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Recent simulations have demonstrated that coherent current sheets dominate the kinetic-scale

energy dissipation in strong turbulence of magnetized plasma. Wavelet basis functions are a natural

tool for analyzing turbulent flows containing localized coherent structures of different spatial

scales. Here, wavelets are used to study the onset and subsequent transition to fully developed tur-

bulence from a laminar state. Originally applied to neutral fluid turbulence, an iterative wavelet

technique decomposes the field into coherent and incoherent contributions. In contrast to Fourier

power spectra, finite time Lyapunov exponents, and simple measures of intermittency such as non-

Gaussian statistics of field increments, the wavelet technique is found to provide a quantitative

measure for the onset of turbulence and to track the transition to fully developed turbulence. The

wavelet method makes no assumptions about the structure of the coherent current sheets or the

underlying plasma model. Temporal evolution of the coherent and incoherent wavelet fluctuations

is found to be highly correlated (a Pearson correlation coefficient of >0:9) with the magnetic field

energy and plasma thermal energy, respectively. The onset of turbulence is identified with the rapid

growth of a background of incoherent fluctuations spreading across a range of scales and a corre-

sponding drop in the coherent components. This is suggestive of the interpretation of the coherent

and incoherent wavelet fluctuations as measures of coherent structures (e.g., current sheets) and dis-

sipation, respectively. The ratio of the incoherent to coherent fluctuations Ric is found to be fairly

uniform in the turbulent state across different plasma models and provides an empirical threshold

of �0.1 for turbulence onset. The utility of this technique is illustrated through examples. First, it is

applied to the Kelvin–Helmholtz instability from different simulation models including fully

kinetic, hybrid (kinetic ion/fluid electron), and Hall MHD simulations. Second, the wavelet diag-

nostic is applied to the development of turbulence downstream of the bowshock in a global magne-

tosphere simulation. Finally, the wavelet technique is also shown to be useful as a de-noising

method for particle simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5062853

I. INTRODUCTION

While many studies have focused on methods to describe

the properties of fully developed turbulence, much less atten-

tion has been paid to techniques to describe the onset and sub-

sequent transition to fully developed turbulence. The aim of

the present study is to address this shortcoming.

Large-scale plasma turbulence is understood to involve

the formation of localized, coherent current sheets at differ-

ent spatial scales. These coherent structures appear to domi-

nate the energy dissipation of turbulence on kinetic scales as

compared to other dissipation mechanisms such as wave

interactions (e.g., Refs. 1–3). While the plasma waves are

naturally analyzed in terms of Fourier modes, localized

structures call for decompositions that reflect their localiza-

tion and their multi-scale properties.

Wavelets, which are localized functions in space and

scale, offer the possibility to represent intermittent functions

and localized structures exhibiting a large range of scales in

an efficient way. The so-called “mother wavelet,” wðxÞ,
which has finite energy, is the elementary building block of

the wavelet transform. It is a well-localized function with

fast decay at infinity and at least one vanishing moment

(i.e., zero mean) or more. It is also sufficiently smooth,

which implies that its Fourier transform exhibits fast decay.

The wavelet transform introduced in Ref. 4 decomposes a

signal (e.g., in time) or any field (e.g., in three-dimensional

space) into both space (or time) and scale (or time scale) and

possibly directions (for dimensions higher than one).

Wavelets have been used for analyzing hydrodynamic

turbulence starting in the 1990s and then extended for

modeling and computing turbulent flows (see review

articles5,6). Here, we provide a brief summary of application

of wavelet techniques in the context of plasma turbulence.

Early examples include the use of wavelets in analysis of

space7,8 and laboratory9 plasmas. Wavelet filtering has been

used for extracting coherent bursts in turbulent ion density

plasma signals, measured by a fast reciprocating Langmuir

probe in the scrape-off layer of the tokamak Tore Supra

(Cadarache, France).10 Wavelet-based density estimation

techniques have also been used to improve particle-in-cell

numerical schemes,11 and a particle-in-wavelet scheme was

developed for solving the Vlasov–Poisson equations directly

in wavelet space.12 Wavelet de-noising has been applied

for tomographic reconstruction of tokamak plasma light

emission in Ref. 13. Coherent Vorticity and Current sheet
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Simulation (CVCS), which applies wavelet filtering to the

resistive non-ideal MHD equations, was proposed as a new

model for turbulent MHD flows. It allows a reduction in the

number of degrees of freedom necessary to compute the

flows, while capturing the nonlinear dynamics of the flow.

Recently, Groselj et al.14 analyzed high-resolution observa-

tional data and state-of-the-art numerical simulations to

study the relationship between wavelike physics and large-

amplitude structures in astrophysical kinetic plasma turbu-

lence using the continuous wavelet transform with complex

valued wavelets. A review on wavelet transforms and their

applications to MHD and plasma turbulence can be found in

Ref. 15.

The aim of the present paper is to use the orthogonal

wavelet decomposition of turbulent flows into coherent and

incoherent contributions to define a criterion that determines

the onset of plasma turbulence. To this end, high-resolution

numerical simulations of unstable shear-flows triggered by the

Kelvin–Helmholtz instability using different approaches—

fully kinetic, hybrid (kinetic ion/fluid electron), or Hall

MHD—are analyzed using orthogonal wavelets. This tech-

nique is then further tested in a more complex scenario of

turbulence generation downstream of the bow shock in a

global hybrid simulation of the magnetosphere. Comparison

with Fourier power spectra and non-Gaussianity diagnostics

is presented.

Temporal evolution of the coherent and incoherent

wavelet fluctuations is found to be highly correlated

(Pearson correlation coefficient of >0.9) with the magnetic

field energy and plasma thermal energy, respectively. This is

suggestive of the interpretation of the coherent and incoher-

ent wavelet fluctuations as measures of coherent structures

(e.g., current sheets) and dissipation, respectively. Since

plasma heating can be partly due to reversible processes

(e.g., adiabatic), a more rigorous connection between the

incoherent fluctuations and dissipation will be explored else-

where and is beyond the scope of this work.

