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Abstract. We present a new methodology for decomposing flows with multiple transports
that further extends the shifted proper orthogonal decomposition (sPOD). The sPOD approximates
transport-dominated flows by a sum of co-moving data fields. The proposed methods are derived
from sPOD but optimize the co-moving fields directly and penalize their nuclear norm to promote
a low rank of the individual data in the decomposition. A robustness term is added for handling
interpolation errors and data noise. Using convex optimization tools, we derive three proximal
algorithms to solve the decomposition problem. We report a numerical comparison with existing
methods using synthetic data and then show the separation ability of our methods for incompressible
and reactive flows. The resulting methodology is the basis of a new analysis paradigm that provides
the same interpretability as POD for the individual co-moving fields.
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1. Introduction. Modeling of flows in time-varying geometries or of expanding
reaction waves poses a major mathematical challenge due to the inherent difficulty
of efficiently reducing the number of degrees of freedom (DOFs). For instance, high-
fidelity simulations on massively parallel computing architectures are typically per-
formed in multiquery applications in order to understand the flight mechanics of an
insect or the spread of a fire [71, 73] for a range of parameters, e.g., Reynolds numbers
or burning rates. These simulations are costly due to the tremendous number of DOFs
in the system. A common approach is to reduce the DOFs using proper orthogonal
decomposition (POD) and Galerkin projections, which were originally introduced in
[7, 47]. For a review of the POD-Galerkin model order reduction (MOR) approach,
we refer the reader to [6, 43]. However, POD-Galerkin projects the analyzed system
onto a reduced linear subspace, which is often not able to capture the full dynamics
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A634 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

of the system. Therefore, it leads to large approximation errors. In particular, in the
presence of moving quantities or structures with small support, the POD-Galerkin
approach breaks down, which limits its applicability in the investigation of transport-
dominated fluid systems.

In this work, we build on the shifted POD method (sPOD) [63], which enriches the
reduced linear subspace of the POD by moving it using the transport of the system
and thus achieves better approximation errors. Although multiple gradient-based
optimization algorithms for the sPOD already exist in the literature [10, 62, 63], the
method needs to be generalized to achieve a better separation and a more accurate
description of the transport phenomena, in particular for multiple transports. We thus
derive in this work three proximal algorithms that generalize the existing framework.

1.1. Model order reduction for transport-dominated systems. Model
order reduction for transport-dominated systems has been widely studied in the liter-
ature (see [59] for a review), since it is one of the key challenges, for instance, in reduc-
ing combustion systems [31]. Transport-dominated systems are especially challenging
because traditional MOR based on low-dimensional linear subspace approximations
breaks down. This phenomenon is known as the Kolmogorov n-width barrier and was
theoretically studied in [27, 55]. For linear transports, the Kolmogorov n-width decay
was recently proven not to be a problem of the partial differential equation (PDE)
itself; it depends on the smoothness of the initial condition and the boundary values
[2]. However, transport-dominated systems occur not only in linear advected systems
but also, for instance, in combustion systems [11, 17, 31, 42], flows around moving
geometries [37, 38, 41], kinetic systems [8, 36], and moment models [35].

To overcome the slow decay of the approximation errors in transport-dominated
systems with the approximation dimension, a description that adapts to the transport
of the system can be used. One can subdivide the literature mainly into three different
groups. The first group builds on the expressivity of neural networks [23, 24, 30, 33, 45,
68, 74]. More specifically, the authors in [23, 33, 36, 45] rely on autoencoder (AE)
structures. Unfortunately, AEs often compromise the structural insights, such as
the interpretability of the identified structures and the optimality of the resulting
description. Nonetheless, physics-informed neural networks (PINNs) [33] can still
provide an understanding of the internal low-dimensional dynamics. Furthermore, AE
neural networks are used in [36] to identify and interpret the correspondence between
the intrinsic variables and the learned structures, e.g., in Boltzmann equations. A
combination of classical reduction methods like POD or kernel POD with neural
networks has also been studied [24, 30, 68, 74]. It allows for a better quantification
of the errors [16], which is usually not possible with classical AE.

The second group uses online-adaptive basis methods [34, 58, 60] that compute the
linear approximation space locally and adaptively in time. Consequently, they fully
omit the costly data sampling stage of classical MOR. However, [35] shows that the
construction and update of the basis in each time step lead to a significant overhead
and computational cost compared to the classical approach in which the reduced order
model (ROM) is set up a priori, based on the data generated by the original PDE
system.

The last group, which includes sPOD, builds on the idea of transport compen-
sation [1, 22, 32, 40, 42, 50, 53, 63, 64, 65, 67, 70, 76], which aims at enhancing the
approximation of a linear description by aligning the parameters or time-dependent
structures with the help of suited transformations. A subset of the group can be
further subdivided into Lagrangian approximation [1, 50, 53, 70, 76] and multiframe
approximation methods [10, 63, 64]. While the former use one-to-one transforma-
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ROBUST SHIFTED PROPER ORTHOGONAL DECOMPOSITION A635

tions between the snapshot and approximation spaces, the latter use a combination
of these transformations that must not result in a one-to-one correspondence between
approximation and snapshot spaces. Lagrangian approximations usually introduce a
reference mesh, which is deformed using, for example, a space-time registration to
align the mesh to local features in the flow [70], transport maps [53], transformed
snapshots [75, 76], or low-rank deformations computed with neural networks [50].
Multiframe approximations have the advantage of a higher expressivity that allows
handling topological changes or multiple transports. Indeed, multiframe approxima-
tions reduce to Lagrangian approximations if only one frame is assumed. On the
other hand, Lagrangian approximations have the advantage that they yield less com-
plex optimization problems, since a diffeomorphic relation is assumed. Therefore, the
mappings are usually more flexible and complex. Apart from sPOD, other methods
from this group include symmetry reduction, which combines symmetries, like trans-
lation invariance of the underlying PDE, with a POD reduction approach [22, 67].
This approach was proven to be a special case of the sPOD as shown in [10]. In
[65], transported subspaces are used by explicitly leveraging the characteristics of the
hyperbolic PDEs or by tracking the front of the reduced system [40, 42].

The sPOD enjoys a close connection to the snapshot POD [69], which is not only
a data reduction method but also a tool for the analysis of fluid systems transient
dynamics in vortex shedding [52], coherent structures in swirling jets [54], and stability
analysis [7]. The sPOD can be viewed as a natural extension of the POD, offering
similar interpretability after isolating individual co-moving structures. Such a close
connection to the POD makes the sPOD an attractive method to develop further.

In addition to data analysis, sPOD has been extensively utilized in MOR [10, 11,
17, 26, 49, 37, 38, 48, 57]. This includes an intrusive MOR approach [10], specifically
tailored for sPOD, which projects the original set of equations onto the nonlinear re-
duced manifold created by the sPOD. To handle nonlinearities in the resulting ROM,
a tailored hyper-reduction strategy was developed to improve efficiency [11]. Most
other methods employ nonintrusive MOR to predict unseen parameters or time in-
stances [17, 26, 49, 37, 38, 48, 57]. These applications range from particle-laden flows
[37, 38] to rotating detonation waves [49]. The manifold of presented studies demon-
strates that nonintrusive approaches, in combination with sPOD, are advantageous
due to the purely data-driven nature of the resulting models, which are less complex.
We highlight that the decomposition approach presented in this paper has already
been used to predict new states in conjunction with deep learning [17].

1.2. State of the art. The sPOD was first introduced in [63] based on a heuris-
tic optimization of a residuum. The method builds on the idea that a single traveling
wave or moving localized structure can be perfectly described by its wave profile and
a time-dependent shift. Therefore, the sPOD decomposes transport fields by shifting
the data field in multiple co-moving frames, in which the different waves are station-
ary and can be described with a few spatial basis functions determined by POD. The
sPOD was then further developed in [10, 11, 12, 62]. More specifically, the sPOD was
studied in its space-time continuous formulation in [10] before being discretized and
solved as an optimization problem. The formulation was proven to have a solution
under the assumption that the involved transformations are smooth. This formulation
was later generalized in [12] to include the optimization of the shifts using initial shifts
that are already close to the optimum. Nevertheless, the presented decomposition ap-
proach has not been used in the context of efficient ROMs. A first application of sPOD
for efficient ROMs is given in [11], but the method relies on cutting the domain such
that two distinct co-moving systems can be found and separated. Furthermore, the
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A636 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

decomposition relies on choosing the ranks of each co-moving field beforehand. For
complicated systems, this choice is often critical for the quality of the decomposition.

In contrast, [62] proposes a discrete optimization problem based on the decay of
singular values in each co-moving field. The problem shares more similarities with
the discrete space implementation of the POD, which technically boils down to a
singular value decomposition (SVD). Minimizing the nuclear norm of the co-moving
fields results in a nonstrictly convex problem, which is easy to solve under the as-
sumption of the convexity of the transport operators. Additionally, the ranks in each
co-moving field are selected during the minimization. Unfortunately, the gradient-
based optimization approach presented in [62] shows slow convergence, due to the
nonsmoothness of the nuclear norm. Moreover, this method is not robust to noise
since the exact ranks of the synthetic test cases cannot be estimated correctly. In this
work, we propose a method to circumvent these two impediments.

1.3. Contribution and outline. Our contribution is as follows:
1. Three proximal algorithms are proposed to solve the sPOD formulation; two

of them enjoy desirable theoretical properties such as descent property and
convergence to a critical point, even in a nonconvex setting. These properties
are important since, in contrast with [62], the convexity of the transport
operators is not assumed.

2. An additional noise term can be included to capture interpolation noise or
artifacts in the data to accurately predict the ranks of the system.

