
Journal of Computational Physics 382 (2019) 291–318
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Local time-stepping for adaptive multiresolution using natural
extension of Runge–Kutta methods

Müller Moreira Lopes a,d,∗, Margarete Oliveira Domingues b,d, Kai Schneider e,
Odim Mendes c,d

a Graduate program in Applied Computing (CAP), Brazil
b Associate Laboratory of Applied Computing and Mathematics (LAC), Coordination of the Associated Laboratories (CTE), Brazil
c Space Geophysics Division (DGE), Coordination of Space Sciences (CEA), Brazil
d National Institute for Space Research (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil
e Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, CNRS, Centrale Marseille, 39 rue F. Joliot–Curie, 13453 Marseille
Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 March 2018
Received in revised form 20 August 2018
Accepted 22 October 2018
Available online 17 January 2019

Keywords:
Multiresolution analysis
Finite volume
Local time-stepping
Runge–Kutta

A space–time fully adaptive multiresolution method for evolutionary non-linear partial
differential equations is presented introducing an improved local time-stepping method.
The space discretisation is based on classical finite volumes, endowed with cell average
multiresolution analysis for triggering the dynamical grid adaptation. The explicit time
scheme features a natural extension of Runge–Kutta methods which allow local time-
stepping while guaranteeing accuracy. The use of a compact Runge–Kutta formulation
permits further memory reduction. The precision and computational efficiency of the
scheme regarding CPU time and memory compression are assessed for problems in
one, two and three space dimensions. As application Burgers equation, reaction–diffusion
equations and the compressible Euler equations are considered. The numerical results
illustrate the efficiency and superiority of the proposed local time-stepping method with
respect to the reference computations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Multiresolution (MR) methods improve the computational performance of numerical solvers of evolutionary partial differ-
ential equations when the solution exhibits localised structures, point-wise singularities, boundary layers, shocks, coherent
vortices such as encountered in combustion and turbulent flow applications [12,19,26].

In these methods, the fast wavelet transform is the key ingredient to speed-up computations. The wavelet coefficients are
employed to measure the local smoothness of the solution. Then, a thresholding strategy is used to remove non-significant
coefficients, obtaining a grid adapted to the solution. This grid is coarser in smooth regions and finer there where structures
and steep gradients are present. The locally refined grid can be rebuilt interactively to a regular grid with an expected
error directly related to the chosen threshold. With the use of this adaptive grid, the number of interface flux computations
during the time evolution can be significantly reduced, while controlling the error. The adaptive grid is checked before each

* Corresponding author at: National Institute for Space Research (INPE), Av. dos Astronautas 1758, 12227-010 São José dos Campos, São Paulo, Brazil.
E-mail addresses: muller.lopes@inpe.br (M. Moreira Lopes), margarete.domingues@inpe.br, margarete.oliveira.domingues@gmail.com (M.O. Domingues),

kai.schneider@univ-amu.fr (K. Schneider), odim.mendes@inpe.br (O. Mendes).
https://doi.org/10.1016/j.jcp.2018.10.052
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.10.052
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:muller.lopes@inpe.br
mailto:margarete.domingues@inpe.br
mailto:margarete.oliveira.domingues@gmail.com
mailto:kai.schneider@univ-amu.fr
mailto:odim.mendes@inpe.br
https://doi.org/10.1016/j.jcp.2018.10.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.10.052&domain=pdf

292 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
time step to guarantee that it is sufficiently refined to represent possible new structures in the solution. Therefore, the
adaptive grid is dynamically adapted to track the solution in scale and space.

The next step to improve the computational performance associated with these adaptive grids is to use a local time-
stepping (LT) approach, especially when explicit time schemes are used. In this work, the combination of MR methods with
the local time-stepping approach is denoted as MRLT. LT consists in performing the time evolution of each cell on the adap-
tive grid independently according to its required time step. Therefore, each cell must have a time step proportional to its
refinement and consequently, a larger cell performs a larger time step.

Local time-stepping methods for space adaptive discretisations of partial differential equations have a long tradition, go-
ing back to the early work of Osher and Sanders [21]. Related to multiresolution, Müller and Stiriba [20] presented some
general MRLT schemes that could be applied either to an explicit time scheme, based on Lagrange projection, or an implicit
time scheme, for a reference finite-volume method in space. In [20] they applied LT to one-dimensional scalar conserva-
tion laws. Following this work, Coquel et al. [3] presented MRLT methods with both explicit and implicit Lagrange-projection
schemes, the latter is the novelty concerning [20]. Hejazialhosseini et al. combined in [13] first and second order RK schemes
to propose an LT approach for MR in blocks with finite volumes for multi-phase compressible flows implemented on multi-
core architectures.

More recently, LT methods have been proposed using different approaches for time interpolation required in the algo-
rithms for providing values at intermediate time steps. In [24], the authors use a high-order Taylor type integrator, while
a discontinuous Galerkin method with spectral elements is used for spatial discretization. In the context of finite elements
methods, Rietmann et al. [25] proposed an energy conserving LT algorithm based on a second-order leap-frog scheme.
Discussions on the proper choice of the time-step in LT schemes are still an important topic of discussion. To this end a
posteriori error estimators are used in [1,18], while Gnedin et al. (2018) [11] investigate their effect by enforcing the CFL
condition locally over every cell. In the context of finite volumes methods, the use of high-order schemes for local time-
stepping on adaptive mesh refinement grids were previously discussed in [8]. In that work, the accuracy order in space is
obtained through a WENO reconstruction, while the accuracy in the time discretization is achieved by a local space–time
discontinuous Galerkin predictor method. This approach yields up to fourth order for compressible Euler equations in 2D.
Similar and related works in this context were carried out in [15] and [2].

A detailed discussion on the stability of those MRLT schemes is presented in [14]. In the context of adaptive numerical
methods for partial differential equations, the derivation of explicit LT methods based on standard RK schemes typically
stays at orders smaller or equal to two [4–6]. The reason why LT methods are limited to low order in time is because a
time synchronization is required; for a discussion we refer to [6]. Recently, higher-order LT schemes have been proposed
in the context of discontinuous Galerkin methods. The works of Gassner et al. [9,10] in this context are based on natural
continuous extensions for Runge–Kutta methods (NERK). Such schemes have been introduced initially by Zennaro in the
late 1980’s for solving general ODEs, with application to delay equations [30]. The idea is to interpolate the intermediate
stages of the Runge–Kutta scheme to obtain the values at the requested intermediate time instants required for the time
synchronisation in LT schemes. This method is also called Natural Continuous Extension in [30], Continuous Extension
Runge–Kutta in [23], and in a general way Continuous Runge–Kutta, as discussed in [28].

Recently, an alternative for higher-order LT methods, again in the context of discontinuous Galerkin spectral element
schemes, has been proposed by Winters and Kopriva [29]. The underlying ideas are Adams–Bashforth multi-step schemes.

Moreover, Gassner et al. (2011) considered a family of explicit one-step time discretisations for finite volume (FV) and
discontinuous Galerkin schemes, which are based on a predictor–corrector formulation [9].

The aim here is to use the idea of Gassner et al. [10] using NERK for the first time in the context of MRLT meth-
ods to perform the synchronisation. Thus, an improvement in time accuracy can be obtained. In the current work, only
second and third-order schemes are used, but the extension to higher-order is in principle possible. Gassner et al. [10]
discussed that NERK is 10% slower than the Cauchy–Kovalevskaya scheme. However, to work with the latter is com-
plicated as the analytic solution of some nonlinear PDEs is required. The goal of the proposed approach is to perform
simulations using NERK schemes. Therewith, the synchronisation required for the LT approach is possible, and this new
class of MRLT methods, named MRLT/NERK, is created. This work presents the application and implementation of the
MRLT/NERK method for the second (RK2) and third (RK3) order time evolution, named MRLT/NERK2 and MRLT/NERK3,
respectively. The method proposed in this work is applied for solving the two-dimensional Burgers equation, one and three-
dimensional reaction–diffusion problems and the two-dimensional compressible Euler equations. The obtained results and
CPU times are compared with the MR method using classical RK2 and RK3 time evolution, named MR/RK2 and MR/RK3,
respectively. The results are also compared with the MRLT approach given in [6] based on RK2 time evolution, named
MRLT/RK2.

In Section 2, we summarise the adaptive multiresolution method proposed in [12]. Then, in Section 3, we discuss the
Runge–Kutta methods and the NERK methods used in the current work to perform the proposed MRLT/NERK approach
given in Section 4. A convergence analysis is conducted in Section 4.4. Performance comparisons, considering CPU time and
errors, among the FV, MR and MRLT approaches given in [6] and the MRLT/NERK approach introduced here, are presented
in Section 5. Conclusions are drawn in Section 6.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 293
Fig. 1. Dyadic grid hierarchy of MR methods and its implementation in a tree data structure. a) Example of nested unidimensional grids, the circles represent
the internal nodes of the tree structure, while the triangles represent the leaves of the tree. b) Example of an adapted grid using the tree structure from
a). The virtual leaves are represented by the triangles �. Adapted from [26].

2. Adaptive multiresolution methods using finite volumes

The following initial value problem for a vector-valued function Q(x, t) written in divergence form is considered:

∂Q

∂t
= −∇ · F(Q,∇Q) + S(Q), for (x, t) ∈ � × [0,+∞), � ⊂ R

d. (1)

This problem is given in d space dimensions, completed with initial conditions Q(x, t = 0) = Q0(x) and appropriate boundary
conditions. The terms ∇ · F(Q, ∇Q) and S(Q) denote the divergence and source term, respectively. The flux F can be decom-
posed into advective and diffusive contributions, i.e. F(Q, ∇Q) = f(Q) − ν∇Q, where the diffusion coefficient ν is positive
and assumed to be constant.

To discretise Equation (1) in space, we use a classical finite volume formulation written in standard form. The domain
� corresponds to a rectangular parallelepiped in d = 1, 2 or 3 dimensions in Cartesian geometry. It is partitioned into cells
(�i)i∈� , � = {0, . . . , imax} with � =⋃

i �i .
Defining the volume of the cell by |�i | =

∫
�i

dx, we compute the cell-average q̄i(t) of a given quantity Q on �i at time
instant t by,

q̄i(t) = 1

|�i |
∫
�i

Q(x, t)dx.

Considering the one-dimensional case, �i is an interval [xi− 1
2
, xi+ 1

2
] of length �xi = xi+ 1

2
− xi− 1

2
. Integrating Equation (1)

on �i then yields:

dq̄i

dt
(t) = − 1

�xi

(
F̄i+ 1

2
− F̄i− 1

2

)
+ S̄i, (2)

where F̄ is the numerical flux and S̄i is the source term of the cell �i . This formulation can be extended to two- and three
dimensional problems correspondingly.

The source term is approximated by S̄i ≈ S(q̄i), which yields also second-order accuracy in case of a linear source term.
The adaptive multiresolution (MR) analysis in the cell average context, proposed by Harten [12], consists in decomposing

the cell-averages of the solution into a multilevel representation. This representation, illustrated in Fig. 1a, consists of a
hierarchy of nested grids �� , where � is the grid refinement level. Each grid �� consists of a regular grid, as defined for the
FV formulation, with 2d� cells. A cell of refinement level � and position i is denoted by ��

i .
Fig. 1a shows the implementation of this structure as a binary tree, where the nodes of level � generate the grid �� . For

the two- and three-dimensional cases, this idea is extended by using a quadtree and an octree, respectively.

294 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
This sequence of nested grids corresponds to a scheme where a finer scale represents its subsequent coarser scale plus
a sum of details between these levels. These details are the wavelet coefficients. The construction of the adapted grid in
the MR method consists in representing the grid using only cells with significant wavelet coefficients. For this, the leaves
of the most refined level are checked, if their parent cell has a significant wavelet coefficient, larger than a predetermined
threshold ε , if not, the leaves are deleted. This process is repeated recursively starting from the finest level, going to coarser
and coarser levels. The procedure to obtain the projection of the solution on the coarser levels and the wavelet coefficients
is given in Section 2.1.