The outline of this paper is the following: In Sec. II, we

recall Fourier and wavelet analysis, and in Sec. III, the itera-

tive wavelet filtering is presented. The simulation set-ups are

described in Sec. IV. Section V introduces a wavelet-based

method for quantifying the transition of flows to turbulence

and compares and contrasts it with three more traditional

techniques for studies of turbulence, Fourier power spectra,

structure function, and finite time Lyapunov exponent

(FTLE). The wavelet method is then applied to a more com-

plex flow in a global magnetosphere simulation in Sec. VI,

and a summary is given in Sec. VII. The Appendix discusses

and demonstrates the use of the wavelet technique for de-

noising particle simulations.

II. FOURIER AND WAVELET ANALYSIS

In the following, we review a few concepts related to

Fourier and wavelet analysis in the context of studying tur-

bulent plasma flows. Fourier modes arise naturally in the

study of weak plasma turbulence. Because the full non-linear

equations of motion of a plasma (in kinetic and fluid descrip-

tions) are analytically intractable, much analytical work has

focused on the linear approximation. For homogeneous plas-

mas, weak fluctuations are then typically described by nor-

mal modes that vary as independent Fourier components

/ exp ðixt� ikxÞ, with a dispersion relation x ¼ xðkÞ
imposed by the linearized equations of motion. Theories of

weak plasma turbulence were developed by treating the non-

linear interactions of the normal modes by perturbation the-

ory.16–19 The complexity of turbulent flows is then ascribed

to the interaction of a large number of incoherent Fourier

components,20 resulting in a cascade of energy21 between

large scales (low k) and small scales (high k).

While Fourier analysis is thus suited for studying weak

turbulence, it may not be well-adapted for characterizing

strongly non-linear flows. Strongly turbulent fluid flows

include coherent structures such as vortex tubes,22 while

magnetized plasma turbulence displays the formation of cur-

rent sheets.2,23–25 In Fourier space, these localized coherent

structures require a large number of modes for their descrip-

tion. As described below, wavelets yield a sparse representa-

tion of intermittent data.

To illustrate a limitation of Fourier spectral analysis,

two test signals are shown in Figs. 1(a) and 1(b) that have

identical Fourier power spectra, while their Fourier modes

have different phases. In terms of the Fourier wave number,

each signal exhibits a power-law tail that scales as

j ~FðkÞj2 / 1=jkj2. It is apparent, however, that the two signals

are qualitatively different. Test Signal 1 in Fig. 1(a) is

completely localized to a central circle, whereas Test Signal

2 in Fig. 1(b) is spread over space. Because Fourier modes

extend over all of space, capturing a localized signal requires

coherent contributions from a large number of Fourier

modes. As a 1D example, the Heaviside step function, which

is discontinuous and defined by

hðxÞ ¼ 0; if x � 0

1; if x > 0;

�
(1)

has Fourier components ~hðkÞ ¼ �i=2pk for jkj > 0. The

sharp jump in hðxÞ is thus encoded in the coherent phases of

its Fourier components, which display a power-law as a

function of k, similar to the 2D example of Test Signal 1. By

contrast, Test Signal 2’s Fourier power spectrum also con-

tains a 1=k2 tail, but there is little information contained in

the coherence of the phases of the Fourier components.

Indeed, Signal 2 was generated by multiplying each Fourier

component of Signal 1 by a (pseudo-)random complex

phase.

Wavelets, see, e.g., Ref. 26, provide a different set of

basis functions, and they are particularly adapted for captur-

ing localized coherent structures across a range of different

scales. Like Fourier modes, certain wavelet families form

ortho-normal bases for decomposing functions of one or

more variables. Unlike Fourier modes, however, wavelets

are not solutions to any particular physical equations. Rather,

they are constructed to analyze general signals with a multi-

scale structure. While Fourier modes capture a single wave-

length but are spread out over physical space, wavelets

encode localized information about both the scale and the

position.
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Several different wavelet families have been derived.

Here, we use a discrete “coiflet-18” basis27 that gives rise

to a multi-resolution28 representation of 2D functions. The

family of wavelets is built out of two specially chosen func-

tions: the so-called mother wavelet wðxÞ and a scaling func-

tion /ðxÞ, each of which is plotted in Fig. 2. One key

characteristic of this wavelet function wðxÞ is its compact

support, i.e., it is non-zero over only a finite range. The

family of 1D wavelets is given by the translations and dila-

tions of the mother wavelet

wl;nðxÞ ¼
1ffiffiffiffi
2l
p w

x� 2ln

2l

� �
; (2)

where the index l and shift n each span the integers. Built

from these 1D wavelets along with similar translations and

dilations of the scaling function /, an ortho-normal basis for

2D functions may be defined by

Wp
l;m;nðx; yÞ ¼

wl;mðxÞ/l;nðyÞ; for p ¼ H

/l;mðxÞwl;nðyÞ; for p ¼ V

wl;mðxÞwl;nðyÞ; for p ¼ D;

8>><
>>:

(3)

where again l, m, and n span the integers; and p corresponds

to three directions typically referred to as Horizontal,

Vertical, and Diagonal. In practice for our discrete simulation

data, we decompose each signal over a finite number of lev-

els l<L and shifts (which depend on the size of the numeri-

cal grid and the level). Up to corrections for boundary cells,

each 2D field F(x, y) defined on the computational grid is de-

composed in the wavelet basis as follows:

Fðx; yÞ ¼
X
m;n

Am;n/L;mðxÞ/L;nðyÞ þ
X

m;n;l;p

Dp;l;m;nW
p
l;m;nðx; yÞ;

(4)

where the coefficients Am;n ¼
Ð

Fðx; yÞ � /L;mðxÞ/L;nðyÞdxdy
of the expansion give a coarsest level-L approximation of the

field, and the wavelet coefficients Dp;l;m;n ¼
Ð

Fðx; yÞ
�Wp

l;m;nðx; yÞdxdy retain information on the finer-level details.

