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Abstract

For adaptive multiresolution schemes we propose a local time-
stepping scheme based on natural extensions of Runge–Kutta meth-
ods. We consider reaction-diffusion equations in two space dimensions
and assess the precision and efficiency of the new method. The ob-
tained results are compared with those using classical finite volume
schemes on a uniform grid and multiresolution schemes with global
time stepping. It is shown that both CPU time and precision of the
adaptive solutions are improved.

©2018 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

Numerical combustion is a playground for adaptive discretisations, as flame fronts are typically very
thin and therefore localised in physical space. Hence local grid refinement techniques are attractive
since they can speed-up the computations and reduce the memory requirements. A considerable variety
of adaptive schemes can be found on the market, for instance adaptive mesh refinement, see e.g. [1],
or adaptive multiresolution schemes, see [2, 3]. The idea of adaptive multiresolution methods, which
goes back to the seminal work of Harten [4], is to analyse the numerical solution computed with a
classical discretisation, e.g. finite volumes, and to determine which grid points can be removed. To
this end, wavelet coefficients are computed and applying thresholding yields a grid perfectly adapted
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to the solution. For the next time-step adjacent grid points are added to account for the translation
of the solution and the generation of finer scales, the latter is necessary in the case of non-linear
equations. The memory and CPU time requirements of the underlying numerical schemes can be thus
significantly reduced while controlling the precision of the solution. Further speed-up can be obtained
using instead of a global time-stepping, which means that the time step size is determined by the finest
spatial scale, a local time stepping where the time step is adapted to the local spatial scale. This last
aspect means that large time steps can be used in regions of coarse grids, while small time steps are
only used in regions of fine grids. For details we refer to the original papers by Müller and Striba [5]
and by Domingues et al [6], where local time stepping has been introduced in the context of adaptive
multiresolution methods.

The present paper introduces a new local time-stepping approach based on natural extensions
of Runge–Kutta (NERK) methods [7]. The fluxes at the intermediate Runge–Kutta stages can be
interpolated and synchronisation can be directly obtained. In [8] we propose a higher order extension
of NERK methods and present a detailed benchmarking for one, two and three-dimensional problems.

The outline of the paper is the following. After presenting the essential components of the multires-
olution method in Section 2, we briefly summarise the used Runge–Kutta methods in Section 3. Then,
the ideas of local time-stepping are recalled and the proposed approach using NERK is introduced in
Section 4. Numerical results for reaction-diffusion equations are given in Section 5 and in Section 6 we
draw some conclusions.

2 Adaptive multiresolution methods using finite volumes

A two-dimensional initial value problem for a vector quantity Q = Q(x,y, t), inside a physical domain
Ω, can be written in the following divergence form as:

∂Q
∂ t

=−∂F
∂x

− ∂F
∂y

+S, on (x,y, t) ∈ Ω× [0,+∞), Ω ⊂ R
2, (1)

where the physical flux F depends on Q and its derivatives, and the source term S depends on Q. The
flux F can be decomposed into advective and diffusive contributions, where the diffusion coefficient is
positive and constant. Here, those advective and diffusive terms are discretised with a McCormack
scheme.

To complete this problem, an initial condition Q(x,y, t = 0) = Q0(x,y) and appropriate boundary
conditions are imposed. The computational domain is partitioned into rectangular cells using a classical
finite volume discretisation in Cartesian geometry.

This partition is performed using identical rectangles (Ωi j)i, j∈Λ, Λ = {0, . . . , imax} × {0, . . . , jmax},
where Ω = ∪i, jΩi, j.

For each cell, a volume value |Ωi, j|=
´

Ωi, j
dx dy is computed. This value is used to compute the cell

average value q̄i, j(t) for the quantity Q inside every Ωi, j at a time instant t by,

q̄i, j(t) =
1

|Ωi, j|
ˆ

Ωi, j

Q(x,y, t)dxdy.