The grid generation procedure is mathematically supported by the fact that the magnitude of the wavelet coefficients
are small in regions where the solution is smooth, while they are significant in regions where the solution exhibits steep
gradients. Hence, high compression rates are expected when only a small number of cell-averages is present on the finest
scales.

In this work, the data structure for representing the solution is organized as a dynamic graded tree. This tree organization
requires that no hole is admitted inside the tree, which means that the connectivity in the tree structure has to be ensured.
Moreover, the tree can change in time to track the space-scale evolution of the solution as nodes can be added or removed
while guaranteeing its gradedness.

This dynamic graded tree organization implies that neighbours of each cell can have a difference of one refinement level
at most. This restriction allows the use of virtual leaves for the flux computations between leaves at different refinement
levels. These virtual leaves are auxiliary leaves placed as children nodes of the leaves which have an interface with finer
leaves. Their values are predicted using the prediction procedure used to compute the wavelet coefficients. A unidimensional
adaptive grid represented in a graded tree structure is shown in Fig. 1b.

The flux computations in the MR scheme are performed individually for each leaf. The numerical fluxes are computed be-
tween cells at the same refinement level. Using the adaptive grid of Fig. 1b, the following interface scenarios for computing
the numerical fluxes of a leaf can be identified:

• Leaf/Leaf or Virtual leaf: When both leaves belong to the same refinement level, the flux computation is performed in
the same way as in the FV method. The following cases can occur: Leaf/Leaf example: Flux between cells �3

0 and �3
1;

Leaf/Virtual leaf example: Flux between cells �4
5 and �4

6.
• Leaf/Internal node: In this scenario, the current leaf has an interface with a finer leaf. To perform the flux computation

in this case, the numerical flux is computed using the virtual children of the leaf and its adjacent leaves. Example: Flux
between cells �2

2 and �2
1.

The construction of the adaptive grid guarantees that the current solution is well represented. However, after the time
evolution process, the new solution should also be well represented on this grid, which a priori cannot be ensured. In
order to guarantee that the new solution after the time evolution is still well represented on this grid, the leaves with finer
neighbours are refined and neighbour cells are added. Further details of the MR scheme and its implementation can be
found in [26]. The Algorithms 1 and 2 given in Appendix A describe the adaptive grid creation and its update, respectively.

2.1. Projection and prediction operators

In order to perform the MR method, some operations for projection and prediction are required. For the MR scheme
with finite volumes, where the cell values are local averages, a coarser cell ��

i has its value estimated using the finer values
and a unique projection operator P�+1→� : q̄�+1 	→ q̄� . In this scheme, the projection operator to obtain the solution of a
coarser cell is given by the average value of its children. For the unidimensional case, the projection is performed by:

q̄�
i = P�+1→�

(
q̄�+1

2i , q̄�+1
2i+1

)
= 1

2

(
q̄�+1

2i + q̄�+1
2i+1

)
, (3)

where q̄�
i are the average value of the cell ��

i . The same idea is extended for the two and three-dimensional cases.
The prediction operators are used to perform the opposite path of the projection operators, they allow to obtain the

values of the finer cells using the values of the coarser ones. For each child cell to be predicted, there is a different prediction
operator, represented by P i

�→�+1 : q̄� 	→ q̄�+1 for the one-dimensional case, P i, j
�→�+1 : q̄� 	→ q̄�+1 for the two-dimensional

case and P i, j,k
�→�+1 : q̄� 	→ q̄�+1 for the three-dimensional case. These operators yield a non-unique approximation of q̄�+1

i
by interpolation. We use polynomial interpolation of second degree on the cell-averages, as proposed by Harten [12], which
yields third-order accuracy. For the one-dimensional case, it follows that,

q̃�+1
2i = P 0

�→�+1

(
q̄�

i−1, q̄�
i , q̄�

i+1

)
= q̄�

i − 1

8
(q̄�

i+1 − q̄�
i−1) (4a)

q̃�+1
2i+1 = P 1

�→�+1

(
q̄�

i−1, q̄�
i , q̄�

i+1

)
= q̄�

i + 1
(q̄�

i+1 − q̄�
i−1), (4b)
8

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 295
where q̃�
i is an approximation of the value q̄�

i . Interpolation operators for higher dimensions can be found in [26]. The oper-
ator must satisfy the properties of locality, requiring the interpolation for a child cell to be computed from the cell-averages
of its parent and its nearest uncle cells in each direction; and consistency, P�+1→� ◦ P�→�+1 = Identity.

The prediction operator is used to obtain the wavelet coefficients d�
i of the finer cells. These coefficients are given by the

difference between the cell average q̄�
i and the predicted value q̃�

i :

d�
i = q̄�

i − q̃�
i . (5)

The values d�
i are also used for reconstructing the finer levels without interpolation errors. Their norm yields the local

approximation error. Moreover, the information of the cell-average value of the two children is equivalent to the knowledge
of the cell-average value of the parent and one independent detail. This can be expressed by

(
q̄�+1

2i , q̄�+1
2i+1

)
←→

(
d�+1

2i , q̄�i
)

.
This procedure can be applied recursively from level L down to the level 0 creating thus a multiresolution transform of the
cell-average values as proposed by Harten [12]. Therefore, we have

q̄L 	−→ (D̄ L, D̄ L−1, . . . , D̄1, q̄0), (6)

where D̄� is the set of wavelet coefficients at level �. Accordingly, the information of the cell-average values of all the leaves
is equivalent to the knowledge of the cell-average value of the root and the wavelet coefficients of all the other nodes of the
tree structure. For two and three dimensions, respectively, the information of the cell-averages of four and eight children is
equivalent to the knowledge of three and seven wavelet coefficients in the different directions and the node value [12,26].

3. Runge–Kutta methods

After discretising in space the initial value problem given in Eq. (1), the following system of ordinary differential equa-
tions in time is obtained:

dq̄

dt
= f (t, q̄) , (7)

where Q(t = 0) = q̄0 is the given initial condition. This system yields an equation for each leaf of the grid. By abuse of or to
simplify notation the space discretised solution will be denoted again by q̄. The general formulation for an explicit s-stage
Runge–Kutta (RK) method can be expressed at time tn+1 as:

q̄n+1 = q̄n +
s∑

i=1

biki , (8)

with

ki = �tn f

⎛
⎝tn + ci�tn, q̄n +

i−1∑
j=1

aijk j

⎞
⎠ , (9)

where aij , bi and ci are the Runge–Kutta coefficients, and �tn is the time-step used to perform the time evolution from
the instant tn to tn+1. The actual convergence order of the RK method depends of the number of stages and a set of well
selected RK coefficients.

In this work we consider second order RK methods (RK2) with coefficients ci and aij in such a way that they are
the same coefficients used in the first and second steps of the RK3 method. Namely, the values of these coefficients are

c1 = 0 and c2 = a21 = 1. The other coefficients for RK2 are b1 = b2 = 1

2
. To perform RK3, further coefficients are c3 = 1

2
,

a31 = a32 = 1

4
, b1 = b2 = 1

6
and b3 = 2

3
.

3.1. Natural continuous Extension Runge–Kutta (NERK) method

The NERK method, originally introduced by [30], produces an approximation of the solution in the time interval
[tn; tn + �tn] using the same coefficients aij and ci as in the standard Runge–Kutta methods. The difference between NERK
and RK is the use of polynomials βi instead of the constant coefficients bi .

The NERK method can be expressed as,

q̄(tn + θ�tn) = q̄n +
s∑

i=1

βi(θ) ki, θ ∈ (0,1], (10)

where the polynomials βi are given as a function of the coefficients bi of the original RK method.

296 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Using the proposed RK2 coefficients, the following polynomials for the two-stage NERK method is obtained using the
methodology given in [23]:

β1(θ) = −1

2
θ2 + θ, β2(θ) = 1

2
θ2. (11)

In this work, the application of the NERK method consists in producing approximations of a solution at some intermedi-
ate time instants inside the interval [tn, tn + �tn], depending on the choice for RK2 or RK3 time evolution.

3.2. Compact formulation

In order to reduce the memory allocation per cell when performing the time evolution, the compact formulation of
the RK methods is of particular interest, used for example in [26]. Based on the standard RK methods, we can obtain the
following compact formulation for the two and three stage methods,

• RK2: q̄∗ = q̄n + �tn f (tn, ̄qn), q̄n+1 = 1
2 q̄n + 1

2 q̄∗ + 1
2 �tn f

(
tn + �tn, q̄∗).

• RK3: q̄∗ = q̄n + �tn f (tn, ̄qn), q̄∗∗ = 3
4 q̄n + 1

4 q̄∗ + 1
4 �tn f

(
tn + �tn, q̄∗),

q̄n+1 = 1
3 q̄n + 2

3 q̄∗∗ + 2
3 �tn f

(
tn + 1

2 �tn, ̄q∗∗
)

.

When performing the time integration using a local time-stepping approach, cf. Section 4, some intermediate values are
necessary. In this work, we propose to use the NERK method for that. However, the values ki are not stored in the RK
compact formulation. Hence the NERK solution must be adapted to be compatible with the compact RK method.

The following steps produce a NERK/RK2 approximation at the time instant tn + 1
2 �tn . Due to the memory management

of the numerical code, where the fluxes are stored at the same memory allocation, each one of the following steps is
executed immediately after its corresponding compact RK step:

q̄∗
θ= 1

2
= q̄n + 3

8
�tn f (tn, q̄n), q̄θ= 1

2
= q̄∗

θ= 1
2

+ 1

8
�tn f

(
tn + �tn, q̄∗) , (12)

where the values f (tn, ̄qn) and f
(
tn + �tn, q̄∗) are the same as those obtained for the compact RK formulation. In this

formulation, the values q̄θ= 1
2

and q̄∗
θ= 1

2
are stored at the same memory allocation.

For the RK3 time evolution, second order approximations at the time instants tn + 1
4 �tn and tn + 3

4 �tn become necessary.
These approximations are required to compute the third step of the RK3. However, the NERK/RK3 method only yields this
information after the third step. The proposed solution for this problem is to obtain these approximations via NERK/RK2.
Then, it is possible to obtain approximations at these desired instants immediately after the second step of the RK method,
under the condition that the coefficients aij and ci of both, RK2 and RK3, methods are the same. Therefore we use the
following approximations:

• at tn + 1
4 �tn: q̄∗

θ= 1
4

= q̄n + 7

32
�tn f (tn, ̄qn), q̄θ= 1

4
= q̄∗

θ= 1
4

+ 1

32
�tn f

(
tn + �tn, q̄∗),

• at tn + 3
4 �tn: q̄∗

θ= 3
4

= q̄n + 15

32
�tn f (tn, ̄qn), q̄

θ= 3
4

= q̄∗
θ= 3

4
+ 9

32
�tn f

(
tn + �tn, q̄∗).

These approximations can be performed using similar memory management ideas as for the RK2 evolution.

4. Local time-stepping

To improve further the computational efficiency of the MR method, a local time-stepping approach was proposed in [6].
This approach consists in using an adapted time-step for each leaf individually. This time step is obtained accordingly to
the spatial size of the leaf. Thus, small time steps are only used for fine scale leaves, while large time-steps can be used for
coarser leaves. This is possible without violating the stability condition of the explicit time discretisation, as shown in [6].

Solutions with point-like singularities are well adapted and yield highly efficient multiresolution representations. For
those, the MRLT approach is found to be most efficient. Besides, the adaptive grid created for the MRLT scheme is the same
graded tree structure used in the MR scheme [26]. The update procedure for the trees during MRLT schemes is discussed in
Section 4.3.1.

We suppose that the CFL condition implies a time-step �t for the most refined level. In the LT scheme, each cell of level
� performs its time evolution with a proper time step given by:

�t� = 2L−��t, (13)

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 297
Fig. 2. LT evolution of adjacent cells at different scales. The finer cells in this representation need a second time evolution to reach the instant tn+2.

where L is the finest level of the grid. From this point, the notation is adjusted in order to facilitate the understanding.
Moreover, considering the Courant number σ depending on the ratio between �t� and �x� , and using the relations between
the cell size and the time-step of different levels, the value σ obtained for every cell will thus be the same.