III. ITERATIVE WAVELET FILTERING

It has been suggested that turbulence in fluid flows may be

characterized by the presence of a strong incoherent portion.5 The

incoherent background may be modeled as a stochastic forcing

term6 on a collection of coherent structures. Wavelet techniques

have been employed to analyze direct numerical simulations29 as

well as serve as a basis for coherent vortex simulations.30

We apply below an iterative wavelet filtering method29,31,32

to the current density from numerical solutions of turbulent

plasma flows. The iteration procedure determines an optimal

cut-off threshold for the N wavelet coefficients fAm;n;Dp;l;m;ng,
which we refer to generically as fCIg. Coefficients CI with

modulus below the threshold (which is user-defined by a multi-

plicative factor a as outlined below) are classified as part of a

background of incoherent noise. The coefficients with modulus

above the threshold contribute to the coherent features of the

flow. The incoherent noise is assumed to be additive, Gaussian,

and white.30,33 The method proceeds as follows:

1. A choice is made of a multiplicative factor a, the number

of levels in the wavelet decomposition L, and the wavelet

FIG. 1. (a) and (b) Two test signals have identical (c) Fourier power spectra (these spectra are integrated over angular directions and use finite bins in k).

Fourier modes are spread over space, and the localized structure in (a) therefore consists of coherent contributions from nearly all Fourier modes.

FIG. 2. (a) The mother wavelet of the coiflet-18 wavelet family used in our

analysis. (b) The corresponding coiflet scaling function.
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basis. The number of levels L is chosen so that

2L � minðNx;NyÞ, where Nx and Ny are the number of

computational grid points in each direction of the domain.

Specifically, for particle simulations with intrinsic statisti-

cal noise, a value of a > 1 is necessary to capture features

of the turbulent flow rather than grid-scale noise. (See the

Appendix for a discussion of extracting particle noise

using the wavelet filter.)

2. The current density is expressed as a sum over an

ortho-normal wavelet basis with N coefficients

fCIg ¼ fAm;n;Dp;l;m;ng.
3. A threshold � ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfCIgÞ logðNÞ

p
is initialized based

on the variance of the set of coefficients fCIg.
4. The incoherent (or noise) portion of the current density is

defined by the coefficients ĈI , where ĈI ¼ CI if jCIj < �
and the remaining coefficients with jCIj > � are set to

zero.

5. A new threshold � ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĈI Þ logðNÞ

q
is computed

based on the extracted noise.

6. Steps 4 and 5 are repeated until the threshold � varies less

than 5% over an iteration. In practice, the method typi-

cally converges to this tolerance after 2–4 iterations.

7. Finally, the coherent part of the current density is recon-

structed from the wavelet coefficients CI with jCIj > �.
The incoherent current density is obtained by subtracting

the coherent one from the total one pointwise (or equiva-

lently by inverse wavelet transform from the weak wave-

let coefficients with jCIj � �).

To illustrate the effect of the iterative wavelet filter, we

apply it to the two test signals of Figs. 1(a) and 1(b). The

decomposition into coherent and incoherent parts as defined

by the wavelet filter is plotted in Figs. 3 and 4, where for

each case, we set the parameters a ¼ 10 and L¼ 8 and used

the coiflet-18 basis.27 The main conclusions do not depend

on the choice of wavelet basis. Nevertheless, it is useful for

turbulent flows to choose a basis with a large number of van-

ishing moments (the coiflet-18 wavelets have six vanishing

moments), which tends to cancel the wavelet coefficients in

smooth regions free of discontinuities and high-order deriva-

tives.5 For the localized, coherent Test Signal 1 in Fig. 3, the

method finds an extremely small incoherent noise part. For

Test Signal 2 in Fig. 4, a large background noise is extracted.

Note that the coherent portion of the signal in Fig. 4(b) is

reconstructed from only �0:07% of the wavelet coefficients

even though it contains over 99% of the “energy”
P

n F2
n of

the signal. This ability to capture a large portion of a signal

with a small number of coefficients explains the wide-spread

use of wavelets for digital signal compression.34

IV. SIMULATION SET-UP

To study the transition to turbulence of a magnetized

plasma flow, we consider 2D simulations of Kelvin–Helmholtz

unstable flow-shear layers using codes employing three differ-

ent models: (1) fully kinetic particle-in-cell (PIC) modeling

using the code VPIC,35 (2) hybrid kinetic ion/fluid electron

modeling using the hybrid PIC code H3D,36 and (3) Hall-MHD

modeling using the PIXIE3D code.37,38

The first simulation is a fully kinetic simulation performed

with the code VPIC that was analyzed in Ref. 2, and it is

referred to here as “VPIC A.” The initial conditions include a

plasma of uniform density and magnetic field (mainly out of

the simulation plane but with a 5% component added in the

initial flow direction). The velocity distribution of each species

s ¼ i; e (ion and electron) is a drifting Maxwellian with uni-

form temperature Ts giving a species bs ¼ 0:05, and with a

drift speed Uy ¼ U0tanhðx=LÞ. The shear layer half-thickness

L ¼ 4di and the flow speed U0 ¼ 10VA, where VA is the

Alfv�en speed. Periodic boundary conditions are imposed in y,

while the boundary conditions at x¼ 0 and x ¼ Lx are conduct-

ing for electromagnetic fields and reflecting for particles. Other

numerical parameters are mi=me ¼ 100 and xpe=xce ¼ 2.

Further details are found in the table below and Ref. 2.

One of the serious limitations of PIC codes is the statis-

tical noise associated with using a relatively small number of

computational particles to sample the distribution function.

The large-scale simulation “VPIC A” used 150 particles per

cell per species, which is representative of many other simu-

lations in the literature. In order to understand the sensitivity

of our results to noise, we also analysed a VPIC simulation

with 10 000 particles per cell, which will be referred to as

“VPIC B” simulation. The parameters are largely analogous

to the “VPIC A” case, except for a smaller spatial extent of

the simulation domain, a smaller initial width of the transi-

tion layer L ¼ 0:5di (see Table I), and a higher plasma beta

of bs ¼ 0:15.

Two additional simulations using different plasma mod-

els are next considered. In each case, the system is doubly

periodic in a domain of size Lx � Ly ¼ 7:5p� 5pdi, where di

is the ion inertial skin depth based on the uniform density n0.