3. Our algorithms are compared with existing methods.
4. Applications of our methods to realistic 2D incompressible and 2D reactive

flows are presented.
The main novelty of this work is to show that the new algorithms lead to a better
and more efficient separation of the physical phenomena, which opens research for
building surrogate models of individual systems.

The article is organized as follows: Section 2 introduces the sPOD problem in the
continuous and discrete settings with our proposed generalization towards a robust
decomposition. In section 3, we reformulate the discrete sPOD problem and leverage
tools from convex optimization to design three algorithms that solve the latter prob-
lem. Results of the numerical experiments are presented and discussed in section 4.
Conclusions are drawn in section 5.

Notation. Bold upper case letters denote matrices, bold lower case letters denote
vectors, and lowercase letters denote scalars. The notation \| .\| \ast and \| .\| F denotes the
nuclear and the Frobenius norms of a matrix, respectively. The set J1,NK denotes the
set of natural integers from 1 to N . In the following, we refer to a critical point for a
function f as a point where its subdifferential contains 0.

2. Shifted POD. The sPOD is a nonlinear decomposition of a transport-
dominated field q(x, t) into multiple co-moving structures \{ qk(x, t)\} k\in J1,KK with their
respective transformations \{ \scrT k\} k\in J1,KK,

q(x, t) =

K\sum 
k=1

\scrT kqk(x, t) ,(2.1)

where K is the number of co-moving frames. The transformations are usually chosen
such that the resulting co-moving structure can be described efficiently with the help
of a dyadic decomposition

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ROBUST SHIFTED PROPER ORTHOGONAL DECOMPOSITION A637

qk(x, t)\approx 
Rk\sum 
r=1

\alpha k
r (x)\phi k

r (t) ,(2.2)

where Rk is the co-moving rank. Hence, the total number of DOFs in the approxima-
tion is R =

\sum K
k=1Rk. The operator \scrT k transforms the co-moving coordinate frame

into the reference frame, while its inverse \scrT  - k := (\scrT k) - 1 transforms it back. For the
sake of clarity, we present the operators as shift transformations \Delta k(t) which smoothly
depend on time

\scrT kqk(x, t) = qk(x - \Delta k(t), t), \scrT  - kqk(x, t) = qk(x + \Delta k(t), t) .(2.3)

However, as shown in [11, 17] it is straightforward to also include additional param-
eter dependencies in the transformations. Furthermore, the transformations can also
include rotations [37, 38], low-rank shifts which depend slowly on space [17], or other
diffeomorphic mappings [50]. In general, a single transformation is assumed to be at
least piecewise differentiable in time and diffeomorphic. The former assumption is
necessary for the differentiability of the ROM and the latter for the invertibility and
uniqueness of the individual transformations. Nevertheless, the decomposition in the
sense of (2.1) is not unique in general, since multiple diffeomorphic mappings can be
involved.

Usually, MOR is performed on a discrete data set. Without loss of generality,
we assume one spatial dimension and one temporal dimension for the purpose of the
sPOD description. Thus, the data set includes M spatial grid points \{ xm\} and N
time grid points \{ tn\} . This discretization results in the construction of a snapshot
matrix Q:

Q = [q(t1), . . . ,q(tN )]\in \BbbR M\times N ,

with q(t) = [q(x1, t), . . . , q(xM , t)]\top \in \BbbR M .

Therefore, the shift transformation (2.3) reads

\scrT kQ =
\bigl[ 
\scrT kq(t1), . . . ,\scrT kq(tN )

\bigr] 
\in \BbbR M\times N ,

with \scrT kq(t) = [q(x1  - \Delta k(t), t), . . . , q(xM  - \Delta k(t), t)]\in \BbbR M .

Since \~x = xm  - \Delta (t) may not lie on the grid, it is interpolated from neighboring
grid points. In this work, the interpolation is performed with Lagrange polynomials
of degree 5, which introduces an interpolation error of order \scrO (h6) [39]. Note that,
with a slight abuse of notation, we use \scrT k to denote (2.3) and its approximation
using Lagrange interpolation. In the remainder of the text, we assume an equidistant,
periodic grid with a constant lattice spacing.

Remark 2.1. Nonperiodic domains can be handled by extending the domain \Omega 
into \=\Omega = \Omega \cup \Omega ext such that all the shift operations stay inside \=\Omega . Equation (2.1) is
then relaxed into

w(x)

\Biggl( 
q(x, t) - 

K\sum 
k=1

\scrT kqk(x, t)

\Biggr) 
= 0 , where (\forall x\in \=\Omega ) w(x) =

\Biggl\{ 
1 if x\in \Omega ,

0 if x\in \Omega ext.

Details can be found in [62, section 5].

After discretization, (2.2) and (2.1) result in the following nonlinear matrix de-
composition:

Q\approx \~Q
def
=

K\sum 
k=1

\scrT kQk .(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A638 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

In this discrete setting, we optimize the co-moving data fields Qk \in \BbbR M\times N , which are
further decomposed using SVD:

(\forall k \in J1,KK) Qk = \Psi k\Sigma k(Vk)\top .(2.5)

Here, \Sigma k = diag (\sigma k
1 , . . . , \sigma 

k
P ), with P = min(M,N) is a diagonal matrix containing

the singular values \sigma k
1 \geq \sigma k

2 \geq \cdot \cdot \cdot \geq \sigma k
P while \Psi k \in \BbbR M\times P and Vk \in \BbbR N\times P are

semiorthogonal matrices containing the left and right singular vectors, respectively.
The POD modes are contained in the first Rk columns of \Psi k = [\phi k

p(xm)]mp \in \BbbR M\times P .
The approximation dimensions \{ Rk\} k need to be estimated adequately. For maximal
efficiency, we aim for a small number of modes R =

\sum K
k=1Rk \ll N . Hence, we

can formulate the search of a sPOD decomposition shown in (2.4) as the following
optimization problem:

minimize
\{ Qk\} k

K\sum 
k=1

rank(Qk) s.t. Q =

K\sum 
k=1

\scrT kQk .(2.6)

As minimizing over the rank of a matrix is NP-hard [61], we substitute the nuclear
norm for the rank function, the former being the convex hull of the latter. Problem
(2.6) is thus relaxed into

minimize
\{ Qk\} k

K\sum 
k=1

\bigm\| \bigm\| Qk
\bigm\| \bigm\| 
\ast s.t. Q =

K\sum 
k=1

\scrT kQk .(2.7)

This relaxation of the rank function is common in robust PCA [18, 46]. However,
relaxing the sum of the ranks to the sum of the nuclear norms is not a tight relaxation:
indeed, the convex hull of a sum of functions is not equal to the sum of the convex
hulls of each function in general.

Optimization problem (2.7) was already formulated in [62] and it was solved based
on a Broyden--Fletcher--Goldfarb--Shanno method with an inexact line search designed
for nonsmooth optimization problems. Nonetheless, the convergence was observed to
be slow, rendering the method inefficient in practice. Furthermore, convergence to
the exact ranks could not be achieved due to the interpolation noise introduced by the
discrete transport operators. To circumvent the latter issue, we introduce an extra
term E\in \BbbR M\times N in the sPOD decomposition

Q =

K\sum 
k=1

\scrT k(Qk) + E ,(2.8)

in order to capture both the interpolation noise and the noise that could corrupt the
data. The resulting optimization problem thus reads

minimize
\{ Qk\} k,E

K\sum 
k=1

\lambda k

\bigm\| \bigm\| Qk
\bigm\| \bigm\| 
\ast + \lambda K+1 \| E\| 1 s.t. Q =

K\sum 
k=1

\scrT kQk + E ,(2.9)

where \| E\| 1 =
\sum 

ij | Eij | corresponds to the \ell 1-norm of the vectorization of E and
\{ \lambda k\} k\in J1,K+1K are positive scalar parameters that can be tuned to yield different
weights to the terms in the objective function. Similar to the robust PCA, solving
(2.9) aims at decomposing Q = \~Q + E into a low-rank matrix \~Q and a sparse noisy
matrix E. A visualization of this decomposition is shown in Figure 1.
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ROBUST SHIFTED PROPER ORTHOGONAL DECOMPOSITION A639

Q Q̃ T 1Q1 T 2Q2
E

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Fig. 1. Illustration of the robust sPOD. The noise is computed by randomly setting 12.5\%
of the input entries of Q to 1. The input data Q and its decomposition into a low-rank part
\~Q= \scrT 1Q1 + \scrT 2Q2, as well as the noise matrix E, are displayed from left to right.

3. Low-rank decomposition of the snapshot matrix. This section describes
two formulations of (2.9) as well as the design of three algorithms that, given a snap-
shot matrix Q and the transport operators \{ \scrT k\} k\in J1,KK, return low-rank estimates of
the co-moving fields \{ Qk\} k\in J1,KK as well as the residual error E.

3.1. Unconstrained formulation. We first write problem (2.9) as the follow-
ing unconstrained optimization problem:

minimize
\{ Qk\} k,E

1

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - 
K\sum 

k=1

\scrT kQk  - E

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F\underbrace{}  \underbrace{}  
def
= f(\{ Qk\} k,E)

+

K\sum 
k=1

\lambda k

\bigm\| \bigm\| Qk
\bigm\| \bigm\| 
\ast \underbrace{}  \underbrace{}  

def
= gk(Qk)

+\lambda K+1 \| E\| 1\underbrace{}  \underbrace{}  
def
= \~g(E)

,(3.1)

where f is the data fitting term that forces the optimization variables to fit the
snapshot matrix Q, \{ gk\} k\in J1,KK promotes low-rank estimates of the \{ Qk\} k, and \~g
promotes sparse residual error E. Note that problem (3.1) has a solution since its
objective function is lower semicontinuous and coercive. Therefore, the set of its
minimizers is a nonempty compact set.

