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Multiscale statistical analyses of inertial particle distributions are presented to investi-
gate the statistical signature of clustering and void regions in particle-laden incompressible
isotropic turbulence. Three-dimensional direct numerical simulations of homogeneous
isotropic turbulence at high Reynolds number (Reλ � 200) are performed. Lagrangian
motion of inertial particles are tracked by the one-way coupled point-particle method
assuming the Stokes drag. Up to 109 inertial particles for each Stokes number ranging
from 0.01 to 5.0 are computed. Orthogonal wavelet analysis is then applied to the com-
puted particle-number density fields. Scale-dependent skewness and flatness values of the
particle-number density distributions are calculated and the influence of Reynolds number
Reλ and Stokes number St is assessed. For St ∼ 1, both the scale-dependent skewness and
flatness values become larger as the scale decreases, suggesting intermittent clustering at
small scales. For St � 0.2, the flatness at intermediate scales, i.e., scales larger than the
Kolmogorov scale and smaller than the integral scale of the flow, increases as St increases,
and the skewness exhibits negative values at the intermediate scales. The negative values
of the skewness are a signature of void regions. These results indicate that void regions at
the intermediate scales are pronounced and intermittently distributed for such small Stokes
numbers. As Reλ increases, the flatness increases weakly. For Reλ � 328, the skewness
shows negative values at large scales, suggesting that even for St ∼ 1, void regions are
pronounced at large scales, while clusters are pronounced at small scales.

DOI: 10.1103/PhysRevFluids.6.064304

I. INTRODUCTION

Inertial particles suspended in three-dimensional (3D) turbulent flows are ubiquitous in geo-
physical flows. The spectrum of applications covers plankton dynamics, pollution dispersion in
cities or in the atmosphere, or even the planet formation in the early age of our universe. The
precipitation mechanism in convective clouds, where inertial particles (i.e., water droplets) are
suspended in high Reynolds number turbulence, is of particular interest in atmospheric flow [1].
For instance, cloud droplet motion in turbulence increases the collision coalescence frequency
and enhances the rain drop formation. The importance of turbulence in the collision coalescence
process is well summarized in the introduction of Ref. [2]. One of the key factors that determines
the droplet collision coalescence frequency is turbulent clustering of cloud droplets. Due to the
inertia of cloud droplets, their motion deviates from turbulent flow motion and particles form
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a nonuniform number density distribution. The distribution consists of cluster and void regions,
which, respectively, correspond to large and small number densities. Clustering of cloud droplets
can also increase the radar reflectivity factor [3,4] due to the interference of microwaves scattered
by spatially correlated droplets. Quantitative estimates of the increase in the radar reflectivity
factor require the Fourier spectrum of number density fluctuations of turbulent clustering parti-
cles which covers scales comparable to radar wavelengths. Sound modeling becomes necessary
for improving weather prediction. However, investigation of particle dynamics in high Reynolds
number turbulence, like cloud turbulence, is still challenging for in situ observations, laboratory
experiments, and numerical simulations. Understanding the nonlinear multiscale dynamics is a
prerequisite for estimating and modeling intermittent particle clustering in high Reynolds number
turbulence.

Inertial particle clustering in homogeneous isotropic turbulence was investigated in many pub-
lications. For review articles on this topic, we refer readers to, e.g., Refs. [5,6]. In this paper, we
consider inertial heavy particles; i.e., the particle density is sufficiently larger than the fluid density.
When the particle size is smaller than the smallest turbulent length scale, i.e., the Kolmogorov
scale, the particle acceleration balances the drag force, which is inversely proportional to the
particle relaxation time, τp [2,7,8]. A dimensionless parameter for τp is the Stokes number, which is
defined as St ≡ τp/τη, where τη is the Kolmogorov time. The clustering of inertial heavy particles
was first explained by the preferential concentration mechanism [9,10], in which inertial particles
are swept out from strong vortices due to centrifugal effects and concentrate in low-vorticity and
high-strain-rate regions when the particle relaxation time is sufficiently small compared to the time
scale of vortices.

Many previous studies were motivated to quantify the collision coalescence process (e.g.,
Refs. [2,11–21]) and discussed clustering mainly at sub-Kolmogorov scales. The radial distribution
function (RDF) is widely used to analyze clustering (e.g., Refs. [2,16,20,22]) because it is directly
related with the particle collision rate [11,23]. The RDF typically shows a power-law behavior at
sub-Kolmogorov scales and the slope (i.e., the correlation dimension [24]) is dependent on the
Stokes number St. Ireland et al. [2] discussed the Reynolds number dependence of the RDF at
sub-Kolmogorov scales by performing 3D direct numerical simulations (DNSs) for a wide range of
Reynolds numbers, 88 � Reλ � 597, where Reλ is the Taylor-microscale-based Reynolds number.
They stated that the RDF is independent of Reλ for small Stokes numbers, and the clustering
mechanism is driven almost entirely by small-scale turbulence. In contrast to the conclusion in
Ref. [2], Onishi et al. [25] showed that the RDF for St = 0.4 decreases when increasing the Reynolds
number for Reλ > 100 by performing 3D DNSs for 55 � Reλ � 527. By comparing with 2D
turbulence, Onishi and Vassilicos [20] revealed that the Reynolds number dependence of the RDF in
3D turbulence is due to the intermittent nature of turbulence, which corresponds to non-Gaussianity
of turbulent fluctuations.