The initial magnetic field is uniform and mainly out of the

simulation plane, Bz ¼ B0, with a small additional in-plane

FIG. 3. The iterative wavelet filter is used to decompose Test Signal 1 from Fig. 1(a) into coherent and incoherent parts. The incoherent part is very small.
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component By ¼ 0:05B0. Two flow-shear layers are given

with velocity profiles

vyðxÞ
v0

¼ tanh
x� Lx=4

k

� �
� tanh

x� 3Lx=4

k

� �
� 1; (5)

where v0 ¼ 0:5vA ¼ 0:5B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0mi

p
and the scale length

k ¼ 0:5di. A motional electric field EðxÞ ¼ �vðxÞ � B is

also included. For each simulation, we focus on only one of

the shear-flow layers, in particular whichever layer transi-

tions to a turbulent state fastest.

For the Hall-MHD simulation, additional parameters

included an ion viscosity li ¼ 10�4, a heat conductivity of

ve ¼ 10�4, and an electron viscosity (hyper-resistivity)

le ¼ 10�6. The latter value was chosen to set a sub-di dissi-

pation scale for current-layers, to prevent them from thinning

down to the grid-scale. Time advance used the BDF-2

method with a time-step Dt ¼ 10�3. The Hall-MHD equa-

tions are spatially discretized on a cell-centered mesh

using central differences,40 apart from the advection terms

that were treated with the monotonicity preserving SMART

algorithm.41 The required spatial resolution was found from

a grid-convergence study, where the chosen value of

2048� 1024 cells was found to give a converged value of

the peak magnetic energy just prior to the transition to turbu-

lence at tXci ¼ 40.

The hybrid-PIC simulation uses an approximation where

ions are treated kinetically, while electrons are represented

as a massless fluid. The simulation analyzed here was con-

ducted using a version of the H3D code36 optimized for tur-

bulence simulations.42

V. MEASURING THE TRANSITION TO TURBULENCE

Our goal is to test the iterative wavelet filtering method

on each of the three types of plasma simulations to determine

if the wavelet analysis is capable of identifying the onset of

turbulence. Wavelet techniques have been used previously

for analyzing the transitional regime to turbulence in a

boundary layer of a rotating disk in hydrodynamic turbu-

lence and to estimate the transitional Reynolds number.43

While there are differences in the details of the current sheets

and flows between the various plasma simulation models, we

do not attempt to characterize these differences here. Indeed,

a positive feature of wavelet analysis is that it does not pre-

suppose a model for the coherent structures that arise in the

turbulent flow.

A. Large fully kinetic run

We first test the wavelet turbulence diagnostic on the

large 2D full kinetic Kelvin-Helmholtz simulation (“VPIC

A”) previously analyzed in Ref. 2. The out-of-plane current

density from the simulation is plotted at four different times

in Fig. 5. Current sheets form as the in-plane magnetic field

is advected with the shear flow, highlighting the main large-

scale Kelvin-Helmholtz vortices that have nearly saturated in

magnitude at time t ¼ 200=xci in Fig. 5(a). An important

process for transferring energy to smaller scales in a cascade

is secondary tearing,2 which breaks the developing current

sheets into a series of magnetic islands or plasmoids.44 The

development of plasmoids is a primary trigger in this system

for the transition to turbulence. A chain of secondary mag-

netic islands is visible in Fig. 5(b) at time t ¼ 300=xci. By

time t ¼ 400=xci in Fig. 5(c), a number of current sheets and

magnetic islands across a range of scales have developed.

While this secondary magnetic reconnection process is suffi-

cient on its own to generate turbulence,45,46 the nonlinear

development depends on the details of the global system. In

our case, the imposed background velocity shear continues

to couple to the magnetic islands, and it forces both island

merging and additional tearing.

We apply the iterative wavelet diagnostic to measure

this transition to a turbulent state. The current density is

FIG. 4. The iterative wavelet filter is used to decompose Test Signal 2 from Fig. 1(b) into coherent and incoherent parts. The coherent part is represented by

only �0:07% of the wavelet coefficients.

TABLE I. Parameters of numerical simulations. VPIC is a fully kinetic particle-in-cell code,35 H3D is a hybrid kinetic ion/fluid electron code,3 and PIXIE3D

is a Hall MHD code.39

Code run System size (di) Cells Particles a Other numerical parameters

VPIC A 100� 50 16 384� 8192 4� 1010 3 mi=me ¼ 100

VPIC B 23:6� 15:7 3328� 2560 8:5� 1010 5 mi=me ¼ 100

H3D 23:6� 15:7 1536� 1024 3� 109 3 g ¼ 10�7

PIXIE3D 23:6� 15:7 2048� 1024 N/A 2 li ¼ 10�4; ve ¼ 10�4; le ¼ 10�6

122310-5 Le et al. Phys. Plasmas 25, 122310 (2018)



de-composed into coherent and incoherent portions as

defined by the wavelet threshold method of Sec. III. The

wavelet decomposition here uses 10 wavelet levels, spanning

the grid scale to nearly the global scale of the 2D run. The

norms jJj ¼
ffiffiffiffiffiffiffiffiffiffiffiP

J2
p

of the coherent and the incoherent por-

tion at the end of the simulation at time t ¼ 500=xci are plot-

ted in Fig. 6(b). While the incoherent portion contains a

contribution from grid-scale numerical noise associated with

particle methods (see the Appendix), it acquires additional

energy particularly at micro- or meso-scales (peaked at

level 3) as the flow transitions to turbulence (see Multimedia

view of Fig. 6).

The growth of the incoherent part as the shear layer tran-

sitions to turbulence is apparent in Fig. 6(c). Here, the norms

of both the coherent (red) and incoherent (blue) portions are

plotted over time. The coherent portion grows rapidly as the

global-scale Kelvin-Helmholtz instability with a growth rate

of c � 80xci develops, noticeably increasing at t � 150=xci.

During this period, the large, coherent, global-scale vortices

form. As secondary tearing and other processes cause a cas-

cade down to smaller scales, the flow becomes turbulent. At

this stage, the incoherent portion grows in size, particularly

around t � 250–350=xci. We identify this growth of the

incoherent portion as the marker of a transition to turbulence.

The incoherent part has a probability distribution function

(PDF) that is approximately Gaussian [see Fig. 6(d)], while

the coherent part includes a tail of stronger, intermittent

structures skewed to larger values.