We define the regularization term g such that g(\{ Qk\} k,E) =
\sum K

k=1 gk(Qk) +

\~g(E). Hence, by denoting x = (Q1, . . . ,QK ,E)
\top 

the vector of optimization variables,
problem (3.1) reads

min
x

F (x)
def
= f(x) + g(x) .(3.2)

The function f is a \scrC 1 nonconvex function with \beta -Lipschitz gradient while g is a proper
lower semicontinuous, convex, nonsmooth, and separable function. The objective
function F is bounded from below by 0 since it is the sum of two nonnegative functions,
f and g. Splitting algorithms are well suited to solve problems in the form of (3.2)
[20].

3.2. Joint proximal gradient method. Splitting problems such as (3.2) have
been extensively studied in the convex optimization literature (see [4] and references
therein), and an efficient algorithm to solve them is the forward-backward (FB) algo-
rithm, also known as the proximal gradient method [5]. The FB method is an iterative
algorithm whose iterations are composed by a gradient step (or forward step) on the
smooth term, here f , and a proximal step (or backward step) on the nonsmooth term,
here g. A single step at iteration t can be summarized as follows:

x(t+1) \leftarrow  - prox\alpha g

\Bigl( 
x(t)  - \alpha \nabla f(x(t))

\Bigr) 
,(3.3)
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A640 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

where the superscript t refers to the current iteration, \alpha is the stepsize, and prox is
the proximal operator which is uniquely defined for a proper lower semicontinuous
convex function h : \BbbR N \rightarrow \BbbR N as

proxh : x \mapsto \rightarrow arg miny\in \BbbR N h(y) +
1

2
\| y - x\| 22 .

The proximity operator was introduced in the early work [51] and can be viewed as a
generalization of the projection onto a convex set. Indeed, the proximity operator of an
indicator function on a convex set is equal to the projection on this set. Moreover, the
proximity operator enjoys many projection-like properties such as nonexpansiveness.
See [4] for an exhaustive presentation of the proximity operator.

In order to apply the FB algorithm to solve (3.1), we need to perform the iteration
(3.3), i.e., to compute the gradient of f as well as the proximity operator of g. Using
the definition of the gradient, we have that \nabla f(x) = (\nabla Q1f(x), . . . ,\nabla Ef(x))

\top 
. The

computation of the partial gradients is performed in [62] and yields

(\forall k \in J1,KK) \nabla Qkf(x) = - \scrT  - kR and \nabla Ef(x) = - R ,

where R is the residual of the approximation R = Q - 
\sum K

k=1 \scrT kQk  - E. Moreover,
since g is separable, we have that [4]

proxg(x) =
\Bigl( 

(prox\lambda kgk
(Qk))

k\in J1,KK,prox\lambda K+1\~g(E)
\Bigr) \top 

.

The proximal operator of the \ell 1-norm is simply the soft thresholding operator ap-
plied elementwise [4]. Hence, prox\alpha \| .\| 1

(E) = Soft[ - \alpha ,\alpha ](E) where Soft[ - \alpha ,\alpha ](x) =
sgn(x) max(0, | x|  - \alpha ). The proximity operator of the nuclear norm of a matrix also
has a closed-form expression which is simply the singular value thresholding (SVT)
of the matrix [4]

prox\alpha \| .\| \ast 
(Qk) = Qk = \Psi k Diag(dk)(Vk)\top ,(3.4)

where dk = Soft[ - \alpha ,\alpha ](\bfitsigma 
k) and \Psi k, \bfitsigma k, and (Vk)

\top 
are the components of the SVD

of Qk given in (2.5). Tying everything together, (3.3) becomes\left(     
Q1,(t+1)

...
QK,(t+1)

E(t+1)

\right)     =

\left(     
SVT\alpha \lambda 1(Q1,(t) + \alpha \scrT  - 1R(t))

...
SVT\alpha \lambda K

(QK,(t) + \alpha \scrT  - KR(t))
Soft[ - \alpha \lambda K+1,\alpha \lambda K+1](E

(t) + \alpha R(t))

\right)     ,(3.5)

which leads to Algorithm 3.1. Note that, for the sake of clarity, we write (3.5) as a for-
loop in the pseudo-code of Algorithm 3.1, but it can be implemented with vectorization
to speed up the computation.

Convergence of JFB. The convergence of Algorithm 3.1 has been studied exten-
sively in the convex setting in [4]. Nonetheless, f (and thus F ) is nonconvex due
to the nonconvexity of the transport operators \{ \scrT k\} k. In this case, convergence to
a critical point of problem (3.1) by a finite sequence of iterates has been proved to
occur in [3] if

(i) the function F satisfies the Kurdyka--\Lojasiewicz (KL) inequality [44],
(ii) and the generated sequence of iterates is bounded.
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Algorithm 3.1. Pseudo-code of the joint FB to solve (3.1).

Input: Snapshot matrix Q\in \BbbR m\times n, Transformations \{ \scrT k\} k.
Input: Initial values Q1,(0), . . . ,QK,(0),E(0), Stepsize \alpha \in ]0,2/\beta [.
Output: Estimates of Q1, . . . ,QK ,E.

1: Initialize t to 0.
2: repeat

3: Compute the residual of the approximation R(t) R(t)\leftarrow Q - 
\sum K

k=1 \scrT kQk,(t)

 - E(t) .
4: Perform the joint FB step from Equation (3.3):
5: for Variable block Q1,(t) to Variable block QK,(t) do
6: Update the block Qk in the optimization vector

Qk,(t+1) = SVT\alpha \lambda k
(Qk,(t) + \alpha \scrT  - kR(t)) .

7: end for
8: Update the last block E(t)

E(t+1) = Soft[ - \alpha \lambda K+1,\alpha \lambda K+1](E
(t) + \alpha R(t)) .

9: Increment t.
10: until stopping criterion is met.
11: return \{ Qk,(t)\} k,E(t)

Functions that satisfy the KL inequality form a wide class of functions, which en-
compasses semialgebraic and real analytic functions [13, 44]. The transport operators
which are useful in applications satisfy the KL inequality, as we shall see in section 4.
Moreover, the FB algorithm satisfies the descent lemma [3]. As a consequence, the
objective function F is guaranteed to decrease at each iteration. Algorithm 3.1 thus
enjoys interesting theoretical properties.

3.3. Block-coordinate descent proximal gradient method. In section 3.2,
we applied a direct approach to solve (3.1). In contrast, we propose here a second
approach that consists in using a block coordinate descent (BCD) approach where
we update one matrix amongst the optimization variables x = (\{ Qk\} k,E), the other
ones being fixed. We perform a cyclic BCD, i.e., we start by solving (3.1) in Q1,
then in Q2, and continue to solve for each block in x until we reach the block E; at
that point, we repeat the scheme [5]. However, in BCD FB, each subproblem is not
fully minimized; only a single step of FB is performed [5, 14, 19]. The corresponding
algorithm is shown in Algorithm 3.2. For the sake of clarity, the gradient and the
proximal steps in the update of Qk are separated. Note that this algorithm is exactly
the proximal alternating linearized minimization (PALM) algorithm constructed in
[14]. The involved gradients and proximal operators are the same as the ones in
section 3.2, where we compute a closed-form expression for each of them.

Convergence of BCD FB. The study of the cyclic BCD FB algorithm in a noncon-
vex setting has been conducted in [14]. Similar to the joint case, the convergence to a
critical point is theoretically guaranteed when F satisfies the KL inequality. Moreover,
in the BCD scheme, the assumption that f is gradient \beta -Lipschitz is relaxed: only
the partial gradients of f need to be \beta k-Lipschitz. However, these Lipschitz constants
need to be upper- and lower-bounded for each step in the sequence of iterates and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Algorithm 3.2. Pseudo-code of the BCD FB to solve (3.1).

Input: Snapshot matrix Q\in \BbbR m\times n, Transformations \{ \scrT k\} k.
Input: Initial values Q1,(0), . . . ,QK,(0),E(0), Stepsizes: (\forall k \in J1,K + 1K)\alpha k \in ]0,2/\beta k[.
Output: Estimates of Q1, . . . ,QK ,E.

1: Initialize t to 0.
2: repeat
3: Perform the FB step for each block of problem (3.1):
4: for Variable block Q1,(t) to Variable block QK,(t) do
5: Update the block Qk in the optimization vector

Gk,(t)\leftarrow Qk,(t)  - \alpha k\nabla Qkf(Q1,(t+1), . . . ,Qk - 1,(t+1),Qk,(t), . . . ,QK,(t))

Qk,(t+1)\leftarrow prox\alpha k\lambda k\| .\| \ast 
(Gk,(t)) .

6: end for
7: Update the last block E(t)

E(t+1)\leftarrow prox\alpha K+1\lambda K+1\| .\| 1
(E(t)  - \alpha K+1\nabla Ef(Q1,(t+1), . . . ,QK,t+1,E(t))) .

8: Increment t.
9: until stopping criterion is met.

10: return \{ Qk,(t)\} k,E(t)

for each block (see [14, Assumption 2]). Similarly to its joint version, the BCD FB
algorithm satisfies to a descent lemma, and thus, the objective function is guaranteed
to decrease after each iteration.