The finite volumes formulation consists in using these average values to represent the solution in
the computational domain, and then we evolve those averages in time.

In the two-dimensional case, Ωi, j is given by the rectangle [xi−1/2,xi+1/2]× [y j−1/2,y j+1/2] of length
Δxi Δy j, where Δxi = xi+1/2 −xi−1/2 and Δy j = y j+1/2 −y j−1/2. The following relation used to perform the
time evolution of a cell Ωi, j in the finite volume formulation is obtained by integrating the Equation (1)
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on the cell Ωi, j:

dq̄i, j

dt
(t) =− 1

Δxi

(
F̄i+1/2, j − F̄i−1/2, j

)− 1
Δy j

(
F̄i, j+1/2 − F̄i, j−1/2

)
+ S̄i, j, (2)

where F̄ is the numerical flux. The term S̄i, j is a approximation of the source term in the cell Ωi, j.
Aiming for a CPU time and memory storage reduction in the adaptive computations, Harten

[4] proposed the adaptive multiresolution method (MR) in the cell average context. This approach
represents the solution using a hierarchy of regular grids which are dyadically nested. These grids
are enumerated by its refinement level �, associated with the number of cells on the regular grid. A
two-dimensional grid of refinement level �, denoted by Ω�, is composed by 22� cells.

Computationally, this sequence of nested grids is implemented using a quad-tree structure, where
the nodes of level � generate the grid Ω�. This structure can be interpreted so that a finer scale contains
the same information of a coarser scale plus a sum of details between these levels. In the MR context,
these details are called wavelet coefficients. To build the adaptive grid, a thresholding procedure is
applied over the hierarchy of grids. For that, the tree is checked in each refinement level, starting from
the finest one, for cells whose wavelet coefficients are smaller than a predetermined threshold value ε .
These cells are removed from the tree. Subsequently, this procedure is repeated on the next coarser
level. After this process, the adaptive grid is obtained by considering the leaves of this tree as its cells.
This MR approach was recently compared with adaptive mesh refinement [9] and it was concluded that
MR yields more efficient, i.e., sparser grids, for the same precision.

The functionality of the grid generation procedure is justified by the fact that the wavelet coefficients
have the property of being small in regions where the solution is smooth, while for the regions with
steep gradients, they are larger.

However, in order to obtain better algorithms for flux computations between cells of different scales,
the adapted grid has the restriction to be a graded-tree [3]. This restriction implies that the neighbour
of every cell has at maximum, one refinement level of difference. This restriction implies the usage of
auxiliary leaves placed as child nodes of leaves which have an interface with a finer leaf. These new
leaves are called virtual leaves and are used to perform the flux computations between their parent leaf
and its finer neighbour.

Due to the graded-tree restriction, the flux computations required to evolve a leaf are divided into
two possible scenarios. One happens when the neighbour leaf or virtual leaf is in the same refinement
level. In this scenario, the flux is computed in the same way performed for the finite volume method.
The other scenario happens when the neighbour leaf is in a more refined scale. In this case, the flux
computations are performed between the current cell virtual leaves and the neighbour leaf.

Once the adaptive grid is obtained, the current solution is considered well represented in this grid.
However, this grid may not be suitable for the solution obtained after the time evolution. In order
to guarantee that the adaptive grid is adequate for both current and future solution, the leaves with
interfaces with finer leaves are refined. Then, new virtual leaves are placed where they are required.
More details of the MR scheme, including the operators applied to compute the wavelet coefficients,
are given in [4], details about the implementation used can be found in [3].

3 Runge–Kutta methods

The space discretisation of the initial value problem given in Equation 1 leads to a system of ordinary
differential equations, which describes the evolution of each cell averages on the adaptive grid. This
system has the following form:

dq̄
dt

= f (t, q̄). (3)
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To perform a time evolution with time-step Δtn, the following compact form of a two-stage second-
order Runge-Kutta (RK) method is applied:

q̄∗ = q̄n +Δtn f (tn, q̄n) (4a)

q̄n+1 =
1
2

q̄n +
1
2

q̄∗ +
1
2

Δtn f (tn +Δtn, q̄∗) , (4b)

This alternative formulation corresponds to a classical RK method with coefficients c1 = 0, c2 =
a21 = 1 and b1 = b2 =

1
2 .