B. Comparison of different models

In this section, we apply the same iterative wavelet

method to the three simulations of varying type that modeled

a smaller shear flow layer. The out-of-plane current density

Jz is plotted in Figs. 7(a)–7(d) at four time slices over the

course of the high-resolution VPIC simulation with 10,000

particles per cell and 3328� 2560 cells. The coherent part of

the current Jcoh extracted through the wavelet method yields

the profiles in Figs. 7(e)–7(h). The percentage of wavelet

coefficients required to reconstruct the coherent portion

ranges from �0:06% at tXci ¼ 20 to �0:13% at tXci ¼ 80.

Nevertheless, this small fraction of coefficients contains 99%

of the “energy” (defined as
P

J2
z ) at tXci ¼ 20 and 96% at

tXci ¼ 80.

The logarithm of the PDF of values of Jz over the

entire simulation domain is plotted for each time slice in

Figs. 7(m)–7(p). The wavelet filtering technique extracts a

large coherent portion of each current density profile. The

coherent piece contains slowly decaying PDFs, which are

approximately power laws for a range of values. The coher-

ent portion of the current density thus includes intermittent

current sheets, which have been identified as key sites of dis-

sipation in kinetic turbulence.1,2 The incoherent portion

(blue curves) is nearly Gaussian noise, corresponding to par-

abolic profiles in the logarithmic plots. Similar plots from

each of the simulations are shown in Figs. 8 and 9.

As for the larger fully kinetic run, to study the transition

to turbulence as the initial laminar Kelvin–Helmholtz

vortices break apart into smaller structures and generate

dissipation-scale current sheets, we plot the norm jJj ¼
ffiffiffiffiffiffiffiffiffiffiffiP

J2
p

of the total out-of-plane current density jJzj and the incoherent

part jJincj over time for each simulation in Fig. 10. In each

case, the total current density norm jJzj increases as the

Kelvin–Helmholtz vortex forms. Even when the vortex reaches

a non-linear state near the maximum of jJzj, the incoherent part

jJincj remains small. The incoherent part jJincj then undergoes a

relatively rapid increase in magnitude as the vortex breaks

apart through turbulent motions and generates current sheets

over a range of length scales. Again, we associate this rapid

increase and subsequent saturation of the incoherent part jJincj
with the onset of turbulence.

Interestingly, the growth in the coherent Jcoh and inco-

herent Jinc portions of the current density (plotted in Fig. 10)

correlate with the transfer of energy from the ion flow to

magnetic energy and plasma thermal energy. As the initial

shear flow carries the in-plane field and generates current

sheets around the Kelvin-Helmoltz vortices, kinetic energy is

transferred to the magnetic field. This is illustrated in

Fig. 11, where the change in the total magnetic energy in the

system is plotted in red along with the coherent portion of

the current density jJcohj (red dashed curves). Because this

initial rise in magnetic energy is associated with the large-

scale coherent vortices, the two red curves are highly

correlated. In particular, the Pearson correlation coefficient

CB 2 ½�1; 1� between the magnetic energy and jJcohj for

FIG. 5. Out of plane current density Jz from the VPIC A run (also see

Ref. 2) at four different times.
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each simulation is >0.9. In contrast, the correlation coeffi-

cient between the magnetic energy and jJincj in VPIC Run B,

for example, is �0.03.

Once strong turbulence develops, energy is converted

into thermal energy, and the plasma temperature increases.

For this reason, the incoherent current density jJincj, which

displays an uptick when turbulence develops, is highly corre-

lated with the plasma thermal energy (see the blue curves in

Fig. 11). Indeed, for the fully kinetic simulation, the correla-

tion coefficient CThi between jJincj and the ion thermal

energy, and the coefficient CThe between jJincj and the elec-

tron thermal energy are both 0.99. The hybrid model and

Hall-MHD models also show a strong correlation (>0.85)

between ion thermal energy and jJincj.

C. Wavelet technique versus other diagnostics
of turbulence

In this section, we evaluate the utility of three diagnostic

methods that are typically used in turbulence by tracking

their behavior from the laminar to the fully developed turbu-

lent stage. The three methods are Fourier power spectra, struc-

ture function, and finite time Lyapunov exponent (FTLE).

We start by showing the Fourier power spectra of the

current density from the fully kinetic simulation at early

(t ¼ 25=Xci) and late (t ¼ 80=Xci) time in Fig. 12. The late-

time, turbulent spectrum (black) does have a stronger signal

at somewhat larger k and has overall greater energy than the

early time, laminar spectrum (red). Nevertheless, the two

spectra have very similar shapes and slopes, with no clear

indication of a transition to a turbulent state.

Many statistical techniques beyond power spectra have

been developed for characterizing turbulence. For example,

statistics of field increments, often characterized by structure

functions, can reveal information about energy fluxes, and

degree of intermittency. Figure 13 shows the normalized

PDFs of magnetic field increments in one of the simulations

analyzed here (VPIC case A). Deviations from Gaussian

PDF at a given scale indicate intermittency at that scale. As

is evident from this figure, there are signatures of non-

Gaussianity even in the early stages of developing turbulence

(e.g., tXci ¼ 300). Thus, it is difficult to unequivocally dis-

tinguish relatively early stages of developing turbulence

from the fully developed turbulence with this technique.

The wavelet decomposition allows one to draw a dis-

tinction between spatially coherent and incoherent parts of a

turbulent field. But coherency of a certain field could also be

analyzed in the temporal sense. Here, we consider an analy-

sis based on computation of FTLE. Indeed, local maxima of

FTLE computed in backward (forward) time may indicate

attractive (repelling) Lagrangian coherent structures (e.g.,

Ref. 47). We focus on the noise-free Hall-MHD simulation

and compute FTLE of the electron flow by integrating fluid

trajectories originating from neighboring grid points over a

FIG. 6. Diagnostics applied to VPIC A simulation. (a) Profiles of the out-of-plane current density Jz at the end of the simulation. (b) The norms (
ffiffiffiffiffiffiffiffiffiffiffiP

J2
p

) of

the coherent (red) and incoherent (blue) portions of the current density separated by scale in the wavelet multi-resolution decomposition. The spatial scale

increases to the right. (c) Total norm of the coherent (red) and incoherent (blue) parts over time. The transition to turbulence at t � 250–350 =xci is marked by

the increase in the incoherent background. (d) Log of the probability distribution function of values of Jz over the simulation domain. The coherent portion

(red) has an extended super-Gaussian tail at larger values. Multimedia view: https://doi.org/10.1063/1.5062853.1
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time interval of TXci ¼ 10 in backward time. Panel (b) in

Fig. 14 shows the resulting FTLE values. While we do not

attempt to extract FTLE ridges and thus accurately determine

the (attractive) coherent structures here, the visual inspection

reveals an abundance of localized regions with high values

of FTLE. Furthermore, these regions often appear in the

vicinity of enhanced current density, which is shown in panel

(a) of Fig. 14. As the turbulence develops, distribution of

FIG. 7. Fully kinetic PIC results from the VPIC B simulation. (a)–(d) Profiles of the out-of-plane current density Jz over the course of a VPIC simulation.

