
Theor. Comput. Fluid Dyn.
DOI 10.1007/s00162-009-0171-0

ORIGINAL ARTICLE

Dmitry Kolomenskiy · Kai Schneider

Numerical simulations of falling leaves using
a pseudo-spectral method with volume penalization

Received: 3 December 2008 / Accepted: 24 September 2009
© Springer-Verlag 2009

Abstract The dynamics of falling leaves is studied by means of numerical simulations. The two-dimensional
incompressible Navier–Stokes equations, coupled with the equations governing solid body dynamics, are
solved using a Fourier pseudo-spectral method with volume penalization to impose no-slip boundary condi-
tions. Comparison with other numerical methods is made. Simulations performed for different values of the
Reynolds number show that its decrease stabilizes the free fall motion.
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1 Introduction

The dynamics of falling leaves, being most remarkable for its aesthetics, is at the same time a phenomeno-
logically rich and practically important subject. Generally speaking, it may be regarded as an example of a
dynamical system exhibiting both regular and apparently chaotic behavior.

Scientific interest in this phenomenon dates back to the nineteenth century—Maxwell’s paper is the ear-
liest reference (see [8]). Kelvin, Tait and Kirchhoff considered motion of a solid body in an inviscid fluid.
This Hamiltonian system has been studied since then by different authors (see, e.g., [4]). The free fall of thin
plates in real fluids, more difficult for rigorous analysis, has been considered in experiments and in numerical
simulations (see [9,1,2] and references therein).

An important manifestation of viscous effects are the cusp-like turning points of the trajectory, where the
centre of mass of the plate elevates [1]. This motion may be regarded as ‘passive’ flight for its similarity with
flapping of insect wings.

The dynamics of a falling plate is characterized by three dimensionless numbers: the Reynolds number Re,
the dimensionless moment of inertia I ∗, and, in a particular case of elliptical cross-section, its eccentricity e
[1]. The Reynolds number is of special interest, since it gives an idea about the range of scales where winged
animals can take advantage of the centre of mass elevation to facilitate flapping of their wings.

In this paper we study the influence of the Reynolds number in the range from 10 to 1100. We apply
the fluid-structure interaction model reported in [11,10,7] to perform numerical simulations of falling leaves,
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Fig. 1 The physical domain A containing the fluid domain Af and the solid obstacle As with its boundary ∂As .

and show a stabilizing effect of decreasing Re. This result agrees with experimental observations made by
Willmarth et al. [13] for falling circular disks, and then by Smith [12] for wings.

2 Physical model and numerical method

We consider interaction between viscous incompressible fluid and a solid body moving in it. The two-dimen-
sional Navier–Stokes equations are written in the vorticity–stream function (ω-�) formulation. Moving solid
obstacles of arbitrary shape are taken into account using the volume penalization method. The penalized
equations

∂tωη + uη · ∇ωη − ν∇2ωη + ∇ ×
(

χ

η
(uη − us)

)
= 0, (1)

∇2� = ωη, uη = ∇⊥� + U∞, (2)

are solved in the domain A = Af

⋃
As containing both the fluid and the solid obstacle (see Fig. 1). The vis-

cosity of the fluid is ν, η is the penalization parameter, χ is the mask function describing the shape of the
solid, us is the velocity field of the solid, U∞ is the free-stream velocity, ωη = ∇ × uη is the vorticity, and
∇⊥ = (−∂y, ∂x). The density of the fluid is normalized to unity, ρ = 1. The volume penalization method is
motivated by an idea of modelling solid obstacles as porous media with vanishing permeability. When η in
Eq. (1) is tending to zero, the penalized problem converges to the no-slip boundary problem [3]. The fluid and
the solid are thus considered as one medium with permeability varying in space and in time. This allows to
implement efficiently and in a relatively straightforward manner such features as arbitrary shape and number
of obstacles.

The motion of the solid is governed by Newton’s second law, which yields ODEs for the center of gravity
position xcg and for the angle of incidence θcg .

mb

d2xcg

dt2 =
∫
A

χ

η
(uη − us)dA + mbg, (3)

Jb

d2θcg

dt2 =
∫
A

χ

η
(x − xcg) × (uη − us)dA, (4)

where mb and Jb are, respectively, the buoyancy corrected mass and moment of inertia of the solid body. The
integrals, as well as the buoyancy correction, represent the action of fluid forces calculated using the penalized
model. Note that the integration is performed over the volume of the domain, and not over the surface of the
solid body. This is more convenient for numerical evaluation.

For the spatial discretization of (1)–(2) we use a classical Fourier pseudo-spectral method. The temporal
integration schemes are an adaptive second order Adams-Bashforth [10] for (1), with exact integration of the
Laplacian, and a first-order explicit scheme for (3)–(4). The motion of the obstacle is modelled with a shift of
the mask function. For its translation we rotate the phase of its Fourier coefficients:

χ(x, t) = χ0(x − δx) ⇔ χ̂ (k, t) = e−ikδx χ̂0(k), (5)
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Fig. 2 Left: trajectory of the tumbling plate at Re = 1100. Right: trajectories of the plate dropped edge-on at three different
Reynolds numbers (colour online).

Table 1 Averaged translational and angular velocities, and descent angle of the falling plate at Re = 1100

U (cm/s) V (cm/s) 
z (1/s) � (deg)

Present computation 11.3 −7.2 19.4 32.5
Andersen, Pesavento and Wang [1] 15.6 −7.4 18.0 25.3
Jin and Xu [6] 15.3 −11.2 16.9 36.2

where k is the wavenumber. Solid body rotation at an angle θ is decomposed into three skewing operations:

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
=

[
1 − tan(θ/2)
0 1

] [
1 0

sin θ 1

] [
1 − tan(θ/2)
0 1

]
. (6)

The mask function is smoothed in order to avoid Gibbs oscillations. This is done by applying a Gaussian filter
to the discontinuous mask function. For further details on the numerical scheme we refer the reader to [7].