3.1 Natural extensions for Runge–Kutta methods

The Natural Extensions for Runge–Kutta methods are techniques to produce an polynomial approxi-
mation of the solution inside the interval [tn; tn +Δtn], after the time evolution. These methods use the
same coefficients ai j and ci of the correspondent RK method, producing thus no extra computational
cost. They were first introduced in [7].

These methods use weight polynomials βi, based on the coefficients bi of the correspondent RK
method. A two-stage NERK method are expressed by:

q̄(tn +θΔtn) = q̄n +β1(θ) k1 +β2(θ) k2, θ ∈ (0,1], (5)

A relation between the correspondent RK method and the proper polynomials βi can be found
in [10]. Using the coefficients for RK2 given earlier, the following polynomials are obtained:

β1(θ) =−1
2

θ2 +θ , β2(θ) =
1
2

θ2. (6)

In this work, the application of the NERK approximation is to obtain a second order solution at
the time instant tn + 1

2Δtn. This solution is required to perform the synchronisation required for the
proposed MRLT/NERK method.

Considering the interest in the solution with θ = 1
2 , used to perform the synchronizations, the

following steps are computed along with the correspondent steps of the RK compact form:

q̄∗
θ= 1

2
= q̄n +

3
8

Δtn f (tn, q̄n) (7a)

q̄θ= 1
2
= q̄∗

θ= 1
2
+

1
8

Δtn f (tn +Δtn, q̄∗) . (7b)

This procedure is performed aiming for a better memory management during the computations.

4 Local time-stepping

To improve the computational efficiency of the MR methods, in [6] we proposed a local time stepping
(LT) scheme for the MR context. This approach uses an independent and adapted time step for each
leaf. This adapted time step is based on the spatial size of the leaf.

In explicit time schemes, the CFL condition is used to obtain a suitable time step Δt for the
numerical simulation. Supposing that the leaves on the finest scale L respect the CFL condition of the
problem, the LT scheme consists in performing, for each cell of level �, the time evolution using the
time step Δt� = 2L−�Δt. This approach is justified by the fact of the Courant number σ depends of the
ratio between Δt� and Δx�, and due to the value σ remains the same for every refinement level.

This approach is expected to obtain greater efficiency when the solutions presents singularities,
yielding highly efficient multiresolution representations, see for instance [3].
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Fig. 1 Configuration of the solution after the time evolution in the LT scheme. Leaves of each refinement level
performed a time step proportional to its refinement. The finer scales require a new time evolution to reach the
time instant of the next coarser scale.

The scale dependent time stepping of the LT schemes is illustrated in Figure 1. In the LT schemes,
not every scale is updated during an iteration of the time evolution. The coarsest scale level to be
updated during the iteration n of the time evolution is defined as the minimum scale level in which the
modulo operator between n and 2L−� is zero. In this work, this scale is denoted by �min.

As shown in Figure 1, after a time evolution iteration, the finer scales require a new time evolution
to reach the same time instant of the next coarser scale. However, due to the interfaces between leaves
of different refinement, the information required to update the finer leaves, in this case the solution
of the coarser scale at the proper time instant, is not available. In this work, we propose the use of
the NERK schemes to overcome this bottleneck. The polynomial approximation in the time domain
obtained by the NERK schemes is used to perform the flux computations when this situation occurs.

The proposed strategy to perform the LT scheme is, for every time evolution iteration, to compute
the value of �min for this iteration, then perform the first RK step for every scale greater or equal �min,
as given in Section 3. The Runge–Kutta step is performed using the correspondent value of Δt� for each
scale.