(e)–(h) The coherent part Jcoh of Jz extracted through the iterative wavelet filtering. (i)–(l) The residual incoherent part Jinc ¼ Jz � Jcoh. (m)–(p) PDFs of the

total out-of-plane current density Jz (green), the coherent portion extracted by the wavelet method Jcoh (red), and the incoherent portion Jinc (blue).

FIG. 8. Hybrid (kinetic ion/fluid electron) PIC simulation results. Similar plots as in Fig. 7.
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FTLE values evolves and becomes significantly wider, as is

illustrated in panels (c) and (d) of Fig. 14. The width of the

FTLE PDF shows a strong correlation with the temporal evo-

lution of current density. This provides confidence in FTLE

as a tool for the study of coherent structures in turbulence.

However, unlike the incoherent wavelet component that was

mainly flat but showed a rapid rise close to the onset of

turbulence, the width of FTLE PDF rises almost in lockstep

with the growth of current density during the initial phase of

the KH instability, and it continues to rise until it reaches an

overshoot point. It then settles down to an asymptotic state

during the fully developed phase of turbulence. We conclude

that while FTLE analysis, at least in the way that we have

used it here, gives a certain indication for development of

turbulence, it alone cannot be used to unequivocally distin-

guish a fully turbulent state from that of developing turbu-

lence. It should also be noted that unlike the wavelet

method, FTLE analysis does not suggest any quantitative

value to indicate whether the system is in a fully developed

turbulence stage.

VI. TURBULENCE IN A GLOBAL MAGNETOSPHERE
SIMULATION

In this section, we apply the above wavelet techniques

to analyze turbulence in a 2D hybrid global magnetosphere

model.3 The model consists of a fixed dipolar magnetic field

(enclosed in a conducting spherical “planet”) and a solar

wind entering the simulation from the left with a specified

Alfvenic Mach number. A bow shock forms where the flow

collides with the planetary magnetic field. Behind the bow

shock is the magnetosheath, which is a shocked solar wind

plasma separated from the planetary dipole field by an inner

boundary layer called the magnetopause. While the magneto-

sheath is mainly laminar in the quasi-perpendicular region of

the bow shock, it is highly turbulent in the quasi-parallel

region of the bow shock. This turbulence is generated by ion

kinetic effects and would be absent in magnetized fluid mod-

els of the bow shock. Ion kinetic effects lead to the formation

FIG. 9. Hall MHD simulation results. Similar plots as in Fig. 7.

FIG. 10. The norm of the current density, jJj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
jJðx; yÞj2dxdy

q
, over the

simulation domain of the total out-of-plane current Jz (black) and the inco-

herent portion Jinc (red, scaled by a factor of 5) are plotted over time for (a)

the fully kinetic PIC simulation, (b) the hybrid PIC simulation, and (c) the

Hall MHD simulations. Each is normalized to the maximum jJzj. The verti-

cal lines indicate the time steps used in Figs. 7–9. The incoherent part

increases and then saturates as the dynamics become turbulent.
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FIG. 11. The change in the magnetic energy and thermal energy over an interval of each simulation (summed over the simulation domain and normalized to

the initial total ion kinetic energy associated with the shear flow). The norms of the coherent Jcoh and incoherent Jinc out-of-plane current density are over-

plotted, normalized by the maximum in the magnetic energy change. Note that the magnetic energy change is highly correlated with the coherent current den-

sity. The Pearson correlation coefficients CB 2 ½�1; 1� between magnetic energy change and jJcohj are given in the figure legend. Likewise, the incoherent cur-

rent density correlates with the increase in ion thermal energy as quantified by the coefficients CThi (and CThe based on the electron thermal energy in the fully

kinetic run) between thermal energy and jJincj.

FIG. 12. Fourier spectra of Jz from the fully kinetic VPIC simulation at early

time t ¼ 25=Xci (red) before the onset of turbulence and late time

t ¼ 80=Xci (black) after turbulence has fully developed.

FIG. 13. Normalized PDF of magnetic field increments in VPIC case A at

tXci ¼ 1; 200; 300; 400; 500. Here, dsbx ¼ bxðyþ sÞ � bxðyÞ and r is its

standard deviation. For all curves, s ¼ 1de, which is the scale where the

strongest deviation from the Gaussian distribution is observed in the fully

developed turbulence.
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of the ion foreshock, an extended region upstream of the

bow shock driven by beams of ions reflected from the shock.

The foreshock instabilities are the strongest and most spatially

extended along magnetic field lines that are quasi-parallel to

the shock normal. The foreshock fluctuations steepen and

develop into turbulence and coherent jets when they are

advected into the magnetosheath.3

We conduct our analysis for Run 1 in Ref. 3 with an

Alfvenic Mach number of 8, a domain size of Nz � Nx

¼ 8192� 2048 cells, a cell resolution of Dx ¼ 1di (di is the

ion inertial length), and with 200 particles per cell. This

run is of particular interest since the direction of the inter-

planetary magnetic field reverses in time, launching a rota-

tional discontinuity in the solar wind. The corresponding

sharp rotation of the magnetic field direction is visible in

Figs. 15(a) and 15(b). (Note that the domain has been trun-

cated in the z direction for the plots.) As the discontinuity

crosses the planetary magnetosphere, the region where the

magnetic field is quasi-parallel to the shock normal

changes. As a result, the strongest foreshock and magneto-

sheath fluctuations move from the northern hemisphere to

the southern hemisphere [compare Figs. 15(a) and 15(c)

for example]. We consider here whether the wavelet analy-

sis techniques offer a means of quantifying this localized

shift of the turbulent flow features in this highly inhomoge-

neous system.

