exponential symmetric shape and the flatness
decreases with increasing Ri.

We studied the cancellation of Eulerian and convective accelerations of fluid particles using
geometrical statistics of the vector quantities. We found a strong preference for the antialignment
of both vectors, which decreases with the Richardson number. This cancellation explains why the
variance of the Lagrangian acceleration is smaller than its Eulerian counterpart and it supports,
according to Tsinober et al. [1], who performed similar analyses for isotropic turbulence, the random
Taylor hypothesis for shear flow, which, however, becomes weaker with increasing stratification.
Nevertheless, we do not find an order-of-magnitude difference in the acceleration variances, as pre-
dicted by Tennekes [11] for isotropic turbulence and necessary so that the random Taylor hypothesis
strictly holds. These findings are in agreement with Lin [12], who showed that Taylor’s hypothesis
in general does not hold for shear flow. Analyzing the alignment properties of the scale-dependent
contributions of the acceleration is an interesting perspective for future work, already in the context
of isotropic turbulence. This would allow us to check whether the hypothesis holds for shear flows
at least at small scales.

An estimation of the variances of the Lagrangian and Eulerian accelerations has been derived
from the Navier-Stokes equations which requires the ratio of potential to kinetic energy. A compar-
ison of the estimation with results from the direct numerical simulations showed good agreement
for the considered range of Richardson numbers.

The pdfs of the pressure-gradient and advection terms in the Navier-Stokes equation, which
are both quadratic terms, also have stretched-exponential shapes. The Lagrangian and Eulerian
accelerations are mainly determined by the pressure-gradient and advection terms, respectively.
While the quadratic terms are dominant for small Ri, their dominance is somewhat diminished for
large Ri. The pdfs of the shear and buoyancy terms in the Navier-Stokes equation, which are both
linear terms, were observed to have a Gaussian shape. While the variance of the shear term decreases
with Ri, the variance of the buoyancy term increases with Ri.

In addition, the Lagrangian and Eulerian time rates of change of fluctuating density and of
fluctuating vorticity (see Appendix A) were considered. For both quantities, the Eulerian time rates
of change showed substantially larger extreme values than their Lagrangian counterparts. Due to the
lack of a quadratic term on the right-hand side of the advection-diffusion equation for fluctuating
density, the pdf of the Lagrangian time rate of change has an almost-Gaussian shape, while the pdf of
the Eulerian time rate of change was observed to have exponential to stretched-exponential shapes.
For fluctuating vorticity we found that the Lagrangian time rate of change is mainly determined by
the vortex streching and tilting term.

A scale-dependent analysis using orthogonal wavelet decomposition provided insight into the
intermittency of the Lagrangian and Eulerian accelerations. At small scales of the turbulent motion,
the pdfs exhibit heavy tails, resulting in very large flatness values and corresponding intermittency.
The correlation between the Lagrangian and the Eulerian accelerations has likewise been analyzed
and we found stronger correlation at large scales of turbulent motion as well as with increasing
Richardson number. At small scales this correlation is substantially reduced.

For rotating and sheared homogeneous turbulence, Salhi et al. [28] observed a dominance of
linear terms in cases with strong rotation and the flatness of the Lagrangian acceleration assumes a
value of about 3. This observation suggests that linear theory can accurately describe the properties
of such flows. In the present study, however, the flatness never reaches values close to 3, even
for very large Richardson numbers. Hence, linear theory should not yield agreement with direct
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FIG. 11. Pdfs (top) and normalized pdfs (bottom) of Lagrangian time rate of change of vorticity cL (left)
and Eulerian time rate of change cE (right) at nondimensional time St = 10. Note that pdfs for the vector
quantities are shown.

numerical simulation results. Indeed, Hanazaki and Hunt [23] found important differences between
linear theory and the fully nonlinear evolution of homogeneous turbulence in stratified shear flows.

Perspectives for future work include a componentwise analysis of the Lagrangian and Eulerian
acceleration, a more detailed scalewise decomposition of the geometric properties of the accelera-
tions, and corresponding terms for the vorticity evolution.
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FIG. 12. Pdfs of the shear (top left), buoyancy (top right), vortex tilting and stretching (bottom left), and
advection (bottom right) terms in the vorticity equation at nondimensional time St = 10.