As illustrated in Fig. 2, due to the scale dependent time-stepping of the LT scheme, not all leaves of the coarser scales
will be evolved during an iteration of the time evolution. We define the coarsest level where the leaves must be evolved
in a certain iteration n to be the minimum scale level in which the modulo operator between n and 2L−� is zero and we
denote it as �min.

The above approach is restricted to second order time accuracy, because the internal steps of standard Runge–Kutta
schemes are not compatible with the dyadic grid size. The reason is that the intermediate time steps of higher order RK
schemes (order larger than two) do not correspond to the time instants of the solution obtained by the RK method when
using the dyadic grid size [6]. A possible solution to overcome this limitation is to use NERK schemes. Their polynomial
approximation in time is used to evaluate the solution at the intermediate time instants imposed by the dyadic spatial grid
size.

The implementation of high order LT schemes leads to three synchronization challenges during the time evolution of a
leaf with a neighbour at a different refinement level. Those challenges are discussed in the following subsections. The whole
LT method, as proposed in this work, is performed as given in Algorithm 3.

4.1. Synchronization during the Runge–Kutta iteration

Considering the restriction that during an iteration of LT schemes only leaves of refinement level greater or equal �min
are evolved, we know that all of these leaves have their solutions at the same time instant tn , requiring no synchronization
to perform the first RK step. Thus, the first RK step can be done with the MR method using the proper �t� value. After
performing the first step of the Runge–Kutta method, the leaves at each level are evolved with their own time step, obtaining
a first order solution at time instant tn + �t� . Using the fluxes obtained in this step, the values q̄∗

θ= 1
2

, for RK2, or q̄∗
θ= 1

4
and

q̄∗
θ= 3

4
for RK3, are computed at the leaves of every level evolved in this iteration.

However, for the next RK steps, due to the different time step size, the solution values after the RK step are given in a
different time instant for each refinement level. This implies that some synchronization has to be performed.

4.1.1. Second Runge–Kutta step synchronization
In order to perform the second step of the RK method, it is necessary to compute the flux f (tn + �t�, ̄q∗). This flux can

be interpreted as the flux between leaves at the time instant tn + �t� , where the leaf value is a first order approximation
q̄∗ = q̄n + a21k1. The challenge here lies in the fact that when this approximation is obtained at a finer scale, due to the
different time step size used, it is located at an earlier time instant with respect to the approximation at a coarser scale.
This situation implies that the flux computation for each scale has to be performed at a different time instant, as shown in
the scheme presented in Fig. 3. The values required for both cases of the second RK step are not available after the first RK
step, requiring thus a synchronization procedure to obtain those values for each scale. Then the second RK step in this scale
can be performed. To obtain the missing values to compute the fluxes in the situation given in Fig. 3(a), a tree refreshing
procedure, described in Section 4.2, must be performed in order to project the solution for scales � > �min at time instant
tn + �t� onto the scale � − 1 at instant tn + �t�−1.

The proposed synchronization methodology to perform the second RK step consists in using a first order approximation
q̄n

� + 1
2 a21k1 as a solution at the time instant tn + 1

2 �t� for every � �= L. This approximation is in the same time instant as
the solution in the next finer level. The use of this approximation consists in predicting the values of the virtual leaves at
level � + 1, at the proper time instant, before performing the flux computations of the leaves at level � + 1. This approach
is illustrated for the situation presented in Fig. 3(a).

298 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Fig. 3. Schematic view of the synchronization issues for the second RK step. a) Presents the evaluation of flux computations F̄ at instant tn + �t . For
adjacent leaves at the same level we can compute the fluxes directly. However, to compute the fluxes between different levels, we need the virtual leaves
of the coarser leaf at the same time instant of the finer leaves. For that, first, we interpolate the coarser leaf q̄ at instance tn +�t from its respective values
at tn and tn + 2�t . Then, we predict its value at the finer level and obtain its virtual leaves. After that, we evaluate the flux, and then, the RK step for the
finer leaves. b) Presents the evolution of the flux at tn + 2�t of the coarser leaf. First, we predict the virtual leaves of the coarse leaf, then we compute
q̄∗ + k2, i.e. a RK1 step of the finer leaves, which yields a first order approximation. After that, we can compute the flux and evaluate the leaves.

In order to simplify the algorithm, the prediction of the virtual leaves at the coarser scales at the proper time instant,
necessary to update the next finer level, is performed during the tree refreshing process, explained in detail for every RK
step, in Section 4.2. In this Section, we focus on the update of the virtual leaves at level � + 1 in order to perform the flux
computations on leaves of level �, as presented in Fig. 3(b).

Initially, the flux computations for the second RK step are performed on the leaves of level L. This choice is due to the
fact that at this level, there are no interfaces of the type leaf/internal node, avoiding thus the situation shown in Fig. 3(b).

Having updated the level L, the same process is repeated recursively for the levels L − 1 down to L = �min. However, due
to the leaf/internal node scenario, the leaves and virtual leaves of the previously updated level � + 1 must be synchronized
at the instant tn + �t� , which is equivalent to the instant tn + 2�t�+1, in order to perform the flux computations of the
next coarser level. For that we propose the use of an extrapolated value, resulting in the situation presented in Fig. 3(b).

In this work, we suggest to obtain an extrapolation at time instant tn + 2�t�+1, which allows to compute the fluxes for
the second step of the RK method. To this end, the value k2 is used as the value k1 in a second RK1 time evolution. The
first order approximation of the solution at the instant tn + 2�t�+1 is computed as:

q̄�+1
(
tn + 2�t�+1

)= q̄∗
�+1 + �t�+1 f

(
t + �t�+1; q̄∗

�+1

)= q̄n
�+1 + k1 + k2 (14)

where q̄∗
�+1 is the first RK step, and �t�+1 f

(
t + �t�+1; q̄∗

�+1

)
is the flux of the second RK step. Note that this approximation

is only possible due to the choice of the coefficients a11 = b1 = 1.
Once the leaves of level � +1 are extrapolated to the instant tn +2�t�+1, the virtual leaves of this level are also updated.

However, in order to predict the value of the virtual leaves at level � + 1, the values of the virtual leaves and internal nodes
of level � must be synchronized at instant tn + �t� first.

The solution of the virtual leaves and internal nodes of level � in this time instant is obtained during the tree refreshing
process. However, in order to improve the solution of the internal nodes, their values at time instant tn + �t� are updated
after the evolution of the leaves of level � +1. This update is performed via projection of the extrapolated solution at instant
tn + 2�t�+1 from the level � + 1 to �. In contrast to the leaves, which have an approximation at this instant, the internal
nodes do not. The values for the internal nodes are obtained via linear extrapolation:

q̄�+1
(
tn + 2�t�+1

)= 2q̄∗
�+1 − q̄n

�+1. (15)

This approximation is used to perform the projection of the solution of the internal node to the next finer level �. The
projection procedure is given in Algorithm 4. After the projection procedure, the virtual leaves of level � + 1 have their
predicted values. Then, the flux computations and the update of the leaves at level � can be performed. The second step of
the RK method is given in Algorithm 5.

During the second RK step, the fluxes are also used for computing the second step of the NERK approximation with
second order at the time instants tn + 1

2 �t� for RK2 or tn + 1
4 �t� and tn + 3

4 �t� for RK3 time evolution.
As stated before, the NERK approximation for the RK2 time evolution is used to solve the synchronization according the

time evolution problem given in Section 4.3. For the RK3 time evolution, the NERK approximations are used to perform the
third RK step.

After the second step of the RK evolution, a solution at the time instant tn + �t� for the RK2 method, and at tn + 1
2 �t�

for the RK3 method is obtained. In order to prepare the tree structure for the next RK2 iteration and for the next RK3

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 299
Fig. 4. Scheme of the obtained values and its respective time instants for cells in each level after performing the second RK step in the LT method: a) for
RK2 and b) for the RK3 time evolution. The filled, crossed and clear circles represent an available solution, of first, second and third order, respectively, at
the corresponding time instant.

step, another tree refreshing procedure must be applied. This procedure is given in detail in Section 4.2. After this process,
the information obtained for the cells (internal nodes, leaves and virtual leaves) in every refinement level are illustrated in
Fig. 4.

4.1.2. Third Runge–Kutta step synchronization
The third step is done only in the case of the RK3 time evolution. As for the second step of the RK evolution, in the third

step, the evolution must be done first on the finest scale in order to obtain the necessary values to perform the evolution
on the next coarser scale. However there are, indeed, slightly different synchronization issues in this case which we discuss
in the following.

As performed in the second RK step, the virtual leaves and the internal nodes have their values updated during the tree
refreshing process, the details are discussed in the next section.

To perform the third RK step, the fluxes of level L are computed in the proper time instant tn + 1
2 �tL . Then, the third

RK step yields a third order solution at the time instant tn + �tL .
Again as for the second step, this solution is projected onto the next coarser level in order to update the virtual leaves

at level L at the instant tn + �tL , where the fluxes for the third step of the level L − 1 shall be computed.
The projection procedure for the third RK step is, as mentioned above, slightly different from the projection procedure

in the second step. In this case, the solution at the leaves at level � after the third RK step matches with the time instant
where the fluxes of level � − 1 are computed. Then, the solution is projected from level � onto level � − 1 by simple aver-
aging, obtaining thus a solution at tn + 1

2 �t�−1. This solution is used as an approximation for q̄∗∗ . Then, the value of the
internal nodes at the instant tn + �t�−1 should be updated with a second order solution in order to continue the projec-
tions recursively during the third RK step. This update is performed using the following relation obtained from the NERK
scheme:

q̄�(t
n + �t�) = q̄n

� + 2
(

q̄
�,θ= 3

4
− q̄�,θ= 1

4

)
. (16)

This projection procedure inside the third RK step is given in Algorithm 6, and the execution of the third step of the RK
evolution in Algorithm 7.

4.2. Tree refreshing with time synchronization

In the MR scheme, due to the same time step for every scale, the leaves of every scale store values corresponding to the
same time instant. Therefore, projections of the leaves onto internal nodes receive values at the same time instant. However,
in the LT approach, due to fact that leaves of different scales are evolved with different time steps, the tree refreshing may
project values at different time instants related to the leaves at the same scale. Accordingly, we need a procedure before
each RK step internally to the time cycle, to project the solution to an internal node at its corresponding time instant.

Moreover, these synchronizations are necessary to predict the values of the virtual leaves for the next steps of the RK
method, at the required time instant. Only after that, the flux computations can be performed.

Before the first RK step, every scale of level �min or greater, which must be evolved, has its solution at the same time
instant. Therefore, the values of the virtual leaves can be predicted normally, except at level �min, which has its virtual
leaves predicted using the solution at tn + 1

2 �t�min−1 from the level �min − 1.
After the first step of the RK method, each leaf yields a first order solution at the time instant tn + �t� , which corre-

sponds to the time instant tn + 1 �t�−1. This implies that the projection of the leaves from level � to � − 1 produces an
2

300 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Fig. 5. Projection scheme before the third RK step.

approximation at that time instant. The value of an internal node at this instant is given by the mean value of its children:

q̄�−1

(
tn + 1

2
�t�−1

)
= q̄n

�−1 + 1

2
�t�−1 f

(
tn, q̄n

�−1

)= 1

2d

2d∑
i=1

[
q̄n

�, i + �t� f
(
tn, q̄n

�, i

)]
(17)

where d is the number of dimensions of the problem and q̄n
�, i is the solution of the children cell i. This value is stored

in order to predict the values of the virtual leaves of level � for the second RK step. Furthermore, this value must be
extrapolated to the instant tn + �t�−1, obtaining the value q̄∗

�−1. This value, used to update the virtual leaves of level �
during the second RK step, is obtained by linear extrapolation:

q̄∗
�−1 = 2q̄�−1

(
tn + 1

2
�t�−1

)
− q̄n

�−1, (18)

where the value q̄n
�−1 is the solution before the time evolution. This value should be stored for every node before the RK

procedure. The tree refreshing procedure after the first RK step is given in Algorithm 8.
When performing the RK3 time evolution, before the third RK step, besides the solution, the values q̄θ= 1

4
and q̄

θ= 3
4

must
be obtained for the internal nodes. The solutions in those instants are required to predict the solution of the virtual leaves
in the next finer level at the instant required for this RK step.