3.4. Constrained formulation. Inspired by the work [62], we formulate (2.9)
as the following constrained optimization:\left\{             

minimize
\{ Qk\} k,E

\scrJ 1
\bigl( 
\{ Qk\} k,E

\bigr) def
=

K\sum 
k=1

\lambda k

\bigm\| \bigm\| Qk
\bigm\| \bigm\| 
\ast + \lambda K+1 \| E\| 1

s.t. Q =

K\sum 
k=1

\scrT k(Qk) + E ,

(3.6)

where the minimization of the objection function \scrJ 1 promotes low-rank co-moving
fields while the constraint ensures that the latter generates a good approximation
of \~Q. A standard method to solve problem (3.6) is the augmented Lagrangian
method (ALM) [9]. It consists in the unconstrained minimization of the augmented
Lagrangian \scrL \mu related to problem (3.6),

\scrL \mu (\{ Qk\} k,E,Y)

=\scrJ 1
\bigl( 
\{ Qk\} k,E

\bigr) 
+

\Biggl\langle 
Y

\bigm| \bigm| \bigm| \bigm| Q - K\sum 
k=1

\scrT k(Qk) - E

\Biggr\rangle 

+
\mu 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q - 
K\sum 

k=1

\scrT k(Qk) - E

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

,(3.7)
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Algorithm 3.3. Pseudo-code of the ALM to solve (3.6).

Input: Snapshot matrix Q\in \BbbR m\times n, Transformations \{ \scrT k\} k.
Input: Initial values Q1,(0), . . . ,QK,(0),E(0), Parameter \mu > 0.
Output: Estimates of Q1, . . . ,QK ,E.

1: Initialize t to 0.
2: Initialize the dual variable Y(t) to 0.
3: repeat
4: for Frame k = 1, . . . ,K do

5: Compute the residual: R\leftarrow Q - 
\sum k - 1

l=1 \scrT l(Ql,(t+1)) - 
\sum K

l=k+1 \scrT l(Ql,(t)) - E(t)

6: Perform gradient step: Qk,(t+1)\leftarrow \scrT  - k(R + \mu  - 1Y(t))
7: Perform proximal step: Qk,(t+1)\leftarrow SVT(Qk,(t+1), \mu  - 1\lambda k)
8: end for

9: Perform gradient step: E(t+1)\leftarrow E(t) +\mu  - 1(Q - 
\sum K

k=1 \scrT k(Qk,(t+1)) - E(t))+
Y(t)

10: Perform proximal step: E(t+1)\leftarrow Soft[ - \mu  - 1\lambda K+1,\mu  - 1\lambda K+1](E
(t+1))

11: Perform gradient ascent: Y(t+1)\leftarrow Y(t) + \mu (Q - 
\sum 

k \scrT k(Qk,(t+1)) - E(t+1))
12: until stopping criterion is met.
13: return \{ Qk,(t+1)\} k,E(t)

where Y is an M \times N real matrix corresponding to the Lagrange multipliers and \mu is
a strictly positive real parameter.

Note that (3.7) has a form similar to (3.2): it is the sum of a convex lower
semicontinuous separable term \scrJ 1 and a smooth term. Therefore, the minimization
of \scrL \mu can be performed like in section 3.3, with a cyclic BCD where an FB step is
performed for each block, a.k.a. PALM algorithm [14]. The step sizes are set to \mu  - 1

following [39]. Then, the Lagrangian multiplier is updated using a gradient ascent.
The obtained algorithm is displayed in Algorithm 3.3.

Convergence of ALM. Although Algorithm 3.3 looks like the alternative direction
method of multipliers (ADMM) [15], it is not an ADMM because of the nonlinearity of
the transport operators. To the best of our knowledge, there are no theoretical guar-
antees about the convergence of Algorithm 3.3, even if some recent works extended
ADMM for some nonconvex settings [25, 66] and for substituting a linear operator
with a multilinear one in the constraint [56].

4. Experimental results. In this section, we refer to Algorithm 3.1 as JFB, to
Algorithm 3.2 as BFB, and to Algorithm 3.3 as ALM. All the simulations presented in
this section have been conducted with implementations in Python.1 We compare them
with the \scrJ 2 method derived in [62] and the multishift and reduce method \scrJ 3 used
in [10, 63]. For every experiment, we use the same initialization for all the different
algorithms: we set matrices \{ Qk\} and E to 0, the matrix composed solely of 0.

Stopping criterion. The following stopping criterion is used for JFB and BFB:

F (x(t)) - F (x(t+1))\leq \delta F (x(t)) ,(4.1)

where \delta is a tolerance set to 10 - 5, x(t) is the previous iterate, and x(t+1) is the current
one. If the convergence is not reached after 5,000 iterations, we stop the algorithm

1Source code is available at https://zenodo.org/doi/10.5281/zenodo.13366119.
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Fig. 2. Impact of the hyperparameters on the relative reconstruction error at each iteration on
the multilinear transport test case. The co-moving ranks R\ast 

k = rank(Qk) k= 1,2 at iteration 500 are
stated for each hyperparameter at the end of each line.

and return the current estimated co-moving fields and residual error. The stopping

criterion for ALM is similar to (4.1), but we use \scrE (x) =
\| Q - 

\sum 
k \scrT k(Qk,(t)) - E(t)\| 

\mathrm{F}

\| Q\| \mathrm{F}

instead of F and set the maximum number of iterations to 500.

Implementation. For FB methods, it is difficult to find an analytic expression
for the Lipschitz constants \beta and \{ \beta k\} , which depend on \{ \scrT k\} . Hence, we use a
stepsize \alpha = 1/K in all test cases, which is small enough to obtain convergence.
Note that the number of frames K is a priori known since we assume we know the
transformations \scrT k. The parameters \{ \lambda k\} k\in J1,KK are all set to the same value \lambda :
we have no a priori information to promote more low-rank estimates for some of the
co-moving frames \{ Qk\} k than the others in our test cases. Choosing a higher value of
\lambda favors lower-rank factors Qk, whereas a lower value promotes a low reconstruction
error. The value used in our test case is determined empirically: we test several
values and select the one that yields the best results. The parameter \mu in ALM has the
opposite behavior, and its value is set around \mu 0 = MK/(4| | Q| | 1), similar to [18]. The
impact of these parameters is displayed in Figure 2 for the test case from section 4.1.1.
The complexity per iteration of all algorithms scales the same and is dominated by the
SVD of the co-moving fields performed in the proximal operator. It can be decreased
using randomization [28] or wavelet techniques [41]. In the supplementary material
section SM2, we present additional performance tests and a complexity study of our
algorithms. The scaling behavior with respect to M and N is investigated: we observe
that for representative examples, the complexity scales linearly as \scrO (M) in the space
dimension M and as \scrO (N1.4) with the number of snapshots N . The complexity in N
can be further reduced to \scrO (N) using a randomized SVD.

Performance evaluation. We compare the different algorithms with the follow-
ing criteria: their computational efficiency (CPU time) along with the number of itera-
tions before convergence, the ranks Rk of the estimated co-moving fields \{ Qk\} k\in J1,KK,

and the relative reconstruction error defined as \| Q - 
\sum K

k=1 \scrT k(Qk) - E\| F/\| Q\| F. Ta-
ble 1 summarizes the performance comparison of the three proposed methods for the
test cases described below.
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Table 1
Performance comparison of the algorithms designed to solve problem (2.9) on our test cases.

The lowest relative error and CPU times are highlighted in bold. \scrJ 2 and \scrJ 3 cannot estimate the
ranks, the values indicated the input ranks. The cross means the original code cannot handle the
data.

JFB BFB ALM \scrJ 2 \scrJ 3

Relative error
Multilinear transport 1.42e-02 1.41e-02 1.9e-05 1.37e-03 6.4e-02

Sine waves 1.43e-02 7.96e-01 1.3e-04 1.45e-02 8.1e-01
Wildland fire (temperature) 9.1e-02 9.5e-02 2.1e-02 4.75e-02 \times 
Two cylinders wake flow u1 1.58e-03 1.58e-03 1.02e-02 8.43e-03 \times 
Two cylinders wake flow u2 1.1e-02 1.1e-02 1.62e-02 1.41e-02 \times 

Estimated ranks

Multilinear transport (4,2) (4,2) (4,2) (4,2) (4,2)
Sine waves (4,1) (4,1) (4,1) (4,1) (4,1)

Wildland fire (temperature) (4,10) (5,9) (10,8) (10,8) \times 
Two cylinders wake flow u1 (203,228) (209,221) (40,31) (40,31) \times 
Two cylinders wake flow u2 (221,251) (221,251) (119,128) (119,128) \times 

CPU time

Multilinear transport 27s 16s 9s 28s 2s

Sine waves 75s 89s 14s 3s 1s
Wildland fire (temperature) 243s 331s 201s 70s \times 
Two cylinders wake flow u1 12h 14h 34h 7h \times 
Two cylinders wake flow u2 29h 29h 34h 7h \times 

Number of iterations
Multilinear transport 221 174 104 500 1000

Sine waves 961 777 145 71 1000

Wildland fire (temperature) 15 18 7 6 \times 
Two cylinders wake flow u1 612 553 500 500 \times 
Two cylinders wake flow u2 1500 1500 500 500 \times 

4.1. Validation on synthetic data. We first test our algorithms on synthetic
data for which an exact decomposition of the snapshot matrix Q is known in order
to numerically validate our approach.

4.1.1. Multilinear transport. This example illustrates that, in a noiseless con-
text, our algorithms are able to retrieve a low-rank decomposition with a low recon-
struction error and the correct ranks. To this end, we generate a snapshot matrix
Q of dimensions 400\times 200 by discretizing the following transport-dominated field q
composed of two co-moving structures of ranks (R1,R2) = (4,2):

q(x, t) =

R1\sum 
r=1

sin(rt\pi )h(x + \Delta 1(t) - 0.1r) +

R2\sum 
r=1

cos(rt\pi )h(x + \Delta 2(t) - 0.1r) .