3 Results

As a matter of validation, we made a comparison with numerical results reported in [1] and [6]. A solid plate
having an elliptical cross-section is considered for that purpose. Its eccentricity equals e = b/a = 0.125, and
its dimensionless moment of inertia is I ∗ = 0.5e(e2 + 1)ρsolid/ρ = 0.17, where ρsolid is the density of the
solid. The Reynolds number is based on its size 2a and its terminal velocity, ut = √

πbg(ρsolid/ρ − 1), and
it is equal to Re = 1100. The fluid is initially at rest. The plate is released from rest at an initial angle of
incidence θ0 = 0.2. The periodic domain width and height are, respectively, Lx = 10 and Ly = 20 times the
chord length of the plate. The domain is discretized with Nx ×Ny = 1024×2048 grid points. The penalization
parameter is η = 10−3. Figure 2 (left) shows the trajectory of the tumbling plate, while a comparison of the
average translational and angular velocities and the angle of descent with available values in [1,6] is presented
in Table 1. The agreement between the three methods is rather reasonable, taking into account the sensitivity
of the problem to perturbations, and the accuracy is satisfactory at least to make qualitative conclusions. More
details on the validation of the numerical method can be found in [7].

To study the influence of viscosity on the dynamics of the plate, simulations at three different Rey-
nolds numbers are performed: Re = 10,100 and 1000. The plate, having the same elliptical cross-section
as before, is released in a fluid at rest, with zero initial velocity and with its longer axis oriented almost verti-
cally, θ0 =π/2 + 0.01 (a small deviation is needed to provoke instability). The periodic domain size equals
Lx × Ly = 10 × 40 chord lengths, the number of grid points is Nx × Ny = 1024 × 4096, and η = 10−3.
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Fig. 3 Vorticity at Re = 10 (a), Re = 100 (b), and Re = 1000 (c) (colour online).

Fig. 4 Pressure field near the plate at Re = 1000, corresponding to Fig. 3c (colour online).

Figure 2 (right) shows three trajectories of the plate, corresponding to the three values of the Reynolds
number. The vertical orientation is unstable in the range of Re concerned. At Re = 10 the plate falls broadside-
on, after a short transient. At Re = 100 the same steady-state establishes, but the transient motion is oscillatory.
A similar transient is reported in [13] for falling disks. At Re = 1000 the broadside-on state is no more stable,
and the plate is moving in an apparently chaotic manner, rocking from side to side and occasionally over-
turning. This behaviour is consistent with the bifurcation diagram obtained experimentally in [12], where the
point Re = 1000, I ∗ = 0.17 in parameter space lies on the border between the ‘rocking motion range’ and
the ‘autorotation range’. Note that Re = 1000 is just slightly lower with respect to the computation shown
in the previous section, but, together with a different initial condition, this results in a qualitatively different
behaviour: the plate did not reach a tumbling state.

Figure 3 displays corresponding vorticity snapshots for the same Reynolds numbers. The wake undergoes
a transition between Re = 100 and Re = 1000. At higher Re it contains distinct vortical structures formed due
to hydrodynamic instabilities. Interactions between the intensive vortices and the plate are complex (see an
example in Fig. 3c), and extremely sensitive to perturbations. In contrast, at lower Re the wake is stable and
the vorticity field is much smoother (see Fig. 3 a, b).

Figure 4 shows the pressure field near to the plate at Re = 1000 at consecutive time instants. It indicates
depression in the separated vortices, as intensive as it is inside of the boundary layer. This gives rise to strong
and complex interactions between the plate and its wake, resulting in an aperiodic rocking motion. For com-
putation of fluid forces it is therefore important to resolve with good accuracy not only the boundary layer, but
also the vortical flow around the plate.

4 Conclusions and perspectives

A numerical method has been developed to solve the Navier–Stokes equations coupled with the equations
which govern the free fall of a solid body. The two-dimensional Navier–Stokes equations in vorticity–stream
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function formulation are discretized using a Fourier pseudo-spectral method with an adaptive second order
Adams–Bashforth time stepping. The volume penalization method is used to impose the no-slip boundary
condition on the boundary of the solid body. Solids of arbitrary shape can be modelled by simply changing
the mask function in the penalization term, and it is also straightforward to generalize this approach to study
flows past multiple solid bodies.

A numerical simulation of a tumbling plate at Re = 1100 has been compared with similar results in [1,6].
The agreement is adequate for a qualitative study. Numerical simulations at Re = 10,100 and 1000 have shown
that decreasing Re has a stabilizing effect on the free fall dynamics, an observation which agrees with exper-
imental results [12,13,5]. It is important to note that the number of grid points required to resolve the flow
in the boundary layer is increasing as Nx × Ny ∝ Re. Hence, numerical simulations at Reynolds numbers
up to a few thousands are feasible with the resolution of 102.4 grid points per chord length of the plate and a
sufficiently large size of the periodic domain.

Perspectives for future work include a precise computation of the critical Reynolds number corresponding
to the transition between steady descent and oscillatory motion, as well as its comparison with the critical
Reynolds number for the flow past a fixed plate. Possibly the freely-falling plates can adapt their attitude in
such a way as to delay the onset of oscillations, as it was recently suggested in [5] in the context of freely rising
three-dimensional axisymmetric bodies. In this connection we are currently working to increase the order of
accuracy of the numerical method, which would allow this kind of computations.

The extension of the model to three spatial dimensions is also planned. This will make possible a direct
comparison with experiments, where the aspect ratio of the plate is finite.
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