Those values are obtained through projections from the level L down to the level �min, initially by projecting the solution
q̄∗∗

� at the time instant tn + 1
2 �t� , obtaining thus a value at tn + 1

4 �t�−1, which is used as an approximation for q̄�−1, θ= 1
4

.

Using this solution, the Equation (10) and the value q̄∗
� , computed during the projection before the second RK step, we

obtain the following relation to reconstruct the solution inside the interval [tn; tn + �tn]:

q̄�

(
tn + θ�t�

)=
[

1 − θ − 12θ2
]

q̄n
� +

[
θ − 4θ2

]
q̄∗

� + 16θ2q̄�, θ= 1
4
. (19)

This expression is based on the NERK scheme presented in Section 3.1. Using the value θ = 3
4 , we have:

q̄
�, θ= 3

4
= −13

2
q̄n

� − 3

2
q̄∗

� + 9q̄�, θ= 1
4

(20)

Subsequently, using these values, the value q̄∗∗ can be computed as:

q̄∗∗
� = −11

2
q̄n

� − 3

2
q̄∗

� + 8q̄�, θ= 1
4

(21)

The solution q̄∗∗
� allows to continue the projection procedure recursively by obtaining the value q̄�−1, θ= 1

4
at the next

coarser level, while the solution q̄
�, θ= 3

4
is used to compute the value of the virtual leaves at level � + 1 on the following

iterations, as explained in Section 4.1.
The tree refreshing procedure, illustrated in Fig. 5, consists in projecting the solution q̄∗∗

L from the level L onto the level
L − 1. This solution is approximated as q̄L−1, θ= 1

4
. Then, using the previously obtained value q̄∗

L−1, the values q̄L−1, θ= 3
4

and
q̄∗∗

L−1 can be obtained using Equations (20) and (21). This procedure is recursively repeated down to the coarsest scale �min.

In the third RK step, the fluxes are computed at the intermediary time instant tn + 1
2 �t� . For an adjacent coarser leaf,

this instant is tn + 1
4 �t�−1 or tn + 3

4 �t�−1, depending on the current iteration number. Basically, if the current scale is �min

then the NERK value used to compute the virtual leaves is available at time instant tn + 3
4 �t�min−1. Otherwise, the value at

the time instant tn + 1
4 �t�−1 is used.

The choice which value of the NERK approximation shall be used in the flux computations is shown in Fig. 6, where we
choose �min = L − 2.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 301
Fig. 6. Scheme of the choice of the NERK solution to predict the virtual leaves for the third RK step in a LT iteration with �min = L − 2. The solution q̄
θ= 3

4

is used to predict the q̄∗∗ values at level �min. For the other scales, the solution q̄∗∗ is predicted with the values q̄θ= 1
4

.

Once the projections have been performed from the level L until the level �min, the virtual leaves have their values ¯q∗∗
�

predicted using the values q̄
�−1, θ= 3

4
, in case of � = �min; or using q̄�, θ= 1

4
, otherwise.

Then, the values q̄�, θ= 1
4

and q̄
�, θ= 3

4
for these virtual leaves are obtained using the Equations (20) and (21). Those values

are required here to predict the values of the virtual leaves at the next finer scale.
The tree refreshing procedure before the third RK step is detailed in Algorithm 9.

4.3. Synchronization after the time evolution

After finishing the RK steps, the leaves at level � perform a complete time evolution with a time step that is twice the
time step of the leaves at level � + 1. In order to perform the next time evolution at scale �, the finer scale leaves must
reach the same time instant. For that, a second time evolution is required for this finer scale leaf.

Moreover, in the next iteration of the time evolution, a new value for �min is obtained. To predict the virtual leaves at
the new scale �min at the proper time instant, the values q̄�min−1, θ= 1

2
for RK2 or q̄∗∗

�min−1 for RK3 are used. For the scales
finer than �min, the virtual leaves are predicted with the MR method.

To solve this synchronization challenge and to maintain the approximation order, a high order approximation at time
step tn + 1

2 �t� , where � is the refinement level of the leaf, is required. In this case, in the tree terminology, it means that
for the coarser leaves, an approximation of its virtual children at the instant tn + 1

2 �t� is needed.
To obtain these values, it is necessary to obtain approximations at the instant tn + 1

2 �t� during the Runge–Kutta evolution
for every cell of refinement level � �= L and its neighbours, including internal nodes. Then, the values of the virtual children
are obtained by the prediction procedure.

For the RK2 time evolution, we use the NERK approach to obtain the approximation with θ = 1
2 . However, the implemen-

tation of the MRLT/NERK approach for the RK3 time evolution requires extra memory. Hence we use the approximation q̄∗∗ ,
obtained after the second step of the compact RK, which is at the instant tn + 1

2 �t� , instead of the NERK approximation
with θ = 1

2 in order to reduce the number of variables to be stored in the problem.
Besides those values, the updated solution, at time instant tn +�t� , is projected onto the coarser level at the time instant

tn + 1
2 �t�−1 by simple averaging. This solution is then used as an approximation for q̄�−1, θ= 1

2
, in the RK2 time evolution,

or q̄∗∗
�−1 for the RK3 time evolution. Using the NERK equations given in Section 3.2 and the current value of the internal

node at tn + �t�−1 (RK first step), the solution at instant tn + �t� is obtained by the following relation:

q̄�

(
tn + �t�

)= −2q̄n
� − q̄∗

� + 4q̄�, θ= 1
2
. (22)

This value is used to compute the value of the virtual leaves at level �min + 1 in the following iterations at the second
RK step, as explained in Section 4.1.1.

4.3.1. Adapting the grid during local time-stepping
During the LT scheme, in most parts of the numerical simulation, some scales have results at different time instants.

Therefore, in order to avoid errors to be caused by converting a cell with a solution value at a determined time instant
to another scale where its cells are in a different time instant, there is a need for a criterion when adapting the solution
during the LT scheme.

This criterion consists in combining or splitting only leaves from a scale to another scale whose leaves are at the same
time instant. These scales can be easily detected due to the fact that the time evolution procedure is applied only in scales
at the same time instant. In other words, to split a cell into more refined ones, both scales must be included into the current
time evolution iteration. The same is valid to combine cells into a coarser one.

302 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Moreover, beyond this restriction, the remeshing process is identical to the remeshing process of the multiresolution
method.

4.4. Some remarks on the convergence and stability of MRLT/NERK schemes

In this section, we perform a stability analysis to check the convergence order of the MRLT/NERK3 method. For that, we
compute the interpolation and extrapolation errors in each approximation required for the method, considering the interface
between cell of different levels.

To analyze the stability typically a simple linear ODE,

dq

dt
= λu (23)

where a constant complex-valued coefficient λ ∈ C with negative or zero real part, is considered. The above equation is
completed with an initial condition. Using Fourier analysis of linear PDEs it can be shown that imaginary values of λ
correspond to pure advection, while real (negative) values correspond to pure diffusion equations.

One-step schemes, including Runge–Kutta methods can then be written in the following form,

q̂n+1 = g(λ�t) q̂n (24)

where g is a polynomial. In particular, for RK1, RK2 and RK3 we respectively have g(λ�t) = 1 + λ�t , g(λ�t) = 1 + λ�t +
1
2 λ2�t2 and g(λ�t) = 1 +λ�t + 1

2 λ2�t2 + 1
6 λ3�t3, which correspond to the truncated Taylor series of exp(λ�t). A method

is called of convergence order n if its polynomial g(λ�t) reconstructs the Taylor series up to the λn�tn term.
To compute the polynomial g for the MRLT/NERK methods, the analysis is performed by computing and inserting each

error εi obtained in every approximation required to perform the MRLT method.
The errors obtained in those approximations are inserted into the flux computations of the stability model as follows:

f (q̄) = f (q̂ − ε) , (25)

where q̄ is an approximation obtained during the MRLT/NERK method and q̂ is the solution that would be obtained by the
regular RK method.

In the following, we obtain the errors ε for each approximation used for the first RK evolution on both finer and coarser
scales. In this evolution, both scales are initially at the same time instant, so there is no approximation error for the first
RK step (k1). In other words, it means that q̄n = q̂n .

In this section, we consider the RK3 scheme as given in Section 3.2.
Considering that the solution q̄n is at the same instant for every scale to be updated in the time evolution, the first RK

stage reads,

q̄∗ = q̄n + �tn f (tn, q̄n) (26)

and yields no interpolation errors due to the LT approach for both scales. That leads to q̄∗ = q̂∗ .

4.4.1. Approximations after the first RK step
Here we compute the errors obtained from the predictions and projections after the first RK step, as performed in

Section 4.1.1. The solution of the intermediary solution q̄∗ is at a different time instant for each refinement level, requiring
thus a series of interpolations and extrapolations, which introduces errors ε1 and ε2 into the scheme.

• ε1: Prediction error in the finer leaf.

Error obtained in the prediction of q̄∗ in the finer leaf using the values of the solution in the lower level with half of the
time-step.

ε1 = q̂∗
� − P�−1→�

[
q̄n

�−1 − �t�−1

2
f (q̄n

�−1)

]
= 0. (27)

Proof. Considering f (q̄n
�−1) = λq̄n

�−1

ε1 = q̂n
� + �t�λq̂n

� − P�−1→�

[
q̄�−1 − �t�−1

2
λq̄�−1

]
(28)

ε1 = q̂n
� + �t�λq̂n

� − q̄� − �t�−1

2
λq̄� (29)

ε1 = 0 (30)

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 303
• ε2: Projection error in the coarser leaf.
Error obtained in the projection to obtain q̄∗ in the coarser level. This solution is a first order extrapolation to the time
instant tn + �t�−1 for the leaves in the finer level.

ε2 = q̂∗
� − P�+1→�

⎡
⎢⎢⎣q̄n

�+1 + �t�+1 f (q̄n
�+1)︸ ︷︷ ︸

First RK step on finer leaf

+ �t�+1 f (q̄∗
�+1)︸ ︷︷ ︸

extrapolation to tn+�t�−1

⎤
⎥⎥⎦= −�t2

�λ
2

4
q̂n

� (31)

Proof. Here we consider the errors caused in the previous approximations in the flux terms. Using q∗ = q + �t f (q) − ε1

inside the flux term:

ε2 = q̂n
� + �t� f (q̂n

�) − P�+1→�

[
q̄n

�+1 + �t�+1 f (q̄n
�+1) + �t�+1 f (q̂n

�+1 + �t�+1 f (q̂n
�+1) − ε1)

]
(32)

Considering f (q̄n
�+1) = λq̄n

�+1 we have

ε2 = q̂n
� + �t�λq̂n

� − P�+1→�

[
q̂n

�+1 + �t�+1λq̂n
�+1 + �t�+1λ(q̂n

�+1 + �t�+1λ(q̂n
�+1))

]
(33)

Applying the projection operator we get

ε2 = q̂n
� + �t�λq̂n

� − q̂n
� − �t�+1λq̂n

� − �t�+1λ
(
q̂n

� + �t�+1λq̂n
�

)
(34)

ε2 = �t�λq̂n
� − �t�

2
λq̂n

� − �t�
2

λ

(
q̂n

� + �t�
2

λq̂n
�

)
(35)

ε2 = −�t2
�λ

2

4
q̂n

� (36)

Once the interpolation errors are obtained, the second Runge–Kutta step is performed for the finer scale:

q̄∗∗ = 3

4
q̄n + 1

4
q̄∗ + 1

4
�tn f

(
tn + �tn, q̄∗) (37)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗ − ε1

)
(38)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗) (39)

q̄∗∗ = q̂∗∗ (40)

We observe that the q̄∗∗ solution does not have any interpolation errors due to the LT scheme. Then the second order RK
step is performed for the coarser scale:

q̄∗∗ = 3

4
q̄n + 1

4
q̄∗ + 1

4
�tn f

(
tn + �tn, q̄∗) (41)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tn f

(
q̂∗ − ε2

)
(42)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + 1

4
�tnλq̂∗ − 1

4
�tnλε2 (43)

q̄∗∗ = 3

4
q̂n + 1

4
q̂∗ + z

4
q̂∗ − �t�λ

4
ε2 (44)

q̄∗∗ = q̂∗∗ − �t�λ

4
ε2 (45)

Here, the approximation has an error of −�t�λ
4 ε2.