The initial spatial profile of the waves in each co-moving frame is given by h(x) =
exp( - x2/\delta 2), where \delta is set to 0.0125 and the shift (\Delta 1,\Delta 2) to (t, - t). The discretiza-
tion grid is obtained by uniformly discretizing the set [ - 0.5,0.5]\times [0,0.5]. Hence, after
the shift transformations, the data fit on the grid and do not cause any interpolation
error. Moreover, the data matrix Q is also free from any noise in the data. Conse-
quently, E = 0 in model (2.8).

Now, we apply the FB algorithms to decompose Q with \lambda = 0.3 and \lambda K+1 = 0,
as well as ALM with \lambda = 1, \lambda K+1 = 0, and \mu = MNt/(4| | Q| | 1). In Figure 3(a), we
plot the relative error at each iteration of the algorithms, while in Figure 4, we plot
the evolution of the estimated co-moving ranks (R\ast 

1,R
\ast 
2). We first observe the descent
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(a) Multilinear transport test case.
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(b) Sine waves with noise test case.

Fig. 3. Decay of the relative approximation error in the Frobenius norm.
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Fig. 4. Ranks of the estimated co-moving fields at each iteration for the multilinear transport
test case.

property of FB methods, while ALM misses such a property. We then remark that all
the methods retrieve the correct ranks. We also note that, although ALM reaches the
maximum number of iterations, it has a better accuracy than the two FB methods.
Moreover, Table 1 shows that \scrJ 2 reaches a machine precision relative error for the
decomposition. However, in contrast with our proposed methods, \scrJ 2 suffers from two
drawbacks:

(i) it requires to know explicitly the correct ranks, which is a challenging imped-
iment on real data;

(ii) it performs worse in the presence of noise, as we will see in section 4.1.2.
Another advantage of the new formulation is that the nuclear norm removes any
frame that does not lead to a low-rank description. In the supplementary material
section SM1, we study the behavior of ALM when an additional frame with the shift
\Delta 3(t) = t2 is added to the decomposition. As this shift does not describe any transport
present in the system, the additional co-moving frame Q3 converges to 0 along the
iterations.

4.1.2. Sine waves with noise. We now evaluate our methods in a noisy con-
text. Similarly to the previous section, we generate a snapshot matrix Q with di-
mensions 400\times 200 by discretizing the following field q composed of two co-moving
structures with ranks (R1,R2) = (4,1):

q(x, t) =

R1\sum 
r=1

sin(4\pi rt)h(x - 0.1 - 0.25 + \Delta 1(t)) + h(x - 0.2 - \Delta 2(t)) ,
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Fig. 5. Ranks of the estimated co-moving fields at each iteration for the sine waves test case
with noise.

where h(x) = exp( - x2/\delta 2), \delta = 0.0125, (\Delta 1,\Delta 2) = (0.25 cos(7\pi t), - t), and the dis-
cretization grid is a uniform lattice on [0,0.5] \times [0,1]. In contrast to the previous
example, the transformations \scrT 1 and \scrT 2 now introduce interpolation errors to the
data stored in Q. Furthermore, we add a salt-and-pepper noise on the data Q by
setting 12.5\% of its elements to 1. The indices of the noisy data are drawn randomly
from a discrete uniform distribution. An illustration of the snapshot matrices and
their sPOD decomposition was given in Figure 1.

We run our three algorithms with the parameters \lambda = 0.3 and \lambda K+1 = 0.0135 for
FB methods and \lambda = 1, \lambda K+1 = 1/

\sqrt{} 
min(M,K) and \mu = \mu 0/10 for ALM. Since \scrJ 2

and \scrJ 3 are not able to estimate the ranks for noisy data, we give them the correct
ones to be able to conduct a comparison. Nonetheless, this is a severe restriction
compared to our proximal methods. Figures 3(b) and 5 respectively show the relative
error and the estimated ranks as a function of the iterations. We observe that even
in the presence of noise, our three methods estimate the correct ranks. Furthermore,
ALM shows the lowest relative error as well as the lowest running time.

4.2. 2D wildland-fire model. We now test our algorithms on the 2D wildland
fire model given in [17], where authors use this model to assess the validity and
the performance of their neural network-based sPOD. The model consists of two
coupled reaction-diffusion equations: one describes the evolution of the temperature,
and the other one describes the evolution of the fuel supply mass fraction. We use
similar model parameters as in [17] and showcase only the results with respect to
the temperature. However, similar statements hold when the supply mass fraction
is included (see [17]). The differential equations are discretized using a 500 \times 500
equally spaced grid on the domain [0,500]2 and integrated up to time Tend = 900 for
a reaction rate \mu = 558.49 and wind velocity v = 0.2. We then generate the snapshot
matrix of the temperature with 100 equally spaced snapshots.2

A selected snapshot of the temperature profile is shown in Figure 6. In this
simulation, a fire starts as an initial ignition with a Gaussian distribution in the center
of the domain. Thereafter, a reaction wave spreads from the middle of the domain to
the right, induced by a wind force. The ignition and traveling wave can be decomposed
into a stationary frame and a frame that captures the traveling reaction wave.

To separate the frames, we apply the transformations outlined in [17]. In this
example, the shift now depends not only on time but also on space. This spatial

2Data is available for download at https://doi.org/10.5281/zenodo.13355796.
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Fig. 6. Decomposition results for the 2D wildland-fire test case with wind at t= 50. The first
row shows the sPOD approximation of the temperature and its decomposition into the individual
frames using the J2 (upper half) and ALM (lower half) algorithm. The second row shows a profile
plot of all algorithms along the horizontal line at y = 250 and the results of the POD with rank
R= 18. The ranks and approximation quality of all other algorithms are listed in Table 1.

dependency is modeled using a low-rank parameterization, as detailed in [17]. Af-
ter configuring the shift transformations, we execute the proximal sPOD algorithms
and assess their performance. We set \lambda = 2200 and \lambda K+1 = 0 for decomposing the
temperature snapshot matrix using the FB algorithms. The results are visualized for
one snapshot in Figure 6 and quantified in Table 1. First, we observe that all sPOD
algorithms approximate the data without the typical oscillatory effects induced by
the POD (lower left profile picture). Furthermore, the direct comparison in Figure 6
shows that the J2 algorithm is not able to separate the traveling reaction wave from
the initial ignition impulse. In contrast, the proximal methods provide a better sepa-
ration, whereas the ALM algorithm shows the best results. The noise part captured
in E is not shown in our examples as it only contains small interpolation errors.

4.3. Two cylinder wake flow. Lastly, we study the incompressible flow around
two cylinders simulated with the open source software WABBIT [21]. The setup is
visualized in Figure 7 and is inspired by biolocomotion, where the leader is followed by
a chaser in a free-stream flow of uniform velocity u\infty . In biolocomotion, the interaction
between animals in close proximity, like fish or birds, is studied to understand their
swarm behavior [29, 72]. In particular, one tries to explain swarm behavior with
potential physics reasons, like energy minimization, or biological reasons, such as
breeding or defense. To study a swarm from an idealist fluid dynamic perspective, a
leading cylinder with a diameter l is placed at a fixed position (x1, y1) = (L/4,L/2)
in a uniform flow at Reynolds number Re = u\infty l/\nu = 200, and the chaser further
downstream (x2, y2) = (L/2,L/2 + \Delta cyl(t)) is shifted along a vertical path \Delta cyl(t)
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Fig. 7. Illustration of the computational set-up of the two-cylinder simulation, one fixed, one
vertically moving. The flow is driven by the inflow u\infty , which is indicated by the arrows. Within
the computational domain \Omega = [0,L]2, the flow passes the two cylinders colored gray and generates
a vortex shedding. The fixed cylinder is located at (x, y) = (L/4,L/2), and the moving cylinder is at
(x2, y2) = (L/2,L/2 + \Delta \mathrm{c}\mathrm{y}\mathrm{l}(t)).

Table 2
Physical parameters of the two-cylinder simulation.

Name Value Name Value

Simulation time T\mathrm{e}\mathrm{n}\mathrm{d} = 2000 Domain size [0,64]\times [0,64]
Inflow velocity u\infty = 1 Reynolds number Re= 200

Cylinder diameter l= 2 Viscosity \nu = 10 - 2

that is time-dependent. The vortex shedding generated by the first cylinder impacts
the drag and lift forces of the second cylinder. To study the interactions between the
two systems, they need to be separated, for example, using the proposed proximal
algorithms.

The snapshot set for the example is built from the trajectory corresponding to
the path \Delta cyl(t) = 16 sin(2\pi f1t) with f1 = 10fwake = 0.2\times 10 - 2s - 1. Here, fwake was
calculated from the Strouhal number St = lfwake/u\infty of the leading cylinder. The
data3 are sampled with \Delta (t) = 1 in time, resulting in 500 snapshots. We sample a full
period T = 500 = 1/f1 of the movement in an interval [3T,4T ]. After the simulation,
we upsample the adaptive grid to a uniform 512\times 512 grid. All physically relevant
parameters like properties of the fluid are listed in Table 2. Further information about
the simulation can be found in [39].

To reduce the data using the sPOD, we introduce the shift transformations. For
the leading cylinder, a shift transformation is not needed since the cylinder is station-
ary (\scrT 1 = Id). For the second one, we introduce the shift transformation

\scrT 2(q)(x, y, t) = q(x, y + \Delta cyl(t), t) ,(4.2)

which accounts for the movement of the cylinder and its vortex shedding.
Note that with the utilized mappings both cylinders are stationary in their corre-

sponding frames and similarly in their vortex shedding. Hence, the structures are no
longer transport-dominated, and therefore a better decomposition can be achieved.
This is in contrast with purely Lagrangian methods like [1, 50, 53, 70, 76]. Here, a
single one-to-one mapping of the domain onto a reference mesh is used to compensate
for the transport. However, even if the two cylinders are stationary in this reference
mesh, a strong oscillation of the vortex shedding could not be avoided, since the two
vortex sheddings cross. This explains the necessity of a multiframe approximation for
a separation of the two phenomena.