APPENDIX A: LAGRANGIAN AND EULERIAN TIME RATES OF CHANGE OF FLUCTUATING
VORTICITY

The Lagrangian and Eulerian time rates of change of fluctuating vorticity ω are defined as

cL = ∂ω

∂t
+ u · ∇ω and cE = ∂ω

∂t
, (A1)

respectively. This definition is analogous to the definition for the Lagrangian and Eulerian accelera-
tions in order to enable a comparison between the accelerations and the vorticity time rate of change
statistics. Again, the analysis is performed at the nondimensional time St = 10.

Figure 11 (top) shows the pdfs of the Lagrangian time rate of change cL (left) and of the Eulerian
time rate of change cE (right). Similarly to the accelerations, pdfs with stretched-exponential shapes
are observed for both time rates of change and a strong and similar influence on the Richardson
number Ri is obtained. Again, stronger extreme values are obtained for the Eulerian time rate of
change, but the difference from the Lagrangian time rate of change is much more pronounced
here compared to the accelerations. Figure 11 (bottom) shows the normalized pdfs of the two time
rates of change. Again, for a core region of about five standard deviations, both the Lagrangian
and the Eulerian time rates of change have an approximately similar shape. For small Richardson
numbers Ri, the tails of the Lagrangian time rate of change are heavier than those of their Eulerian
counterparts. However, this ordering is reversed at larger Ri.
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FIG. 13. Comparison of normalized vector pdfs with their corresponding normalized component pdfs for
Lagrangian acceleration (left) and Eulerian acceleration (right) for Ri = 0.1 (top) and Ri = 1 (bottom) at
nondimensional time St = 10.

The magnitudes of the Lagrangian and Eulerian vorticity time rates of change are listed in
Tables II and III, respectively. Similarly to the magnitudes of the accelerations, the magnitudes
of both time rates of change decrease with increasing Ri and the variance of cE always remains
larger than the variance of cL. This difference in the magnitudes for the vorticity time rate of change
pdfs is much more pronounced than that of the accelerations. The heavier tails observed for the pdf
of cL compared to cE at small Ri results in a larger flatness of the Lagrangian time rate of change pdf
compared to its Eulerian counterpart. Again, the ordering of the flatness values is reversed at larger
Ri. While the flatness values decrease with increasing Ri, the flatness is again observed to level off
at a value of approximately 5, well above the value of 3 expected for a Gaussian pdf. Hence, some
nonlinearity is still present even in the case of strongly suppressed turbulence in strongly stratified
flows.

Figure 12 shows pdfs of the shear term (top left), the buoyancy term (top right), the vortex tilting
and stretching term (bottom left), and the advection term (bottom right) in the vorticity equation.
The shear and buoyancy terms depend linearly on the curl of fluctuating velocity components and
fluctuating density, respectively. Similarly to the respective terms in the Navier-Stokes equation,
the magnitude of the shear term decreases with increasing Ri and the magnitude of the buoyancy
term increases. The pdfs of the vortex tilting and stretching term and the advection term show
stretched-exponential shapes due to the quadratic nature of the terms. The magnitudes of both terms
decrease with increasing Ri. For small Ri, the vortex tilting and stretching term as well as the
advection term clearly dominates the shear and buoyancy terms, but this dominance is again reduced
for large Ri. In the case of vorticity, the vortex tilting and stretching term is the generally dominant
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contribution to the Lagrangian time rate of change, while the advection term is important for the
Eulerian time rate of change.

APPENDIX B: LAGRANGIAN AND EULERIAN COMPONENT pdfs

While the text exclusively discusses the properties of vector pdfs, this Appendix presents
component pdfs of the Lagrangian and Eulerian accelerations in order to address their anisotropy in
turbulent stratified shear flow. Figure 13 compares the vector pdfs with their x-, y-, and z-component
pdfs for Lagrangian acceleration (left) and Eulerian acceleration (right) for two cases with weak
stratification with Ri = 0.1 (top) and with strong stratification with Ri = 1 (bottom). All pdfs show
similar shapes and the flow anisotropy is reflected in the variances. A similar observation holds for
the pdfs of Lagrangian and Eulerian time rates of change of fluctuating vorticity (not shown here).

The ratios of the component variances to the corresponding vector variances of the Lagrangian
and Eulerian accelerations are listed in Tables II and III, respectively. For small Richardson
numbers Ri, the variance ratios show a near-equipartition between the three components for both the
Lagrangian and the Eulerian accelerations. For large Ri, however, the ratio of the vertical variances
to the vector variances increases due to the direct impact of the buoyancy term in the vertical
component of the Navier-Stokes equation. Figure 2 shows that the ratio of potential to kinetic energy
increases with increasing Ri. Hence the buoyancy term impacts particularly the vertical component
of the accelerations.
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