4.4.2. Approximations after the second RK step
In the following, we compute the errors obtained from the predictions and projections after the second RK step, as

performed in Section 4.1.2. The approximations here are the NERK solution at tn + 1
4 �t�−1 to predict the solution q̄∗∗

� on
finer scales and the projections of the RK3 evolution of the finer leaves to approximate q̄∗∗

�−1. The first one is given by:

• ε3: Prediction error using NERK approximation

ε3 = q̂∗∗
� − P�−1→�

[
q̄n

�−1,θ= 1
4

]
=
(

�t2
�λ

2

8
− �t3

�λ
3

16

)
q̂n

� (46)

304 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Proof. Considering the NERK equation for θ = 1

4
given in Section 3.2 we get,

ε3 = q̂∗∗
� − P�−1→�

[
q̄n

�−1 + 7

32
�t�−1 f (q̄n

�−1) + 1

32
�t�−1 f (q̄∗

�−1)

]
(47)

Then, we consider the error ε2 in the flux computations for the coarser scale:

ε3 = q̂n
�

(
1 + �t�λ

2
+ �t2

�λ
2

4

)
− P�−1→�

[
q̄n

�−1 + 7

32
�t�−1λq̄n

�−1 + 1

32
�t�−1λ

(
q̂∗

�−1 − ε2
)]

(48)

ε3 = q̂n
�

(
�t�λ

16
+ �t2

�λ
2

4

)
− �t�λ

16
P�−1→�

[
q̂∗

�−1 − ε2
]

(49)

ε3 = q̂n
�

(
�t�λ

16
+ �t2

�λ
2

4

)
− �t�λ

16
P�−1→�

[
q̂n

�−1 + �t�−1 f (q̂n
�−1) + �t2

�−1λ
2

4
q̂n

�−1

]
(50)

ε3 = �t2
�λ

2

4
q̂n

� − �t2
�λ

2

8
q̂n

� − �t�λ

16
P�−1→�

[
�t2

�−1λ
2

4
q̂n

�−1

]
(51)

ε3 =
(

�t2
�λ

2

8
− �t3

�λ
3

16

)
q̂n

� (52)

Afterwards we perform the third RK step for the finer leaf.

q̄n+1 = 1

3
q̄n + 2

3
q̄∗∗ + 2

3
�tn f

(
tn + 1

2
�tn, q̄∗∗) (53)

q̄n+1 = 1

3
q̂n + 2

3
q̂∗∗ + 2z

3

(
q̂∗∗ − ε3

)
(54)

q̄n+1 = 1

3
q̂n + 2

3

(
1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n + 2�t�λ

3

[(
1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n − ε3

]
(55)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

6

)
q̂n − 2�t�λ

3

(
�t2

�λ
2

8
− �t3

�λ
3

16

)
q̂n (56)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

12
+ �t4

�λ
4

24

)
q̂n (57)

This shows that the third order accuracy is lost in the evolution of the finer leaf.

• ε4: Projection error using finer leaf evolution.

ε4 = q̂∗∗
� − P�+1→�

[
q̄n+1

�+1

]
=
(

�t2
�λ

2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

� (58)

Proof. Using Equation (57) to represent the time evolution for the finer leaf, we have,

ε4 = q̂∗∗
� − P�+1→�

[(
1 + �t�+1λ + (�t�+1λ)2

2
+ (�t�+1λ)3

12
+ (�t�+1λ)4

24

)
q̂n

�+1

]
(59)

ε4 = q̂∗∗
� − P�+1→�

[(
1 + �t�λ

2
+ (�t�λ)2

8
+ (�t�λ)3

96
+ (�t�λ)4

384

)
q̂n

�+1

]
(60)

ε4 =
(

1 + �t�λ

2
+ �t2

�λ
2

4

)
q̂n

� −
(

1 + �t�λ

2
+ �t2

�λ
2

8
+ �t3

�λ
3

96
+ �t4

�λ
4

384

)
q̂n

� (61)

ε4 =
(

�t2
�λ

2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

� (62)

And finally, performing the third RK step for the coarser leaf, we get

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 305
Table 1
Convergence order for the FV, MR and MRLT methods.

�t

(×10−4)

Method

FV/RK2 MR/RK2 MRLT/RK2 MRLT/NERK2 FV/RK3 MR/RK3 MRLT/NERK3

1.6 1.9991 1.9984 1.0794 2.0154 3.0000 3.0030 1.7895
0.8 2.0003 2.0010 0.9433 2.0002 3.0077 3.0017 1.9152

q̄n+1 = 1

3
q̄n + 2

3
q̄∗∗ + 2

3
�t� f

[
tn + 1

2
�t�, q̄∗∗

]
(63)

q̄n+1 = 1

3
q̂n + 2

3

(
q̂∗∗ − �t�λ

4
ε2

)
+ 2�t�λ

3

[
q̂∗∗ − ε4

]
(64)

q̄n+1 = 1

3
q̂n + 2

3

(
q̂∗∗ + �t3

�λ
3

16
q̂n

�

)
+ 2�t�λ

3

[
q̂∗∗ −

(
�t2

�λ
2

8
− �t3

�λ
3

96
− �t4

�λ
4

384

)
q̂n

�

]
(65)

q̄n+1 = q̂n+1 + �t3
�λ

3

24
q̂n

� +
(

−�t3
�λ

3

12
+ �t4

�λ
4

144
+ �t5

�λ
5

576

)
q̂n

� (66)

q̄n+1 =
(

1 + �t�λ + �t2
�λ

2

2
+ �t3

�λ
3

8
+ �t4

�λ
4

144
+ �t5

�λ
5

576

)
q̂n. (67)

This result also shows a loss of the third order accuracy, since the third order term of the Taylor series �t3
� λ3

6 is not
found.

4.5. Discussion on the numerical convergence

To study the numerical convergence of local time stepping we consider the advection equation

∂ Q

∂t
+ ∂ Q

∂x
= 0 x ∈ [0,1] (68)

with periodic boundary conditions and a Gaussian initial condition, given by Q (x) = exp
(−100 (x − 0.25)2). The simulation

is performed for one time cycle. In order to avoid errors due to the MR scheme, we performed the adaptive simulations
using two fixed grids in the domain. The first one in the interval [0, 0.5] with �x = 1/512, and the second in the interval
[0.5, 1.0] with �x = 1/256, are both fixed during the entire simulation. We also use a centred numerical flux.

The convergence orders is computed using a self convergence method, obtaining the rate for which the solution of the
MR and MRLT methods converges to a solution as �t → 0. For that, we perform simulations using subsequently smaller
time steps, each one having half of the time step used in the previous simulation. The convergence rate is obtained from
the following ratio:∥∥∥∥∥

q̄�t − q̄ �t
2

q̄ �t
2

− q̄ �t
4

∥∥∥∥∥= C�t p − C
(

�t
2

)p + O (�t p+1)

C
(

�t
2

)p − C
(

�t
4

)p + O (�t p+1)
= 1 − 2−p + O (�t)

2−p − 2−2p + O (�t)
= 2p + O (�t) (69)

where q̄�t is the solution of a simulation using a time step �t and p is the order of the method, which is approximated
using the logarithm:

p ≈ log2

∥∥∥∥∥
q̄�t − q̄ �t

2

q̄ �t
2

− q̄ �t
4

∥∥∥∥∥ . (70)

The convergence order obtained for the FV, MR and MRLT methods are given in Table 1. In order to check that p → 0
as �t → 0, we perform this test using two different values for the coarsest �t . We observe that FV/RK2 and FV/RK3 yield
second and third order time discretisations, respectively, as expected. For MRLT/NERK2 and MRLT/NERK3 we obtained the
expected second order, in particular for the MRLT/NERK3 the second order is justified by the approximation errors ε3 and ε4
which caused the loss of the third order, as shown in the Equations (57) and (67). Another reason for this loss in accuracy
was the fact that due to the order barrier for NERK methods [22], a third order solution at instant tn + �t�

2 could not be
produced by a three stage method. Thus, when a leaf performs its second time evolution inside the LT cycle, it may use the
second order solution from a coarser leaf, causing the loss from third to second order. This issue also justifies the observed
loss in accuracy for the MRLT/RK2 method. Here, the coarser leaf produces a first order solution at instant tn + �t�

2 to be
used in the second evolution of the finer leaf.

306 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
5. Numerical experiments

In this section we present some comparative results of the proposed MRLT/NERK method with the MR, MRLT methods
given in [6] and also the traditional FV method on a uniform grid. These methods are applied to solve the two-dimensional
Burgers equation, one and three-dimensional reaction–diffusion equations and finally the two-dimensional compressible
Euler equations. We use the AUSM+ scheme [17] to compute the numerical flux in Burgers and Euler equations. To compute
the advective term for the reaction–diffusion equation, we use the McCormack scheme [27]. The errors are computed in the
discrete L1 norm on the fine grid as:

emethod
L1

= 1

2Ld

2Ld−1∑
i=0

∥∥∥q̄ref
i − q̄method

i

∥∥∥ (71)

where q̄ref is the FV/RK3 reference solution of the corresponding problem and q̄method is the solution obtained with the
analyzed method.

To compare the performance of two adaptive methodologies in terms of CPU time reduction versus accuracy loss, a cost
value μmethod is defined for each adaptive method as:

μmethod = emethod
L1

· tmethod
CPU

tFV
CPU

, (72)

where tmethod
CPU is the CPU time obtained for the analyzed method and tFV

CPU is the CPU time of the F V method with the same
number of scales L and Runge–Kutta of the same order.

The ratio between the cost of different adaptive methods yields the parameter λ, used to measure the advantage of one
method compared with the other. In this work, the parameter λ is used to compare the proposed MRLT/NERK methods with
the MR and MRLT methods, defined as:

λmethod
MRLT/NERK = μmethod

μMRLT/NERK
. (73)

If the parameter λ is larger than 1, the MRLT/NERK approach is considered to be advantageous over the other method. In
case of λ < 1, the MRLT/NERK approach is considered to be disadvantageous over the other method, and in case of λ = 1,
the methods are considered to be equivalent.

All the simulations are performed using a fixed threshold value ε in order to simplify the experiments. In [7] computa-
tions are presented using a MR methodology with ε values which depend of the refinement level.

5.1. Two-dimensional Burgers equation

The Burgers equation is a non-linear PDE which represents a simple model for turbulence and is used in astrophysical
applications. The inviscid model, in the two-dimensional case, is given by the following equation:

∂ Q

∂t
+ 1

2

(
∂(Q 2)

∂x
+ ∂(Q 2)

∂ y

)
= 0 (x, y) ∈ � = [0,1] × [0,1]. (74)

The initial condition used in this work is Q 0(x, y) = sin(2πx) sin(2π y), with Dirichlet boundary conditions given by
Q (x, 0) = Q (x, 1) = Q (0, y) = Q (1, y) = 0.

All simulations are performed with a Courant number σ = 0.5 and a threshold ε = 0.01 until the time instant t f = 0.9.
The reference solution for this case is obtained using refinement level L = 12.

Fig. 7 shows the reference solution and the solution obtained with the MRLT/RK2 and MRLT/NERK2. The respective
difference, in modulus, with respect to the reference solution and adaptive grids at the end of the computation are also
shown. The method MRLT/RK2 case exhibits larger errors close to the shocks, especially in the peak of the structure and in
its background. The other methods present solutions closer to the one obtained with the MRLT/NERK2 method.