3Data is available for download at https://doi.org/10.5281/zenodo.13355796.
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Fig. 8. Relative reconstruction error of the velocity fields (u1, u2) in the Frobenius norm versus
the DOFs. The DOFs are determined from the truncation rank R of the POD and as the sum of
the co-moving ranks R=R1 +R2 in the case of \scrJ 2 and the proximal algorithms, respectively.

With the imposed shifts, we apply the proximal algorithms separately to the
individual velocity components q = u1, u2 of the PDE solution. We apply the following
strategies to compare the algorithms:

(i) We run the proximal algorithms until they reach the stopping criterion to
obtain two co-moving fields \{ qk\} k=1,2 with their corresponding truncation
ranks \{ R\ast 

k\} k=1,2.
(ii) We truncate the \{ qk\} k=1,2 for all possible rank combinations (R1,R2) \in 

J1,R\ast 
1K \times J1,R\ast 

2K and select the pairs (R1,R2) for which the ROM with R
DOFs has the smallest truncation error.

(iii) We run the \scrJ 2 algorithm on the exact same pairs (R1,R2) determined from
the previous step.

The comparison of the resulting approximation errors for all algorithms can be seen
in Figure 8. In the implementation of ALM, we set the parameters as follows: the
initial value \mu 0 is defined as MNt/(4| | Q| | 1), and \mu is set to 5.0\times 10 - 3\mu 0 for u1 and to
4.0\times 10 - 4\mu 0 for u2, respectively. For both ALM and FB, we configure the parameters
with \lambda = 1 and \lambda K+1 = 0.

As shown in Figure 8, the approximation errors are similar for all algorithms. The
results of sPOD algorithms are superior to the results of the POD. Additionally, it
should be pointed out that, in contrast to the proximal algorithms, the \scrJ 2 algorithm
requires a separate run of the algorithm for every data point shown in Figure 8.
Indeed, \scrJ 2 optimizes q1, q2 only for a fixed rank. However, this does not imply that
the optimized co-moving fields have a fast singular value decay. As a consequence, \scrJ 2
is not able to separate the two cylinders well. This is shown in Figure 9, which displays
the two dimensional vorticity field \omega (x, y) = \partial xu2(x, y) - \partial yu1(x, y) resulting from the
sPOD approximation of the velocity field (u1, u2). A video of the decomposed flow
field is presented in the supplementary material section SM3.

Besides the better approximation quality compared to the POD, we highlight
the two important implications of this example, which could not have been achieved
previously.

(i) Since proximal algorithms are capable of separating the flow of the two sys-
tems, one can build a surrogate model for the individual systems that includes
the path as a reduced variable. Therefore, it may be used to optimize the
path of the second cylinder regarding drag or lift.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 9. Separation of the two moving cylinders. The vorticity field \omega = \partial xu2 - \partial yu1 is displayed.
It has been computed from the coupled cylinder pair and the reconstructed vorticity field \~\omega = \omega 1 + \omega 2,
with \omega i = \partial x\scrT iui

2  - \partial y\scrT iui
1, i= 1,2. The co-moving ranks that are estimated by ALM and used as

an input in \scrJ 2 are (R1,R2) = (40,31) for (u1
1, u

2
1) and (R1,R2) = (119,128) for (u1

2, u
2
2). Separation

similar to ALM is obtained with both FB algorithms (not shown here).

(ii) The example allows us to identify structures that can be attributed to the
free-stream flow and structures that are responsible for the interaction. A
first study in this direction can be found in [39].

4.4. Discussion. Table 3 compares and summarizes the advantages of the three
methods we propose. In particular, we note that FB algorithms have the desirable
descent property, which ensures that each iteration yields a better minimizer. More-
over, they also have theoretical guarantees that they converge to a critical point. In
contrast, ALM performs best experimentally but does not have these two important
theoretical properties. We observe in Table 1 that, although ALM incurs higher costs
per iteration, it generally requires fewer iterations to achieve convergence, making
it more cost-effective overall. However, the algorithm is more computationally ex-
pensive than the POD method, as each iteration requires performing multiple SVDs.
Consequently, the offline costs for the decomposition are relatively high. For instance,
according to [17], the CPU time tFOM = 35.7 s is required for the creation/simulation
of the 2D wildland fire data. This is approximately six times less CPU time compared
to the ALM decomposition performed on a similar architecture.

5. Conclusion. We have presented three proximal algorithms to extend sPOD
for transport-dominated flows with multiple transports using a decomposition into
co-moving linear subspaces. FB methods own enjoyable theoretical properties such as
a descent lemma and convergence even in a nonconvex setting, such as sPOD, while
ALM demonstrates the best numerical results. Furthermore, we have shown that our
methods can estimate the correct ranks of the different components of the sPOD.
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Table 3
Benefits of the three proposed proximal methods.

JFB BFB ALM

Guarantee of convergence Yes Yes No
Descent lemma Yes Yes No

Experimental accuracy Low Low High

In contrast to existing approaches, our methods are robust to noise. The numerical
results show an accurate and strict separation of the involved transport phenomena.
The close connection of our algorithms to the POD in combination with the strict
separation opens a new paradigm for the optimization, control, and analysis of flows.
A promising topic for future research would be the development of methods that can
estimate both the co-moving structures and the associated transformation operators
during the optimization phase. A first step in this direction can be found in [77].

Credit authorship contribution statement. In Table 4, we declare the au-
thors' contributions to this work.

Table 4

P. Krah: Conceptualization, Methodology, Software, Writing - original draft.

A. Marmin: Methodology, Formal Analysis, Software, Writing - original draft.

B. Zorawski: Software, Visualization, Writing - review and editing.
J. Reiss: Writing - review \& editing, Funding acquisition.

K. Schneider: Writing - review \& editing, Funding acquisition, Project administration.

Acknowledgment. The authors acknowledge Shubhaditya Burela and Thomas
Engels for providing the wildland fire and the two-cylinder data, respectively. Fur-
thermore, we thank Martin Isoz and Anna Kovarnova for discussion related to this
work.

REFERENCES

[1] M. Alireza Mirhoseini and M. J. Zahr, Model reduction of convection-dominated partial
differential equations via optimization-based implicit feature tracking, J. Comput. Phys.,
473 (2023), 111739, https://doi.org/10.1016/j.jcp.2022.111739.

[2] F. Arbes, C. Greif, and K. Urban, The Kolmogorov N-Width for Linear Transport: Exact
Representation and the Influence of the Data, preprint, https://arxiv.org/abs/2305.00066,
2023.

[3] H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for
semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting,
and regularized Gauss-Seidel methods, Math. Program., 137 (2011), pp. 91--129,
https://doi.org/10.1007/s10107-011-0484-9.

[4] H. H. Bauschke and P. L. Combettes, Fenchel--Rockafellar duality, in Convex Analysis
and Monotone Operator Theory, CMS Books in Mathematics, Springer New York, 2011,
pp. 207--222, https://doi.org/10.1007/978-1-4419-9467-7 15.

[5] A. Beck, First-Order Methods in Optimization, MOS-SIAM Ser. Optim. 25, SIAM, Philadel-
phia, 2017, https://doi.org/10.1137/1.9781611974997.

[6] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduc-
tion methods for parametric dynamical systems, SIAM Rev., 57 (2015), pp. 483--531,
https://doi.org/10.1137/130932715.

[7] G. Berkooz, P. Holmes, and J. Lumley, The proper orthogonal decomposition in
the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25 (1993), pp. 539--575,
https://doi.org/10.1146/annurev.fl.25.010193.002543.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.jcp.2022.111739
https://arxiv.org/abs/2305.00066
https://doi.org/10.1007/s10107-011-0484-9
https://doi.org/10.1007/978-1-4419-9467-7_15
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/130932715
https://doi.org/10.1146/annurev.fl.25.010193.002543


ROBUST SHIFTED PROPER ORTHOGONAL DECOMPOSITION A653

[8] F. Bernard, A. Iollo, and S. Riffaud, Reduced-order model for the BGK equation
based on POD and optimal transport , J. Comput. Phys., 373 (2018), pp. 545--570,
https://doi.org/10.1016/j.jcp.2018.07.001.

[9] D. P. Bertsekas, Nonlinear Programming, 3rd ed., Athena Scientific, Belmont, MA, 2016.
[10] F. Black, P. Schulze, and B. Unger, Projection-based model reduction with dynamically

transformed modes, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 2011--2043,
https://doi.org/10.1051/m2an/2020046.

[11] F. Black, P. Schulze, and B. Unger, Efficient wildland fire simulation via nonlinear model
order reduction, Fluids, 6 (2021), 280, https://doi.org/10.3390/fluids6080280.

[12] F. Black, P. Schulze, and B. Unger, Modal decomposition of flow data via gradient-based
transport optimization, in Active Flow and Combustion Control 2021, Springer, 2021,
pp. 203--224, https://doi.org/10.1007/978-3-030-90727-3 13.

[13] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota, Clarke subgradients of stratifiable func-
tions, SIAM J. Optim., 18 (2007), pp. 556--572, https://doi.org/10.1137/060670080.

[14] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization
for nonconvex and nonsmooth problems, Math. Program., 146 (2014), pp. 459--494,
https://doi.org/10.1007/s10107-013-0701-9.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. Trends Mach.
Learn., 3 (2010), pp. 1--122, https://doi.org/10.1561/2200000016.