Having performed this step, the values q̄∗ obtained are a first order solution at time instant tn+Δt�.
Using the fluxes obtained for this evolution, the first step of the NERK solution q̄∗

θ= 1
2
is easily obtained.

Also, a linear interpolation of the solution at the time instant tn + 1
2Δt� will be required later in the

algorithm for the scales lower than L.
Before performing the second RK step, a tree refreshing procedure is required. This procedure

updates the values of the internal nodes with their respective solutions q̄∗. The projected solutions are
used to update the solution of the virtual leaves to a time instant compatible with the next RK step.

In order to perform the tree refreshing process, its important to notice that due to the different
time steps in each scale, when the solution q̄∗ is projected to a lower scale, this value has a time instant
different of the solution in this scale, requiring some interpolations or extrapolation.

In this step, the projection from a finer to a coarser level produces a solution at time instant
tn + 1

2Δt�, this solution is saved and extrapolated to instant tn +Δt�, producing a solution used as an
approximation for q̄∗. This procedure is repeated recursively until scale �min.

After the projection, the virtual leaves are predicted from the scale �min until the finest scale using the
solutions at time instant tn + 1

2Δt�, which corresponds to the time instant where the flux computations
of the leaves in the next finer level will be performed.

Having performed the tree update, the second RK step is level-wise computed from the finest scale
to the scale �min. The flux computations are performed in the current scale and the second RK step
is executed. However, to perform the flux computations in the next coarser scale, the solution of the
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current scale is required in the same time instant.
To obtain this solution, a first order extrapolation is computed using the fluxes obtained during the

RK steps. This extrapolation, possible due to the coefficients a11 = b1 = 1, is performed as:

q̄�+1 (tn +2Δt�+1) = q̄∗
�+1 +Δt�+1 f

(
t +Δt�+1; q̄∗

�+1
)
. (8)

The internal nodes have their solutions extrapolated to this time instant using:

q̄�+1 (tn +2Δt�+1) = 2q̄∗
�+1 − q̄n

�+1. (9)

This extrapolated solution is projected onto the next coarser level and the virtual leaves of the
current level have their solution updated to perform the flux computations for the next coarser scales.
This procedure is repeated recursively until the scale �min.

After the second RK step, another tree refreshing procedure is performed to project the second
order solution onto the internal nodes. For that, the second order solution of the leaves are projected
onto the next coarser scale as a approximation for q̄θ= 1

2
in the coarser scale. Using the NERK equations

and the already known values, the solution at the time instant equivalent to the leaves of the same
scale is reconstructed.

After the time evolution iteration, the grid adaptation can be performed. However, due to the
different time stepping, only the scales to be updated in the next time evolution iteration are regrided.

5 Results and discussions

In this section, the results of the proposed MRLT/NERK method are presented in comparison with
the MR, MRLT methods described in [6] and the traditional FV method.

The different schemes are applied to a reaction-diffusion model. This model considers the ignition
of the initial spark creating a flame which propagates outwards under adiabatic conditions. The propa-
gation speed is associated with the reaction rate of the flame. This speed is slowed down during time by
heat losses due to radiation. The density of the gas and other thermodynamic properties are assumed
to be constant. For a detailed description of this model we suggest the work of Bockhorn et al. [11] and
references therein. This model is also used as an example of adaptive multiresolution methods applied
to simulations of partial differential equations in the work of Roussel et al. [3] and Domingues et al. [6].

In a two-dimensional setting, the equations can be written in the following form,

∂T
∂ t

= ∇2T +ω − s (10a)

∂Y
∂ t

=
1

Le
∇2Y −ω (10b)

where T (x,y) is a dimensionless temperature normalised between 0 (unburned gas) and 1 (burned gas),
Y is the dimensionless partial mass of the unburnt gas (in the case of Le = 1 and s = 0, we have
Y = 1−T), the flame velocity is given by v f =

´
ω dxdy and the reaction rate ω is given by:

ω(T,Y ) =
Ze2

2Le
Y exp [

Ze(T −1)
1+ τ(T −1)

], (11)

where the Zeldovich number Ze is a dimensionless activation energy, τ is the burnt-unburnt temper-
ature ratio and the heat loss s due to radiation is s(T ) = κ [(T + τ−1 − 1)4 − (τ−1 − 1)4], where κ is a
dimensionless radiation coefficient.
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Table 1 Errors, CPU time and memory compression (t f = 10.0, ε = 10−2).