The results are compared with the solution in an uniform grid at the same level using a L1 norm, showing perturbation
errors. These errors, CPU time and memory compression are summarized in Table 2. The CPU time and memory of the
adaptive methods are given in percentage of the number of leaves used in the FV method with the same number of scales
and the same Runge–Kutta scheme. For the two-dimensional Burgers equation, the proposed MRLT/NERK methods present
a slight gain in precision and a significant gain in CPU time in relation to the other adaptive methodologies. However, the
MRLT schemes with NERK time integration require more memory, which decreases when increasing the resolution, i.e. for
increasing L.

The parameters λ obtained for the MRLT/NERK methods compared to the MR and MRLT methods are presented in Table 3.
For most of the experiments, the proposed methods yield values of λ between 2 and 3. This shows that the NERK-based
methods are significantly more efficient than the RK-based MR and MRLT methods.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 307
Fig. 7. Reference solution for the two-dimensional Burgers equation a), the solutions obtained by the MRLT/RK2 b) and MRLT/NERK2 c) methods with its
respective errors and the corresponding adaptive grids. For all cases we use L = 10 and the time instant is t f = 0.9.

5.2. Reaction–diffusion equations

We consider reaction–diffusion equations in one and three space dimensions and study the formation of a flame front
ignited with a spark in an environment with flammable premixed gas. This kind of problem is a prototype of non-linear
parabolic equations with a non-linearity in the source term, see e.g. [6,26].

5.2.1. One-dimensional case
In the one-dimensional case, considering equal mass and heat diffusion, this problem can be modelled by the following

equation:

308 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Table 2
Two-dimensional Burgers equation: L1 errors, CPU time and memory compression.

Finest scale level Method Error (×10−2) Q CPU time (% FV) Memory (% FV)

L = 8 MR/RK2 1.5032 68.4 19.5
MRLT/RK2 1.7701 67.8 19.5
MRLT/NERK2 1.2958 40.3 24.2

MR/RK3 1.5045 184.9 19.4
MRLT/NERK3 1.2932 94.7 24.2

L = 9 MR/RK2 1.3615 34.7 8.9
MRLT/RK2 1.6645 32.5 8.9
MRLT/NERK2 1.1457 16.7 10.3

MR/RK3 1.3614 95.4 8.9
MRLT/NERK3 1.1423 42.7 10.3

L = 10 MR/RK2 1.2890 14.7 4.1
MRLT/RK2 1.6016 13.5 4.1
MRLT/NERK2 1.0740 6.7 4.4

MR/RK3 1.2893 15.3 4.1
MRLT/NERK3 1.0699 6.4 4.4

Note: All adaptive computations use ε = 10−2; the final time is t f = 0.9. The computations have been carried out on an Intel Core™ i7 CPU 2.67 GHz.
FV/RK2 CPU time: 2.0 min (L = 8); 15.7 min (L = 9); 2.3 h (L = 10). FV/RK3 CPU time: 1.2 min (L = 8); 8.0 min (L = 9); 3.3 h (L = 10).

Table 3
Two-dimensional Burgers equation: computational gain λ of the MRLT/NERK methods with respect to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 8 MRLT/NERK2 1.96 2.29 –
MRLT/NERK3 – – 2.27

L = 9 MRLT/NERK2 2.46 2.82 –
MRLT/NERK3 – – 2.66

L = 10 MRLT/NERK2 2.63 3.00 –
MRLT/NERK3 – – 2.88

∂T

∂t
+ v f

∂T

∂x
= ∂2T

∂x2
+ ω(T) for x ∈ (−15,15) (75)

where the function T (x, t) is the dimensionless temperature normalized between 0 (unburned gas) and 1 (burned gas),
v f = ∫

ω dx is the flame velocity and ω(T) is the chemical reaction rate, given by:

ω(T) = Ze2

2
(1 − T)exp

(
Ze(1 − T)

τ (1 − T) − 1

)
(76)

where Ze is a dimensionless activation energy, known as Zeldovich number, and τ is the burnt-unburnt temperature ratio. In
this one-dimensional case, where we use unitary Lewis number, the unburned gas concentration Y is defined as Y = 1 − T .

In the numerical experiments, the following initial condition is used:

T (x,0) =
{

1, if x ≤ 1

exp(1 − x), otherwise
(77)

with boundary conditions given by:

∂T

∂x
(−15, t) = 0, T (15, t) = 0 (78)

The subsequent simulations are performed with the parameters Ze = 10, τ = 0.8 and a Courant number σ = 0.5 until
the final time instant t f = 5.0. The adaptive simulations are performed with a threshold ε = 0.01. The reference solution for
this case is obtained using the same Courant number and a refinement level L = 13. Fig. 8 shows the reference solution and
the solution obtained by the MRLT/RK2 and MRLT/NERK2 methods with its respective errors and the corresponding final
grids. In this one-dimensional case, the adaptive grid is represented by the position of each cell (x-axis) and its refinement
level (y-axis).

The adaptive methods present a larger error in the flame front region, especially for the variable ω. Among the adaptive
methods, MRLT/RK2 has the smallest errors, while the other methods present very similar errors. However, the MRLT/NERK
methods still requires the lowest CPU time. These times and L1 errors are assembled in Table 4.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 309
Fig. 8. Reference solution of the one-dimensional reaction–diffusion equations a) and the solutions obtained by the MRLT/RK2 (b) and MRLT/NERK2 (c) meth-
ods with its respective errors (d), (e) and final adaptive grids (f), (g). For all cases we use L = 13.

The computational gain of the MRLT/NERK methods compared to the MR and MRLT methods are given in Table 5. In this
case, the MRLT/NERK methods yields the most expressive results compared to the MR methods in terms of computational
gain. The gain of the MRLT/NERK2 method compared with the MRLT/RK2 method is small for the cases L = 12 and 13. The
corresponding results are presented in Table 5.

5.2.2. Three-dimensional case
In the three-dimensional case, the reaction–diffusion equations read:

∂T

∂t
= ∇2T + ω − s (79a)

∂Y

∂t
= 1

Le
∇2Y − ω (79b)

where Le denotes the Lewis number, which defines the ratio of mass and heat diffusion and with the chemical reaction
rate ω:

ω(T , Y) = Ze2

Y exp

(
Ze(T − 1)

)
(80)
2Le 1 + τ (T − 1)

310 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Table 4
One-dimensional reaction–diffusion equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−4) CPU time Memory

T Y ω (%FV)

L = 11 MR/RK2 5.045 5.045 24.564 31.9 3.1
MRLT/RK2 5.666 5.666 30.192 18.0 3.1
MRLT/NERK2 4.380 4.380 21.308 7.2 3.1

MR/RK3 5.045 5.045 24.566 31.3 3.1
MRLT/NERK3 4.543 4.543 22.173 5.3 3.1

L = 12 MR/RK2 5.043 5.043 24.559 15.9 1.5
MRLT/RK2 1.780 1.780 14.256 8.0 1.5
MRLT/NERK2 4.728 4.728 23.107 2.8 1.5

MR/RK3 5.043 5.043 24.560 16.0 1.5
MRLT/NERK3 4.755 4.755 23.261 2.3 1.5

L = 13 MR/RK2 5.054 5.054 24.609 7.9 0.7
MRLT/RK2 2.904 2.904 15.062 3.9 0.7
MRLT/NERK2 4.900 4.900 23.903 1.4 0.7

MR/RK3 5.054 5.054 24.609 7.9 0.7
MRLT/NERK3 4.904 4.904 23.923 1.1 0.7

Note: All adaptive computations use ε = 10−2; final time: t f = 5.0. Computed on an Intel Core™ i7 CPU 2.67 GHz. FV/RK2 CPU time: 51.4 min (L = 11);
6.9 h (L = 12); 54.6 h (L = 13). FV/RK3 CPU time: 51.4 min (L = 11); 6.9 h (L = 12); 54.6 h (L = 13).

Table 5
One-dimensional reaction–diffusion equations: computational gain, for the variable T , of the proposed
MRLT/NERK methods compared to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 11 MRLT/NERK2 5.10 3.23 –
MRLT/NERK3 – – 6.55

L = 12 MRLT/NERK2 6.05 1.07 –
MRLT/NERK3 – – 7.37

L = 13 MRLT/NERK2 5.82 1.65 –
MRLT/NERK3 – – 7.40

According to the Stefan–Boltzmann law, the heat loss due to radiation s is modelled by:

s(T) = κ
[
(T + τ−1 − 1)4 − (τ−1 − 1)4

]
(81)

where κ is a dimensionless radiation coefficient. In this work, we use κ = 0.1.
The initial condition, described in spherical coordinates, is:

T (r,0) =
{

1, if r ≤ r0

exp
(

1 − r
r0

)
, otherwise

(82)

Y (r,0) =
{

0, if r ≤ r0

1 − e
(

Le(1 − r
r0

)
)

, otherwise
(83)

where r0 = 1 is the initial radius of the ellipsoidal flame ball and r =
√

X2

a2 + Y 2

b2 + Z 2

c2 with:

X = x cos(θ) − y sin(θ) (84)

Y = [x sin(θ) + y cos(θ)] cos(φ) − z sin(φ) (85)

Z = [x sin(θ) + y cos(θ)] sin(φ) + z cos(φ) (86)

The boundary conditions are of homogeneous Neumann type. In these simulations we use the parameters Ze = 10,
τ = 0.64, Le = 0.3, θ = π

3 , φ = π
4 , a = 3

2 , b = 3
2 , c = 3, a threshold factor ε = 0.01 and a Courant number σ = 0.1 until

the final time instant t f = 5.0. The reference solution for this case is obtained using the same Courant number and the
refinement level L = 7. Fig. 9 shows the isosurface of T for the reference and the MRLT/NERK2 and MRLT/NERK3 methods.
It also shows the solutions, difference from the reference solution in modulus, and projections of every cell centre at the
plane xz. The adaptive methodologies present higher errors close to the flame ball fronts, which are more rounded in
comparison to the FV solutions. The adaptive grids are similar for all adaptive methodologies, with a higher concentration
of refined cells in the region of the front and inside the flame ball.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 311
Fig. 9. Isosurface and xz plane reference solution for the variable T in three-dimensions at t f = 5.0. The solutions are obtained with the MRLT/NERK2 and
MRLT/NERK3 methods with its respective errors in the xz plane and projections of the centre of the adaptive grid cell onto the xz plane. The isosurface
plots were built using 5 linearly scaled values.

312 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Table 6
Three-dimensional reaction–diffusion equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−4) CPU time Memory

T Y ω (%FV)

L = 7 MR/RK2 4.516 7.338 21.831 15.6 2.5
MRLT/RK2 4.511 7.267 21.798 14.9 2.5
MRLT/NERK2 4.513 7.636 22.038 10.9 7.7

MR/RK3 4.516 7.338 21.831 14.4 2.5
MRLT/NERK3 4.526 7.369 21.856 5.5 2.5

Note: All adaptive computations use ε = 10−2; final time: t f = 5.0. Computed on a Quad-Core AMD Opteron™ CPU 2.4 GHz. FV/RK2 CPU time: 25.8 h
(L = 7). FV/RK3 CPU time: 38.5 h (L = 7).

Table 7
Three-dimensional reaction–diffusion equations: computational gain, for the variable T , of the MRLT/NERK meth-
ods compared to the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 7 MRLT/NERK2 1.43 1.36 –
MRLT/NERK3 – – 2.61

Table 8
Initial condition for two-dimensional Euler equations.

Variables Quadrant

1st 2nd 3rd 4th

Density, ρ 1.00 2.00 1.00 3.00
Pressure, p 1.00 1.00 1.00 1.00
x-velocity, vx 0.75 0.75 −0.75 −0.75
y-velocity, v y −0.50 0.50 0.50 −0.50

The L1 errors, CPU time and memory compression are summarized in Table 6. In this case, the proposed MRLT/NERK
methods present a loss in precision and memory usage with a gain in CPU time in relation to the other adaptive methodolo-
gies. However, the parameters λ obtained for the MRLT/NERK methods compared to the MR and MRLT methods, presented
in Table 7, still yield favourable values, especially for the third order methods. Thus we find that the MRLT/NERK methods
are slightly more efficient than the MR and MRLT methods for the three-dimensional flame ball case, besides a small loss
in precision.