[16] S. Brivio, S. Fresca, N. R. Franco, and A. Manzoni, Error estimates for POD-DL-
ROMs: A deep learning framework for reduced order modeling of nonlinear parametrized
PDEs enhanced by proper orthogonal decomposition, Adv. Comput. Math., 50 (2024), 33,
https://doi.org/10.1007/s10444-024-10110-1.

[17] S. Burela, P. Krah, and J. Reiss, Parametric Model Order Reduction for a Wild-
land Fire Model via the Shifted Pod Based Deep Learning Method , preprint,
https://arxiv.org/abs/2304.14872, 2023.

[18] E. J. Cand\`es, X. Li, Y. Ma, and J. Wright, Robust principal component analysis? , J. ACM,
58 (2011), pp. 1--37, https://doi.org/10.1145/1970392.1970395.

[19] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, A block coordinate variable
metric forward-backward algorithm, J. Global Optim., 66 (2016), pp. 457--485,
https://doi.org/10.1007/s10898-016-0405-9.

[20] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke,
R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, eds., Springer,
2011, pp. 185--212.

[21] T. Engels, K. Schneider, J. Reiss, and M. Farge, A wavelet-adaptive method for multi-
scale simulation of turbulent flows in flying insects, Commun. Comput. Phys., 30 (2021),
pp. 1118--1149, https://doi.org/10.4208/cicp.OA-2020-0246.

[22] F. Fedele, O. Abessi, and P. J. Roberts, Symmetry reduction of turbulent pipe flows, J.
Fluid. Mech., 779 (2015), pp. 390--410, https://doi.org/10.1017/jfm.2015.423.

[23] S. Fresca, L. Ded\`e, and A. Manzoni, A comprehensive deep learning-cased approach to
reduced order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput.,
87 (2021), 6, https://doi.org/10.1007/s10915-021-01462-7.

[24] S. Fresca and A. Manzoni, POD-DL-ROM: Enhancing deep learning-based re-
duced order models for nonlinear parametrized PDEs by proper orthogonal
decomposition, Comput. Methods Appl. Mech. Engrg., 388 (2022), 114181,
https://doi.org/10.1016/j.cma.2021.114181.

[25] W. Gao, D. Goldfarb, and F. E. Curtis, ADMM for multiaffine constrained opti-
mization, Optim. Methods Softw., 35 (2019), pp. 257--303, https://doi.org/10.1080/
10556788.2019.1683553.

[26] H. Gowrachari, N. Demo, G. Stabile, and G. Rozza, Non-intrusive Model Reduction of
Advection-Dominated Hyperbolic Problems Using Neural Network Shift Augmented Man-
ifold Transformations, preprint, https://doi.org/10.48550/ARXIV.2407.18419, 2024.

[27] C. Greif and K. Urban, Decay of the Kolmogorov N-width for wave problems, Appl. Math.
Lett., 96 (2019), pp. 216--222, https://doi.org/10.1016/j.aml.2019.05.013.

[28] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217--288, https://doi.org/10.1137/090771806.

[29] C. K. Hemelrijk and H. Hildenbrandt, Schools of fish and flocks of birds: Their shape
and internal structure by self-organization, Interface Focus, 2 (2012), pp. 726--737,
https://doi.org/10.1098/rsfs.2012.0025.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.jcp.2018.07.001
https://doi.org/10.1051/m2an/2020046
https://doi.org/10.3390/fluids6080280
https://doi.org/10.1007/978-3-030-90727-3_13
https://doi.org/10.1137/060670080
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1561/2200000016
https://doi.org/10.1007/s10444-024-10110-1
https://arxiv.org/abs/2304.14872
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1007/s10898-016-0405-9
https://doi.org/10.4208/cicp.OA-2020-0246
https://doi.org/10.1017/jfm.2015.423
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/10.1080/10556788.2019.1683553
https://doi.org/10.1080/10556788.2019.1683553
https://doi.org/10.48550/ARXIV.2407.18419
https://doi.org/10.1016/j.aml.2019.05.013
https://doi.org/10.1137/090771806
https://doi.org/10.1098/rsfs.2012.0025


A654 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

[30] J. S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlin-
ear problems using neural networks, J. Comput. Phys., 363 (2018), pp. 55--78,
https://doi.org/10.1016/j.jcp.2018.02.037.

[31] C. Huang, K. Duraisamy, and C. Merkle, Challenges in reduced order modeling of react-
ing flows, in 2018 Joint Propulsion Conference, American Institute of Aeronautics and
Astronautics, 2018, https://doi.org/10.2514/6.2018-4675.

[32] E. N. Karatzas, F. Ballarin, and G. Rozza, Projection-based reduced order models for
a cut finite element method in parametrized domains, Comput. Math. Appl., 79 (2020),
pp. 833--851, https://doi.org/10.1016/j.camwa.2019.08.003.

[33] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi, A fast and accurate physics-informed neural
network reduced order model with shallow masked autoencoder , J. Comput. Phys., 451
(2022), 110841, https://doi.org/10.1016/j.jcp.2021.110841.

[34] O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl.,
29 (2007), pp. 434--454, https://doi.org/10.1137/050639703.

[35] J. Koellermeier, P. Krah, and J. Kusch, Macro-micro decomposition for consistent and
conservative model order reduction of hyperbolic shallow water moment equations: A study
using POD-Galerkin and dynamical low-rank approximation, Adv. Comput. Math., 50
(2024), 76, https://doi.org/10.1007/s10444-024-10175-y.

[36] J. Koellermeier, P. Krah, J. Reiss, and Z. Schellin, Model order reduction for the
1D Boltzmann-BGK equation: Identifying intrinsic variables using neural networks, Mi-
crofluid. Nanofluid., 28 (2024), 16, https://doi.org/10.1007/s10404-024-02711-5.

[37] A. Kov\'arnov\'a and M. Isoz, Model order reduction for particle-laden flows: Systems
with rotations and discrete transport operators, in Topical Problems of Fluid Me-
chanics 2023, TPFM, Institute of Thermomechanics of the Czech Academy of Sci-
ences; CTU in Prague Faculty of Mech. Engineering Dept. Tech. Mathematics, 2023,
https://doi.org/10.14311/tpfm.2023.014.

[38] A. Kov\'arnov\'a, P. Krah, J. Reiss, and M. Isoz, Shifted proper orthogonal decomposition and
artificial neural networks for time-continuous reduced order models of transport-dominated
systems, in Topical Problems of Fluid Mechanics 2022, TPFM, Institute of Thermomechan-
ics of the Czech Academy of Sciences, 2022, https://doi.org/10.14311/tpfm.2022.016.

[39] P. Krah, Non-linear Reduced Order Modeling for Transport Dominated Fluid Systems, Ph.D
thesis, Technische Universit\"at Berlin, 2023, https://doi.org/10.14279/depositonce-16974.

[40] P. Krah, S. B\"uchholz, M. H\"aringer, and J. Reiss, Front transport reduction for complex
moving fronts: Nonlinear model reduction for an advection-reaction-diffusion equation
with a Kolmogorov-Petrovsky-Piskunov reaction term, J. Sci. Comput., 96 (2023), 28,
https://doi.org/10.1007/s10915-023-02210-9.

[41] P. Krah, T. Engels, K. Schneider, and J. Reiss, Wavelet adaptive proper orthog-
onal decomposition for large-scale flow data, Adv. Comput. Math., 48 (2022), 10,
https://doi.org/10.1007/s10444-021-09922-2.

[42] P. Krah, M. Sroka, and J. Reiss, Model order reduction of combustion processes with complex
front dynamics, in Numerical Mathematics and Advanced Applications ENUMATH 2019,
Springer, 2020, pp. 803--811, https://doi.org/10.1007/978-3-030-55874-1 79.

[43] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a
general equation in fluid dynamics, SIAM J. Numer. Anal., 40 (2002), pp. 492--515,
https://doi.org/10.1137/S0036142900382612.

[44] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. de l'Institut
Fourier, 48 (1998), pp. 769--783, https://doi.org/10.5802/aif.1638.

[45] K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear man-
ifolds using deep convolutional autoencoders, J. Comput. Phys., 404 (2020), 108973,
https://doi.org/10.1016/j.jcp.2019.108973.

[46] Z. Lin, R. Liu, and Z. Su, Linearized alternating direction method with adaptive penalty for
low-rank representation, in Proc. Ann. Conf. Neur. Inform. Proc. Syst., Vol. 24, J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds., Curran Associates, 2011,
https://proceedings.neurips.cc/paper files/paper/2011/file/18997733ec258a9fcaf239cc55d
53363-Paper.pdf.

[47] J. L. Lumley, The Structure of Inhomogeneous Turbulence, A. M. Yaglom and V. I. Tatarski,
eds., Nauka, Moscow, 1967, pp. 166--178.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.2514/6.2018-4675
https://doi.org/10.1016/j.camwa.2019.08.003
https://doi.org/10.1016/j.jcp.2021.110841
https://doi.org/10.1137/050639703
https://doi.org/10.1007/s10444-024-10175-y
https://doi.org/10.1007/s10404-024-02711-5
https://doi.org/10.14311/tpfm.2023.014
https://doi.org/10.14311/tpfm.2022.016
https://doi.org/10.14279/depositonce-16974
https://doi.org/10.1007/s10915-023-02210-9
https://doi.org/10.1007/s10444-021-09922-2
https://doi.org/10.1007/978-3-030-55874-1_79
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.5802/aif.1638
https://doi.org/10.1016/j.jcp.2019.108973
https://proceedings.neurips.cc/paper_files/paper/2011/file/18997733ec258a9fcaf239cc55d53363-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/18997733ec258a9fcaf239cc55d53363-Paper.pdf


ROBUST SHIFTED PROPER ORTHOGONAL DECOMPOSITION A655

[48] A. Mendible, S. L. Brunton, A. Y. Aravkin, W. Lowrie, and J. N. Kutz, Dimensionality
reduction and reduced-order modeling for traveling wave physics, Theor. Comput. Fluid
Dyn., 34 (2020), pp. 385--400, https://doi.org/10.1007/s00162-020-00529-9.