In Figs. 15(a)–15(c), we plot the coherent part Bcoh of

the fluctuations of the magnetic field component Bz out of the

simulation plane, extracted using the iterative wavelet filter at

three different times over the course of the simulation. The

incoherent part Binc ¼ Bz � Bcoh is used to locate regions of

turbulence. To yield a measure of turbulence associated with

small extended regions of the simulation (rather than a purely

local measure), the absolute value of the incoherent part Binc

is convolved with a Gaussian filter of width of �80 cells.

This smoothed average value hjBincji is also plotted in Figs.

15(d)–15(f). Following the results of the analysis of

Kelvin–Helmholtz unstable flows of Sec. V, we identify the

turbulent regions as those with a large incoherent signal.

Selecting a threshold of hjBincji ¼ 0:1B0 produces the

magenta contours plotted in Figs. 15(d)–15(f), and these con-

tours thus contain the turbulent regions as defined by the

wavelet analysis.

Figure 15(a) shows that the coherent component clearly

captures the formation of wavefronts in the ion foreshock

region. The incoherent component is weak in the quasi-

perpendicular magnetosheath and larger in the quasi-parallel

magnetosheath, consistent with the expected laminar and

turbulent nature of these two magnetosheath regions. In

Fig. 15(b), the rotational discontinuity has penetrated the

magnetosheath and is moving down the magnetotail. At this

time, the previously quasi-perpendicular region has changed to

FIG. 14. FTLE analysis of the Hall-MHD simulation: (a) z-component of the current density Jz; (b) FTLE (K) field computed in backward time starting from

time tXci ¼ 80; (c) PDF of FTLE values for several starting times; and (d) evolution of the PDF width at the value 3� 10�3 in time with a re-scaled root-

mean-squared value of Jz overlaid for reference.
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the quasi-parallel geometry, and as a result, it has started

to develop turbulence. Note also the growth of the coherent

components in the new quasi-parallel region. The movie

(Multimedia view) of this run shows that the head of the turbu-

lence/dissipation region in the previously quasi-perpendicular

region, as measured by the incoherent component, follows

the front of the rotational discontinuity. Figures 15(c) and

15(f) show that the extent of the incoherent components as

well as the coherent components have gone down in the pre-

viously quasi-parallel magnetosheath whereas they have both

become more volume filling in the new quasi-parallel region.

From these observations, we conclude that the wavelet tech-

nique describes well the dynamical change of the magneto-

sheath regions from turbulent to laminar and vice versa.

To illustrate the change of the turbulent regions over

time, we analyze the flows within two small sub-domains of

the simulation. These two sub-domains are the 256-cell wide

squares plotted in each panel of Fig. 15. The magnetic field

Bz within each square is de-composed into coherent and inco-

herent parts over the course of the simulation, and the norms

of the signals are plotted in Fig. 16. Box (a) is initially down-

stream of the quasi-parallel bow shock. Here, the development

of turbulence in similar to the Kelvin–Helmholtz unstable

flows analyzed previously: a relatively strong coherent signal

develops early (e.g., at t ¼ 250=Xci), and the incoherent or

turbulent feature grows shortly thereafter. After the rotational

discontinuity in the solar wind crosses the planet, Box (a) is

then downstream of the less turbulent quasi-perpendicular

bow shock. The total level of magnetic fluctuation energy

decreases somewhat at this stage (after t � 400=Xci).

For box (b), the transition to turbulence occurs after the

rotational discontinuity crosses the planet, and the bow shock

becomes quasi-parallel on the southern hemisphere. Because

of the background solar wind flow, turbulent fluctuations are

FIG. 15. (a)–(c) The coherent part of the out-of-plane magnetic field BZ from the global hybrid magnetic field run. In (d)–(f), the absolute value of the incoher-

ent part is smoothed by convolution with a Gaussian kernel of variance �50 cells. Turbulence is associated with regions containing a large incoherent signal,

with the magenta contour indicating a level of 0.1 B0. The boxes indicate the regions where localized turbulence is analyzed in Fig. 16. Multimedia view:

https://doi.org/10.1063/1.5062853.2

122310-12 Le et al. Phys. Plasmas 25, 122310 (2018)

https://doi.org/10.1063/1.5062853.2


advected into box (b) even before large coherent waves

develop (e.g., at t ¼ 400=Xci). This highlights that in systems

with non-local drives and strong convective contributions

such as the foreshock (which derives its free energy from

particles reflected from a faraway shock and is embedded in

a high-speed solar wind flow), the transition to turbulence

need not follow the precise pattern found in the somewhat

simpler sheared flow layers. The sheared flow layers exhib-

ited a classical cascade from the large scales of the global

flow to smaller scales as turbulence developed locally. In

observational data, however, turbulent fluctuations at a given

spatial location may precede in time the observation of large

coherent structures.

VII. SUMMARY

An iterative wavelet filtering technique was applied to a

set of simulations of Kelvin–Helmholtz unstable plasma

flows to separate the current density into coherent and inco-

herent pieces. As the global scale Kelvin-Helmholtz vortices

developed, a large coherent signal was extracted representing

the current sheets on the boundaries of each vortex. As

secondary tearing and other processes induced a cascade to

smaller scales, the flow transitioned to a turbulent state. The

onset of turbulence over time was identified by a sharp

increase in the magnitude of the incoherent background.

While there is no generally accepted definition of turbulence,

it is commonly thought that turbulence is not deterministic

and is associated with a degree of randomness. This view is

supported by our demonstration that the development of tur-

bulence is associated with a sharp increase in the magnitude

of the incoherent background, which has a noise-like struc-

ture. This diagnostic proved effective for a large fully kinetic

simulation as well as a set of three smaller simulations that

employed different physical models (fully kinetic, hybrid

kinetic ion/fluid electron, and Hall MHD).