5.3. Compressible two-dimensional Euler equations

The Euler equations, which describe the dynamics of a non-ionized gas, are given by the following relations:

∂ρ

∂t
+ ∇ · (ρ�v) = 0 (87a)

∂ρ�v
∂t

+ ∇ · (ρ�v �v) + ∇p = 0 (87b)

∂ E

∂t
+ ∇ ·

(
�v(E + p)

)
= 0 (87c)

where �v = (vx, v y) is the velocity, ρ is the fluid density, p is the pressure, and the energy per mass unity E is given by
E = ρe + ρ‖�v‖2

2 . This system is completed by the equation of state of an ideal gas p = ρT
γ Ma2 , where γ is the specific heat

ratio, T is the temperature and Ma is the Mach number.
The initial condition used in this numerical test is the classical Lax–Liu configuration #6 [7,16]. In this initial condition

configuration, the domain is divided into four quadrants, ordered from 1st to 4th, and defined by the subdomains [0.5;1] ×
[0.5;1], [0;0.5] × [0.5;1], [0;0.5] × [0;0.5] and [0.5;1] × [0;0.5], respectively. The initial values for each quadrant are given
in Table 8. This problem is simulated until the final instant t f = 0.25, using homogeneous Neumann boundary conditions.
The numerical parameters are the Courant number σ = 0.5, Ma = 1, and γ = 1.4 inside the domain [0; 1] × [0; 1].

Fig. 10 shows the reference solution and the solution obtained with the MRLT/RK2, MRLT/NERK2 methods and its respec-
tive difference, in modulus, from the reference. Furthermore, the corresponding adaptive grid using L = 12 with CFL σ = 0.5
is shown.

The L1 errors, CPU time and memory compression are presented in Table 9. In this case, the proposed MRLT/NERK
methods yield a slight gain in precision with a significant gain in CPU time in relation to the other adaptive methodologies.
The memory usage of all adaptive methodologies is quite similar. Due to the gain in both precision and CPU time, the
parameters λ for the MRLT/NERK methods compared with the MR and MRLT methods, presented in Table 10, have expressive
values, around 3 for most of the experiments. Thus, using this metric, the proposed methods for the two-dimensional Euler
case are significantly more efficient than the MR and MRLT methods.

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 313
Fig. 10. Reference solution for the two-dimensional Euler equations (a), the solutions obtained by the MRLT/RK2 (b) and MRLT/NERK2 methods, using L = 10
scales, with its respective errors (d), (e), and corresponding adaptive grids (f), (g) at final time t f = 0.25.

6. Conclusions

In this work, we introduced a new local time-stepping for adaptive multiresolution methods using NERK time integra-
tion schemes [30]. Interpolating values of the intermediate Runge–Kutta stages yield the required values at intermediate
time steps, which are necessary for the time evolution. Hence the current limitation of local time stepping to second order
schemes can be overcome, and the required synchronised solution can be obtained. The proposed new methodology has
been implemented and validated for two and three stage NERK schemes. In principle the extension of MRLT/NERK schemes
to even higher order is possible, but the computational cost would increase due to the order barrier discussed in [22]. For
NERK methods of order larger or equal to three, Owren and Zennaro [23] have shown that the order of approximation is
reduced concerning the underlying RK method. This order reduction implies that increasing the order of NERK schemes
beyond three would become less efficient and thus further research is indeed necessary to obtain well performing local
time-stepping schemes with order larger than three. With the presented numerical experiments we assessed the precision
and efficiency of the proposed two and three stage MRLT/NERK approach for different classical nonlinear evolution equa-
tions, i.e., for Burgers, reaction–diffusion and the compressible Euler equations considering Cartesian geometries in one, two

314 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Table 9
Two-dimensional Euler equations: L1 errors, CPU time and memory compression.

Finest scale
level

Method Error (×10−1) CPU time Memory

ρ p T E vx v y (%FV)

L = 8 MR/RK2 2.2095 0.6075 0.9581 2.0499 1.7521 0.7180 40.7 26.4
MRLT/RK2 2.2085 0.6049 0.9572 2.0463 1.7510 0.7167 33.7 26.0
MRLT/NERK2 2.2096 0.6077 0.9582 2.0503 1.7521 0.7183 12.9 26.6

MR/RK3 2.2093 0.6075 0.9580 2.0498 1.7520 0.7180 46.3 26.4
MRLT/NERK3 2.2095 0.6078 0.9581 2.0504 1.7522 0.7182 14.6 26.6

L = 9 MR/RK2 1.1365 0.3133 0.5217 1.0470 0.9012 0.3934 24.4 14.0
MRLT/RK2 1.1369 0.3133 0.5219 1.0483 0.9012 0.3931 22.6 13.9
MRLT/NERK2 1.1355 0.3128 0.5216 1.0458 0.9012 0.3931 7.4 14.2

MR/RK3 1.1364 0.3133 0.5217 1.0469 0.9012 0.3934 27.3 14.0
MRLT/NERK3 1.1355 0.3130 0.5216 1.0461 0.9013 0.3931 8.0 14.2

L = 10 MR/RK2 0.5835 0.1604 0.2765 0.5353 0.4611 0.2115 14.7 7.2
MRLT/RK2 0.5864 0.1643 0.2782 0.5441 0.4622 0.2131 12.8 7.2
MRLT/NERK2 0.5821 0.1596 0.2762 0.5335 0.4609 0.2110 4.1 7.3

MR/RK3 0.5834 0.1604 0.2765 0.5352 0.4611 0.2115 11.2 7.2
MRLT/NERK3 0.5821 0.1598 0.2762 0.5338 0.4610 0.2109 3.6 7.3

Note: All adaptive computations use ε = 10−2; final time: t f = 0.25. Computed on an Intel Core™ i7 CPU 2.67 GHz. FV/RK2 CPU time: 10.1 min (L = 8);
73.3 min (L = 9); 8.8 h (L = 10). FV/RK3 CPU time: 11.7 min (L = 8); 91.7 min (L = 9); 13.8 h (L = 10).

Table 10
Two-dimensional Euler equations: Computational gain, for the variable ρ , of the proposed MRLT/NERK methods
compared with the MR and MRLT methods.

Finest scale level MR/RK2 MRLT/RK2 MR/RK3

L = 8 MRLT/NERK2 3.15 2.61 –
MRLT/NERK3 – – 3.17

L = 9 MRLT/NERK2 3.30 3.05 –
MRLT/NERK3 – – 3.41

L = 10 MRLT/NERK2 3.59 3.14 –
MRLT/NERK3 – – 3.11

and three space dimensions. In all adaptive computations, we observed a significant gain in CPU time in comparison with
uniform grid computations where the efficiency is increasing with the grid resolution. Nevertheless, the precision of the
uniform grid computations is controlled in the MRLT/NERK schemes, and the order of convergence is maintained. Regarding
memory consumption, we observed for the MRLT/NERK schemes no necessary increase, compared to MR and classical MRLT
methods.

The precision of the MRLT/NERK computations is very reasonable, and in all cases, we found errors about the same order
of magnitude as for the MRLT computations using classical RK schemes.

In conclusion, we showed that the MRLT/NERK methods are advantageous compared to the MR and MRLT approaches
in all studied cases, obtaining even significant performance gains in some examples. For the two-dimensional Euler equa-
tions, for instance, the MRLT/NERK simulations only required one-third of the CPU time necessary for the MR and MRLT
computations. Most of these gains are due to the significant reduction in CPU time obtained in the MRLT/NERK methods.

Acknowledgements

The authors are indebted to Prof. Claus-Dieter Munz who motivated the use of NERK methods for local time-stepping.
We thank Dr. Olivier Roussel for developing the original Carmen Code and fruitful scientific discussions during the years. ML
thankfully acknowledges financial support from CAPES grant 88881.132489/2016-01 and CNPq grant 140626/2014-0, Brazil.
MD thankfully acknowledges financial support from Ecole Centrale Marseille, CNPq grants 306038/2015-3, 302226/2018-4
and FAPESP grant 2015/25624-2. OM thankfully acknowledges financial support from CNPq grants 307083/2017-9 and
424352/2018-4, and FINEP grant 01.120527.00, Brazil. KS acknowledges financial support from the ANR Grant 15-CE40-0019
(AIFIT), France.

Appendix A. Algorithms

Algorithm 1 Construction of the adaptive grid.
Do Algorithm 2 {Compute the leaves that will belong to the adaptive grid}
– Refine each leaf with a finer neighbour leaf.
– Set these new leaves as virtual leaves;

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 315
Algorithm 2 Grid adaptation.
Require: Finest scale level L of the solution.
Require: Solution at level L.
Require: Threshold value ε .

{Selection of the nodes in the adaptive grid}
for � = L −1 → 0, � = � −1 do

– Project the solution from the grid ��+1 to ��;
– Predict the solution of the grid ��+1 based on the project solution in �� ;
– Compare the original solution of the grid ��+1 with the predicted one, and then obtain the wavelet coefficients D̄�+1, as the difference with these
solutions;
{Elimination of the unnecessary nodes and the imposition of a graded tree}
for every leaf ∈ ��+1 do

if |d�+1| ≤ ε and adjacent leaves are inside ��+1 or �� then
– Remove the leaf from the grid ��+1;

end if
end for

end for

Algorithm 3 Single iteration of the LT scheme.
Require: Coarsest scale �min to be evolved in this time evolution;
Require: Current iteration number n;

Compute �min = min
�

[mod (n, 2L−�) = 0];
for � = L → �min, � =� −1 do

for Every internal node ∈ �� do
Obtain the solution q̄n

� by projecting the solution from its child nodes via simple averaging;
end for

end for
if �min is not the coarsest scale of the grid then

for Every internal node ∈ ��min−1 do
Obtain the NERK solution with θ = 1

2 by projecting q̄n
�min

.

Extrapolate this solution to the instant tn+2L−�min (Section 4.3).
end for
for Every virtual leaf ∈ ��min do

Predict q̄n
� using the NERK (RK2) or q̄∗∗

�min−1 (RK3) solutions of the cells ∈ ��min−1 at instant tn .
end for

end if
for � = �min + 1 → L, � =� +1 do

for Every virtual leaf ∈ �� do
Predict q̄n

� using the values of the cells ∈ ��−1 at time instant tn .
end for

end for
Remeshing process of cells with refinement level greater or equal than �min;
for � = L → �min, � =� −1 do

for Every leaf ∈ �� do
Perform flux computations at instant tn;
First RK step;
First order interpolation of the RK evolution at instant tn + 1

2 �t�;
if we are computing RK2 time evolution then

Compute q̄∗
θ= 1

2
;

else if we are computing RK3 time evolution then
Compute q̄∗

θ= 1
4

;

Compute q̄∗
θ= 3

4
;

end if
end for

end for
Tree refreshing before the second RK step (Algorithm 8):
Second RK step of the time evolution (Algorithm 5);
if Performing RK3 time evolution then

Tree refreshing before the third RK step (Section 4.2):
Third RK step of the time evolution (Algorithm 7);

end if

316 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
Algorithm 4 Projection procedure inside the second RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for Every internal node ∈ �� do
q̄∗

� = 0; {result after RK1, set here to zero to store the projection}
for Every child cell ∈ ��+1 do

if The cell is a leaf then
q̄∗

� ← q̄∗
� + q̄�+1

(
tn + 2�t�+1

)
; {Add the already extrapolated value q̄�+1 at tn + 2�t�+1 }

else if The cell is an internal node then
q̄∗

� ← q̄∗
� + 2q̄∗

�+1 − q̄n
�+1; {Add a linear extrapolation of the values q̄�+1 at tn + 2�t�+1 }

end if
end for

q̄∗
� ← 1

2d
q̄∗

� ;

end for

Algorithm 5 Performing the second RK step in the LT approach.
for � = L → �min, � = � −1 do

if � �= L then
Project the leaves and internal nodes from level � + 1 onto level � (Algorithm 4);
Predict the values of the virtual leaves of level � + 1 at instant tn + 2�t�+1;
{These two steps compute the update in time of the virtual leaves}

end if
for every leaf ∈ �� do

Flux computation using the values at instant tn + �t�;
Second step of compact RK;
Perform the approximation at instant tn + 2�t� given in Equation (14);
if we are computing RK2 time evolution then