[49] A. Mendible, J. Koch, H. Langer, S. L. Brunton, and J. N. Kutz, Data-
driven modeling of rotating detonation waves, Phys. Rev. Fluids., 6 (2021), 050507,
https://doi.org/10.1103/PhysRevFluids.6.050507.

[50] R. Mojgani and M. Balajewicz, Low-rank registration based manifolds for convection-
dominated PDEs, Proceedings of the AAAI Conference on Artificial Intelligence, 35 (2021),
pp. 399--407, https://doi.org/10.1609/aaai.v35i1.16116.

[51] J.-J. Moreau, Proximit\'e et dualit\'e dans un espace hilbertien, Bull. Soc. Math. France, 93
(1965), pp. 273--299, http://eudml.org/doc/87067.

[52] B. R. Noack, K. Afanasiev, M. Morzi\'nski, G. Tadmor, and F. Thiele, A hierarchy of low-
dimensional models for the transient and post-transient cylinder wake, J. Fluid. Mech.,
497 (2003), pp. 335--363, https://doi.org/10.1017/S0022112003006694.

[53] M. Nonino, F. Ballarin, G. Rozza, and Y. Maday, A reduced basis method
by means of transport maps for a fluid-structure interaction problem with slowly
decaying Kolmogorov n-width, Adv. Comput. Sci. Eng., 1 (2019), pp. 36--58,
https://doi.org/10.3934/acse.2023002.

[54] K. Oberleithner, M. Sieber, C. Nayeri, C. O. Paschereit, C. Petz, H.-C. Hege, B.
R. Noack, and I. Wygnanski, Three-dimensional coherent structures in a swirling jet
undergoing vortex breakdown: Stability analysis and empirical mode construction, J. Fluid.
Mech., 679 (2011), pp. 383--414, https://doi.org/10.1017/jfm.2011.141.

[55] M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future chal-
lenges, in Proceedings of the Conference Algoritmy, 2016, pp. 1--12.

[56] D. Papadimitriou and B. C. V\~u, An augmented Lagrangian method for nonconvex composite
optimization problems with nonlinear constraints, Optim. Eng., 25 (2024), pp. 1921--1990,
https://doi.org/10.1007/s11081-023-09867-z.

[57] D. Papapicco, N. Demo, M. Girfoglio, G. Stabile, and G. Rozza, The neural network
shifted-proper orthogonal decomposition: A machine learning approach for non-linear re-
duction of hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 392 (2022), 114687,
https://doi.org/10.1016/j.cma.2022.114687.

[58] B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive
bases and adaptive sampling, SIAM J. Sci. Comput., 42 (2020), pp. A2803--A2836,
https://doi.org/10.1137/19M1257275.

[59] B. Peherstorfer, Breaking the Kolmogorov barrier with nonlinear model reduction, Not.
Amer. Mat. Soc., 69 (2022), 1, https://doi.org/10.1090/noti2475.

[60] B. Peherstorfer and K. Willcox, Online adaptive model reduction for nonlinear sys-
tems via low-rank updates, SIAM J. Sci. Comput., 37 (2015), pp. A2123--A2150,
https://doi.org/10.1137/140989169.

[61] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471--501,
https://doi.org/10.1137/070697835.

[62] J. Reiss, Optimization-based modal decomposition for systems with multiple transports, SIAM
J. Sci. Comput., 43 (2021), pp. A2079--A2101, https://doi.org/10.1137/20M1322005.

[63] J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal
decomposition: A mode decomposition for multiple transport phenomena, SIAM J. Sci.
Comput., 40 (2018), pp. A1322--A1344, https://doi.org/10.1137/17M1140571.

[64] D. Rim, S. Moe, and R. J. LeVeque, Transport reversal for model reduction of hyperbolic
partial differential equations, SIAM-ASA J. Uncertain. Quantif., 6 (2018), pp. 118--150,
https://doi.org/10.1137/17M1113679.

[65] D. Rim, B. Peherstorfer, and K. T. Mandli, Manifold approximations via transported
subspaces: Model reduction for transport-dominated problems, SIAM J. Sci. Comput., 45
(2023), pp. A170--A199, https://doi.org/10.1137/20M1316998.

[66] R. T. Rockafellar, Convergence of augmented Lagrangian methods in exten-
sions beyond nonlinear programming, Math. Program., 199 (2022), pp. 375--420,
https://doi.org/10.1007/s10107-022-01832-5.

[67] C. W. Rowley, I. G. Kevrekidis, J. E. Marsden, and K. Lust, Reduction and recon-
struction for self-similar dynamical systems, Nonlinearity, 16 (2003), pp. 1257--1275,
https://doi.org/10.1088/0951-7715/16/4/304.

[68] M. Salvador, L. Ded\`e, and A. Manzoni, Non intrusive reduced order modeling of
parametrized PDEs by kernel POD and neural networks, Comput. Math. Appl., 104 (2021),
pp. 1--13, https://doi.org/10.1016/j.camwa.2021.11.001.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s00162-020-00529-9
https://doi.org/10.1103/PhysRevFluids.6.050507
https://doi.org/10.1609/aaai.v35i1.16116
http://eudml.org/doc/87067
https://doi.org/10.1017/S0022112003006694
https://doi.org/10.3934/acse.2023002
https://doi.org/10.1017/jfm.2011.141
https://doi.org/10.1007/s11081-023-09867-z
https://doi.org/10.1016/j.cma.2022.114687
https://doi.org/10.1137/19M1257275
https://doi.org/10.1090/noti2475
https://doi.org/10.1137/140989169
https://doi.org/10.1137/070697835
https://doi.org/10.1137/20M1322005
https://doi.org/10.1137/17M1140571
https://doi.org/10.1137/17M1113679
https://doi.org/10.1137/20M1316998
https://doi.org/10.1007/s10107-022-01832-5
https://doi.org/10.1088/0951-7715/16/4/304
https://doi.org/10.1016/j.camwa.2021.11.001


A656 KRAH, MARMIN, ZORAWSKI, REISS, AND SCHNEIDER

[69] L. Sirovich, Turbulence and the dynamics of coherent structures part I: Coherent structures,
Quart. Appl. Math., 45 (1987), pp. 561--571, https://doi.org/10.1090/qam/910462.

[70] T. Taddei and L. Zhang, Space-time registration-based model reduction of parameterized one-
dimensional hyperbolic PDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 99--130,
https://doi.org/10.1051/m2an/2020073.

[71] M. M. Valero, L. Jofre, and R. Torres, Multifidelity prediction in wildfire spread sim-
ulation: Modeling, uncertainty quantification and sensitivity analysis, Environ. Model.
Softw., 141 (2021), 105050, https://doi.org/10.1016/j.envsoft.2021.105050.

[72] S. Verma, G. Novati, and P. Koumoutsakos, Efficient collective swimming by harnessing
vortices through deep reinforcement learning, Proc. Natl. Acad. Sci. USA, 115 (2018),
pp. 5849--5854, https://doi.org/10.1073/pnas.1800923115.

[73] L. Vilar, S. Herrera, E. Tafur-Garc\'{\i}a, M. Yebra, J. Mart\'{\i}nez-Vega, P. Echavarr\'{\i}a,
and M. P. Mart\'{\i}n, Modelling wildfire occurrence at regional scale from land
use/cover and climate change scenarios, Environ. Model. Softw., 145 (2021), 105200,
https://doi.org/10.1016/j.envsoft.2021.105200.

[74] Q. Wang, J. S. Hesthaven, and D. Ray, Non-intrusive reduced order modeling of unsteady
flows using artificial neural networks with application to a combustion problem, J. Comput.
Phys., 384 (2019), pp. 289--307, https://doi.org/10.1016/j.jcp.2019.01.031.

[75] G. Welper, Interpolation of functions with parameter dependent jumps by trans-
formed snapshots, SIAM J. Sci. Comput., 39 (2017), pp. A1225--A1250,
https://doi.org/10.1137/16M1059904.

[76] G. Welper, Transformed snapshot interpolation with high resolution transforms, SIAM J. Sci.
Comput., 42 (2020), pp. A2037--A2061, https://doi.org/10.1137/19M126356X.

[77] B. Zorawski, S. Burela, P. Krah, A. Marmi, and K. Schneider, Automated Trans-
port Separation Using the Neural Shifted Proper Orthogonal Decomposition, preprint,
https://arxiv.org/abs/2407.17539, 2024.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
25

 to
 1

47
.9

4.
12

4.
55

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1090/qam/910462
https://doi.org/10.1051/m2an/2020073
https://doi.org/10.1016/j.envsoft.2021.105050
https://doi.org/10.1073/pnas.1800923115
https://doi.org/10.1016/j.envsoft.2021.105200
https://doi.org/10.1016/j.jcp.2019.01.031
https://doi.org/10.1137/16M1059904
https://doi.org/10.1137/19M126356X
https://arxiv.org/abs/2407.17539

	Introduction
	Model order reduction for transport-dominated systems
	State of the art
	Contribution and outline

	Shifted POD
	Low-rank decomposition of the snapshot matrix
	Unconstrained formulation
	Joint proximal gradient method
	Block-coordinate descent proximal gradient method
	Constrained formulation

	Experimental results
	Validation on synthetic data
	Multilinear transport
	Sine waves with noise

	2D wildland-fire model
	Two cylinder wake flow
	Discussion

	Conclusion
	Credit authorship contribution statement
	Acknowledgment
	References