An interesting correlation was found between the

increase in the incoherent background and the increase in the

plasma thermal energy, both of which display a sharp uptick

as strong turbulence develops. Furthermore, while energy

conversion in kinetic turbulence appears to be localized to

regions of coherent intermittent structures,1–3 these regions

tend to be co-located with the strongest incoherent back-

ground. Together, these facts suggest that the incoherent back-

ground could play a role in the dissipation of turbulent kinetic

energy, a possibility we plan to explore in future work.

In addition, we investigated the application of the

wavelet-based diagnostic to a more complex system: a global

hybrid (kinetic ion/fluid electron) magnetospheric model.

The model included a rotational discontinuity launched in

the incoming solar wind, which changes the orientation of

the magnetic field and moves the location of the more turbu-

lent quasi-parallel bow shock region. The wavelet technique

efficiently diagnosed the upstream coherent foreshock waves

as well as the downstream turbulent regions characterized by

incoherent fluctuations spread across a range of scales. The

localization of the wavelet modes (as opposed to Fourier

modes that are spread evenly across space) was essential for

characterizing the turbulence in this inhomogeneous system.

An important complication is also illustrated by the analysis

of the bottom box in the global magnetosphere model: inco-

herent fluctuations may exist even before large coherent

structures develop.48 Note that pre-existing noise may feed

back onto the evolution of coherent structures, such as the

tearing of developing current sheets into plasmoids or mag-

netic islands.49

The ratio of incoherent to coherent component Ric in our

examples varies in a relatively small range of 0.07–0.25. The

latter value, which occurs in our PIC simulations, is most

likely too high for most applications and is affected by parti-

cle noise. Thus, the real range for Ric is expected to lie in a

tighter range. As such, Ric provides an approximate threshold

for turbulence onset. It is a remarkable fact that in fluid tur-

bulence, a single parameter Re (Reynolds number), which is

based on the system properties, is a predictor of whether the

system will develop turbulence. There is as yet to be found

such a parameter in plasmas. It is tempting to draw an

analogy between Ric and the fluid Reynolds number Re.

However, there is a big distinction. Unlike Re, our parameter

Ric cannot determine a priori based on system parameters

whether the system would remain laminar or develop turbu-

lence. Rather, Ric indicates that if the system could reach

Ric � 0:1, then it would transition to turbulence.
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APPENDIX: NOISE IN PARTICLE SIMULATIONS

For the fully kinetic PIC simulation and the hybrid PIC

simulation in Figs. 10(a) and 10(b), the incoherent piece of

the current density has a non-negligible norm even at the

beginning of the simulations. This offset of the incoherent

piece is produced not by some initially imposed level of

turbulence but rather by the presence of numerical noise

associated with the PIC method. In PIC kinetic modeling,

which samples phase space with a finite number of numerical

macro-particles, there is statistical numerical noise of the

current density / 1=
ffiffiffiffiffiffi
Np

p
, where Np is the number of

macro-particles in each grid cell of the domain. The particle

noise results from statistical fluctuations in the number of

particles in each cell, and it therefore has spatial features on

the scale of the grid. Below, we explore the use of wavelet

filtering for de-noising particle simulations and compare it to

other smoothing algorithms. A detailed study of wavelet-

based de-noising for density estimation can be found in

Ref. 11.

The out-of-plane current density Jz plotted in Fig. 17(a)

is computed from summing the contributions from particles

in each cell of the simulation, which in this case was initial-

ized with 150 particles per cell. The grid-scale numerical

noise is apparent. In Fig. 17, two methods for filtering the

grid-scale statistical noise for a PIC simulation are

FIG. 17. (a) The out-of-plane current density Jz from the VPIC fully kinetic simulation with 150 particles per cell per species. The current density along the

horizontal cut in (a) is plotted in blue along with the filtered data in red based on (b) an iterative wavelet filter and (c) a Gaussian filter. (d) and (e) show the

residuals (current density minus filtered data). (f) and (g) Plots zooming in on the region delineated by vertical lines in (b)–(e). Note that the wavelet filter tends

to maintain peak values in current sheets on electron scales, while a Gaussian filter tends to smooth these out.
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compared. The first is the wavelet filter applied above to

study coherent turbulent structures. The only difference is

that a value of the multiplicative factor a ¼ 1 is used. The

second filtering method is a classical low-pass Gaussian fil-

ter, which convolves the signal with a Gaussian kernel. A cut

of Jz along the center at y¼ 0 is plotted (in blue) in Figs.

17(b) and 17(c) along with 1D filtered data (in red). The

wavelet filtered data ~Jz were obtained using the iterative

method described above. The residual noise, Jz � ~Jz , is plot-

ted in Fig. 17(d). The width of the Gaussian filter, r � 6

cells, in Fig. 17(c) was chosen so that the noise extracted

(the residuals) in Figs. 17(d) and 17(e) has the same norm.

The wavelet filter and the Gaussian filter result in simi-

lar de-noised signals. The largest differences between the

two filtering methods occur at narrow current sheets. Figures

17(f) and 17(g) zoom in on the regions between the vertical

lines in Figs. 17(b)–17(e). A main advantage of the wavelet

filtering method is that it better preserves the peak values of

sharp features in the current profile. By design, the wavelet

basis captures significant features at any scale. The Gaussian

filter (or similarly any low-pass band filter), on the other

hand, preferentially smooths out small-scale features. The

peak values of the current density in the thin sheets in this

region are therefore substantially reduced by the Gaussian

filter.

The wavelet and Gaussian filtering provide means of de-

noising by post-processing the PIC data after a run. We com-

pare the effect of de-noising through post-processing to

runtime methods that are intrinsically less noisy. One method

of reducing noise is simply to increase the number of par-

ticles in the simulation, which results in smaller statistical

noise / 1=
ffiffiffiffiffiffi
Np

p
but increased computational cost. In

Fig. 18, we include a spectrum of magnetic fluctuations from

a higher-resolution VPIC simulation with 10 000 particles per

cell. The spectrum may be compared to the lower-resolution

VPIC run with 150 particles per cell, as well as data from the

lower-resolution run de-noised with either a Gaussian filter or

the iterative wavelet technique. For the unfiltered data, the

spectra turn upwards at large kde > 5, which corresponds to

roughly the grid scale. The higher-resolution simulation with

10 000 particles per cell has reduced noise, and the portion of

the spectrum unaffected by particle noise extends to higher k
than in the case with only 150 particles per cell.
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