Compute q̄θ= 1
2

;

else if we are computing RK3 time evolution then
Compute q̄θ= 1

4
;

Compute q̄
θ= 3

4
;

end if
end for

end for

Algorithm 6 Projection procedure inside the third RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for every internal node ∈ �� do
q̄�

(
tn + 1

2 �t�
)= 0; {result after RK2, set here to zero to store the projection}

for Every child cell ∈ ��+1 do
q̄�

(
tn + 1

2 �t�
)← q̄�

(
tn + 1

2 �t�
)+ q̄�+1

(
tn + �t�+1

)
; {Add value q̄�+1 from RK3 3rd step }

end for

q̄�

(
tn + 1

2 �t�
)← 1

2d
q̄�

(
tn + 1

2 �t�
)

q̄∗∗
� ≈ q̄�

(
tn + 1

2 �t�
)
;

To obtain a 2nd order approximation for q̄�(tn + �t�), use Equation (16).
end for

Algorithm 7 Performing the third RK step in the LT approach.
for � = L → �min, � =� −1 do

if � �= L then
– Project the leaves and internal nodes from level � + 1 onto level � (Algorithm 6);
– Predict the values of the virtual leaves of level � + 1 at instant tn + �t�+1;
{These two steps compute the update in time of the virtual leaves}

end if
for Every leaf ∈ �� do

– Flux computation using the values at instant tn + 1
2 �t�;

– Third step of compact RK;
end for

end for

M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318 317
Algorithm 8 Tree refreshing before the second RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for � = L − 1 → �min, � =� −1 do
for Every internal node ∈ �� do

q̄�

(
tn + 1

2 �t�
)= 0; {Set the solution equal zero to perform the averaging of its children cells.}

for Every child cell i ∈ ��+1 do
q̄�

(
tn + 1

2 �t�
)← q̄�

(
tn + 1

2 �t�
)+ q̄∗

�+1, i ;
end for
q̄�

(
tn + 1

2 �t�
)← 1

2d q̄�

(
tn + 1

2 �t�
)

Obtain a 1st order approximation for q̄∗
� using Equation (18).

end for
end for
for � = �min → L, � =� +1 do

for Every virtual leaf ∈ �� do
Use the approximated solution at level � − 1 at time instant tn + 1

2 �t�−1 to predict the solution q̄∗
� .

Obtain the solution q̄�

(
tn + 1

2 �t�
)

by linear interpolation. {These two steps predict the solution of the virtual leaves in the proper time instant to
update the level �.}

end for
end for

Algorithm 9 Tree refreshing before the third RK step.
Require: Scale � to receive the projection.
Require: Number of dimensions d of the problem.

for � = L − 1 → �min, � =� −1 do
for Every internal node ∈ �� do

q̄�, θ= 1
4

= 0;

for Every child cell i ∈ ��+1 do
q̄�, θ= 1

4
← q̄�, θ= 1

4
+ q̄∗∗

�+1, i ;

end for
q̄�, θ= 1

4
← 1

2d q̄�, θ= 1
4

Compute q̄
�, θ= 3

4
using Equation (20).

Compute q̄∗∗
� using Equation (21).

end for
end for
for � = �min → L, � =� +1 do

for Every virtual leaf ∈ �� do
if � = �min then

Use the solution q̄
�−1, θ= 3

4
, at time instant tn + 1

2 �t� , to predict the solution q̄∗∗
� .

else
Use the solution q̄�−1, θ= 1

4
, at time instant tn + 1

2 �t� , to predict the solution q̄∗∗
� .

end if
Compute q̄�, θ= 1

4
using Equation (21).

Compute q̄
�, θ= 3

4
using Equation (20).

end for
end for

References

[1] W. Auzinger, O. Koch, An improved local error estimator for symmetric time-stepping schemes, Appl. Math. Lett. 82 (2018) 106–110.
[2] W. Boscheri, M. Dumbser, O. Zanotti, High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on

unstructured triangular meshes, J. Comput. Phys. 291 (2015) 120–150.
[3] F. Coquel, L.Q. Nguyen, M. Postel, Q.H. Tran, Local time stepping applied to implicit–explicit methods for hyperbolic systems, SIAM Multiscale Model.

Simul. 8 (2) (2010) 540–570.
[4] J. Díaz, M.J. Grote, Conserving explicit local time-stepping for second-order wave equations, SIAM J. Sci. Comput. 31 (3) (2009) 1985–2014.
[5] J. Díaz, M.J. Grote, Multi-level explicit local time-stepping methods for second-order wave equations, Comput. Methods Appl. Mech. Eng. 291 (2015)

240–265.
[6] M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider, An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput.

Phys. 227 (8) (2008) 3758–3780.
[7] M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider, Space–time adaptive multiresolution techniques for compressible Euler equations, in: C.A. de

Moura, C.S. Kubrusly (Eds.), The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After Its Discovery, Birkhäuser, 2012, pp. 101–117.
[8] M. Dumbser, O. Zanotti, A. Hidalgo, D.S. Balsara, ADER–WENO finite volume schemes with space–time adaptive mesh refinement, J. Comput. Phys. 248

(2013) 257–286.
[9] G. Gassner, M. Dumbser, F. Hindenlang, C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based

on local predictors, J. Comput. Phys. 230 (11) (2011) 4232–4247, Special issue High Order Methods for CFD Problems.
[10] G.J. Gassner, F. Hindenlang, C.-D. Munz, A Runge–Kutta based discontinuous Galerkin method with time accurate local time stepping, Adv. Comput.

Fluid Dyn. 2 (2011) 95–118.

http://refhub.elsevier.com/S0021-9991(19)30019-1/bib41757A696E6765723A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib426F7363686572693A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib426F7363686572693A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib436F7175656C6574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib436F7175656C6574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4469617A47726F74653A32303039s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4469617A47726F74653A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4469617A47726F74653A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib446F6D696E677565733230303833373538s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib446F6D696E677565733230303833373538s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib446F6D696E677565736574616C3A3230313243464Cs1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib446F6D696E677565736574616C3A3230313243464Cs1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib44756D627365723A32303133s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib44756D627365723A32303133s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib476173736E65726574616C3A3230313134323332s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib476173736E65726574616C3A3230313134323332s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib676173736E65723230313172756E6765s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib676173736E65723230313172756E6765s1

318 M. Moreira Lopes et al. / Journal of Computational Physics 382 (2019) 291–318
[11] N.Y. Gnedin, V.A. Semenov, A.V. Kravtsov, Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes, J.
Comput. Phys. 359 (2018) 93–105.

[12] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math. 48 (1995) 1305–1342.
[13] B. Hejazialhosseini, D. Rossinelli, M. Bergdorf, P. Koumoutsakos, High order finite volume methods on wavelet-adapted grids with local time-stepping

on multicore architectures for the simulation of shock-bubble interactions, J. Comput. Phys. 229 (22) (2010) 8364–8383.
[14] N. Hovhannisyan, S. Müller, On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruc-

tion strategies, IMA J. Numer. Anal. 30 (4) (2010) 1256–1295.
[15] L. Krivodonova, An efficient local time-stepping scheme for solution of nonlinear conservation laws, J. Comput. Phys. 229 (2010) 8537–8551.
[16] P.D. Lax, X-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput. 19 (2) (1998) 319–340.
[17] M.-S. Liou, A sequel to ausm: ausm+, J. Comput. Phys. 129 (1996) 364–382.
[18] M. Mayr, W.A. Wall, M.W. Gee, Adaptive time stepping for fluid–structure interaction solvers, Finite Elem. Anal. Des. 141 (2018) 55–69.
[19] S. Müller, Adaptive Multiscale Schemes for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 27, Springer, Heidelberg,

2003.
[20] S. Müller, Y. Stiriba, Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput. 30 (3) (2007)

493–531.
[21] S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comput. 41 (1983)

321–336.
[22] B. Owren, M. Zennaro, Order barriers for continuous explicit Runge–Kutta methods, Math. Comput. 56 (1991) 645–661.
[23] B. Owren, M. Zennaro, Derivation of efficient, continuous, explicit Runge–Kutta methods, SIAM J. Sci. Statist. Comput. 13 (6) (1992) 1488–1501.
[24] H. Qi, X. Wang, J. Zhang, J. Wang, An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics, Comput. Phys.

Commun. 229 (2018) 106–115.
[25] M. Rietmann, M. Grote, D. Peter, O. Schenk, Newmark local time stepping on high-performance computing architectures, J. Comput. Phys. 334 (2017)

308–326.
[26] O. Roussel, K. Schneider, A. Tsigulin, H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs, J. Comput. Phys. 188

(2003) 493–523.
[27] B. Van Leer, Towards the ultimate conservative difference scheme, iii: upstream-centered finite-difference schemes for ideal compressible flow, J.

Comput. Phys. 23 (3) (1977) 263–275.
[28] R. Vermiglio, M. Zennaro, Multistep natural continuous extensions of Runge–Kutta methods: the potential for stable interpolation, Appl. Numer. Math.

12 (6) (1993) 521–546.
[29] A.R. Winters, D.A. Kopriva, High-order local time stepping on moving DG spectral element meshes, J. Sci. Comput. 58 (1) (2014) 176–202.
[30] M. Zennaro, Natural continuous extensions of Runge–Kutta methods, Math. Comput. 46 (173) (1986) 119–133.

http://refhub.elsevier.com/S0021-9991(19)30019-1/bib476E6564696E3A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib476E6564696E3A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib48617274656E3A31393935s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib48656A617A69616C686F737365696E696574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib48656A617A69616C686F737365696E696574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib486F7668616E6E697379616E6574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib486F7668616E6E697379616E6574616C3A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4B7269766F646F6E6F76613A32303130s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4C61784C69753A31393938s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4C696F753A31393936s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4D6179723A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4D75656C6C65723A32303033s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4D75656C6C65723A32303033s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4D756C6C65725374726962613A32303037s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4D756C6C65725374726962613A32303037s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4F7368657253616E646572733A31393833s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4F7368657253616E646572733A31393833s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib5A656E6E61726F39316F72646572s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib4F7772656E5A656E6E61726F3A31393932s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib51693A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib51693A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib526965746D616E6E3A32303137s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib526965746D616E6E3A32303137s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib525354423033s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib525354423033s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib56616E4C6565723A31393737s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib56616E4C6565723A31393737s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib5645524D49474C494F31393933353231s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib5645524D49474C494F31393933353231s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib77696E746572733230313468696768s1
http://refhub.elsevier.com/S0021-9991(19)30019-1/bib7A656E6E61726F313938366E61747572616Cs1

	Local time-stepping for adaptive multiresolution using natural extension of Runge-Kutta methods
	1 Introduction
	2 Adaptive multiresolution methods using ﬁnite volumes
	2.1 Projection and prediction operators

	3 Runge-Kutta methods
	3.1 Natural continuous Extension Runge-Kutta (NERK) method
	3.2 Compact formulation

	4 Local time-stepping
	4.1 Synchronization during the Runge-Kutta iteration
	4.1.1 Second Runge-Kutta step synchronization
	4.1.2 Third Runge-Kutta step synchronization

	4.2 Tree refreshing with time synchronization
	4.3 Synchronization after the time evolution
	4.3.1 Adapting the grid during local time-stepping

	4.4 Some remarks on the convergence and stability of MRLT/NERK schemes
	4.4.1 Approximations after the ﬁrst RK step
	4.4.2 Approximations after the second RK step

	4.5 Discussion on the numerical convergence

	5 Numerical experiments
	5.1 Two-dimensional Burgers equation
	5.2 Reaction-diffusion equations
	5.2.1 One-dimensional case
	5.2.2 Three-dimensional case

	5.3 Compressible two-dimensional Euler equations

	6 Conclusions
	Acknowledgements
	Appendix A Algorithms
	References