Method
L1 Error (×10−3) CPU Time Memory

T Y ω (%FV) (%FV)

MR/RK2 1.625 1.624 5.101 106.0 11.9

L = 8 MRLT/RK2 1.629 1.628 5.196 94.5 11.8

MRLT/NERK2 1.660 1.659 5.194 33.8 11.8

MR/RK2 0.771 0.770 2.277 46.9 4.8

L = 9 MRLT/RK2 0.666 0.665 2.083 41.5 4.8

MRLT/NERK2 0.765 0.764 2.251 13.7 4.8

MR/RK2 0.309 0.308 0.650 15.3 1.5

L = 10 MRLT/RK2 0.170 0.170 0.463 13.5 1.5

MRLT/NERK2 0.301 0.300 0.625 4.1 1.5

For the simulations, we use κ = 0.1. The following initial condition is described using polar coordi-
nates:

T (r,0) =
{

1, if r ≤ r0
exp(1− r

r0
), if r > r0

Y (r,0) =
{

0, if r ≤ r0
1− exp [Le(1− r

r0
)], if r > r0,

(12)

where the initial radius of the flame front is given by r0 = 2 and the value r =
√

X2 +Y 2, with
X = 1

2 xcos(θ)+ ysin(θ) and Y = 1
2xsin(θ)− ycos(θ).

In these simulations, we use Neumann boundary conditions, a McCormack scheme for the flux
computations, Ze = 10, τ = 0.64, Le = 0.3, θ = π

6 , a threshold factor ε = 0.01 and a courant number
σ = 0.2 until the time instant t f = 10.0. The errors in the L1 norm, CPU time and memory usage in
relation to the FV methods are summarised in Table 1.

To compute the errors, we use a reference solution computed with the FV method with a third order
RK method using a grid with 10242 grid points, corresponding to a refinement level of L = 10. For the
CPU time and memory usage, the methods are compared with the corresponding FV computations
with a second order RK method.

The reference solution for this problem and the difference between this reference and the solutions
of the analysed methods with their respective final adaptive grids, using L = 10, are given in Figure 2.

Considering the experiments performed in this work, the MRLT method given in [6] produced the
lowest L1 errors. However, this method does not present a significant gain in CPU time in comparison
to the traditional MR method. In contrast, the proposed MRLT/NERK method presented a better
solution in relation to the MR methods in the finest grids. Nevertheless, this method obtained a
significant gain in computational time.

6 Conclusion

This work presented a new second order local time-stepping approach using NERK schemes in the
context of adaptive multiresolution methods. These schemes are used to obtain the intermediary
values and some interpolations required to perform the time evolution with local time stepping in
higher orders. This work focused on the implementation of the proposed methodology for second order
time evolution. Some numerical results are presented for two-dimensional reaction-diffusion equations.
In general, the proposed method obtained a significant gain in CPU time, mainly when finer grids are
used. The solution obtained with the proposed methods presented very similar aspects compared with
the solutions obtained in MR methods and observed in the error analysis. The MRLT/NERK methods
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Fig. 2 2D reaction-diffusion equations: FV/RK3 reference solution at t = 10.0 for the variable T (a), and the
modulus of the difference between this reference and the solutions obtained using the methods MR/RK2 (b),
MRLT/RK2 (c), and MRLT/NERK2 (d). The corresponding final adaptive grids are given in (e), (f) and (g)
respectively.

showed advantageous over the MR and MRLT approaches due to the significant reduction in CPU
time.
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