To discuss the intermittent particle clustering in high Reynolds number turbulence, understanding
multiscale particle clustering structures at scales larger than the Kolmogorov scale is crucial.
Multiscale structures of inertial particle clustering have been reported in many previous studies.
Boffetta et al. [26] pointed out that a multiscale structure of clustering can be observed in the
inverse cascade range in two-dimensional turbulence. They showed that the probability density
function (PDF) of void area exhibits a power-law, independent of the Stokes number. Yoshimoto
and Goto [27] reported similar results for the PDF of void volumes at scales larger than the
Kolmogorov scale in homogeneous isotropic turbulence using 3D DNS. The multiscale structure
of clustering was also observed in experiments by Monchaux et al. [28]: They measured particle
distribution in a wind tunnel and reported that both PDFs of void and cluster areas exhibit power
laws independent of the Stokes number. The multiscale clustering structure was also analyzed using
the pair correlation function (PCF) [27,29] and its Fourier transform, which is the Fourier spectrum
of number density fluctuations [3]. It was shown that both the PCF and the Fourier spectrum are
strongly dependent on the Stokes numbers even at scales larger than the Kolmogorov scale. The
multiscale structures of inertial particle clustering are explained by the advection in turbulent flows
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and the deviation from the fluid flows due to the inertial effects. The advection of particles results
in the turbulent transport of particle number density fields at sufficiently large scales. However,
the turbulent transport of passive scalar [30] is not directly applicable to discuss the multiscale
structure of inertial particle clustering [31]. Vassilicos and coworkers explained the scale similarity
of particle distribution, proposing the sweep-stick mechanism, in which particles are swept by
large-scale flow motion while sticking to stagnation points of Lagrangian fluid acceleration [32–35].
Bec et al. [24] discussed the scale dependence of particle distribution, using the PDF of particle
mass density, coarse grained on scales in the inertial range based on their 3D DNS data. They
reported that the PDF changes with the scale-dependent contraction rate. Attempts to formulate the
scale similarity of particle clustering in the inertial range of turbulence have been done by Bragg
et al. [36] and Ariki et al. [31] on the basis of theoretical analyses. They proposed analytical esti-
mates assuming Gaussianity of particle-number density fluctuations. Assessing the non-Gaussianity
of scale-by-scale spatial fluctuation is a prerequisite for further development of the analytical
estimates.

Wavelet analysis is a suitable tool to quantify the multiscale non-Gaussianity based on the
scale-dependent spatial statistics of particle number density fields. We consider continuous number
density fields constructed from Lagrangian particle distributions. Wavelets represent turbulent fields
(such as flow, scalar, and particle-number density fields) localized in scale and position (and
possibly direction), complementary to Fourier techniques which yield insight into wave-number
contributions of turbulent fields. Hence the wavelet representation can quantify spatial fluctuations
at different scales, which is a key for analyzing scale-dependent spatial statistics of number density
fields. This is possible due to the local and oscillatory character of the wavelet basis functions which
yield an efficient orthogonal representation of the field. The efficient processing is realized thanks
to the fast wavelet transform which has linear computational complexity. For the Fourier transform,
this task is out of reach owing to the global character of the basis functions. Wavelet techniques for
turbulent flow already have some history, starting with the work of, e.g., Refs. [37–39]. Numerous
applications can be found to extract coherent vorticity [40–42], quantifying intermittency [43,44],
performing scale-dependent statistics [45] and turbulence modeling [46,47]. A review for computing
turbulent flows can be found in Ref. [48]. Recently, orthogonal wavelets have been applied to active
matter turbulence [49], turbulent premixed combustion [50], and droplet-laden turbulence [51].
Wavelets have also been applied to the number density fields for inertial particles in turbulence.
Bassenne et al. [52] proposed a wavelet-based method to extract coherent clusters of inertial
particles in fully developed turbulence, and a grid adaptation method using wavelet analysis was
illustrated. They studied Fourier energy spectra for several Stokes numbers, analyzing the impact
when changing the number of particles. Wavelet multiresolution statistics of particle-laden turbu-
lence have been recently introduced in Ref. [53] for studying the cross correlations between energy
spectra of the fluid and the dispersed-phase field variables in particle-laden turbulence. These studies
of wavelet statistics for particle clustering mainly focused on the second-order scale-dependent
statistics and its spatial variance.

The aim of the current paper is to study the scale-dependent statistics of the intermittent particle
distribution and get insight into the multiscale structure of clusters and voids in particle-laden
turbulence. Higher-order scale-dependent statistics (i.e., higher than second order) are necessary
to understand the intermittent nature of particle distribution and how void and cluster regions
contribute to the particle clustering. To this end, orthogonal wavelet decomposition of the particle
number density fields is performed. The analyzed data are obtained by DNSs of 3D homogeneous
isotropic turbulence at high Reynolds number laden with inertial particles, where Reλ � 200. The
influence of different physical parameters, Reynolds number Reλ, and Stokes number St, is assessed.

The remainder of the paper is organized as follows. First, we briefly summarize the governing
equations and the performed DNS computations in Sec. II. In Sec. III, we describe the wavelet
methodology and wavelet-based statistical measures to quantify the scale-dependent distribution of
the particle number density field. Numerical results are then presented in Sec. IV. Finally, Sec. V
draws some conclusions and gives perspectives for future work.
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II. PARTICLE-LADEN TURBULENCE

We present the governing equations of particle-laden turbulence in Sec. II A, and describe the
DNS computations in Sec. II B. In Sec. II C, we explain the conversion of the Lagrangian particle
data into an Eulerian number density field.

A. Basic equations

We consider a statistically homogeneous velocity field u(x, t ) of an incompressible fluid obeying
the Navier–Stokes equation together with the divergence-free condition,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + f , (1)

∇ · u = 0, (2)

where x = (x1, x2, x3), ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), t is the time, f (x, t ) is an external solenoidal
forcing, p(x, t ) is the pressure, ν is the kinematic viscosity of the fluid, and ρ is the density. The
equations are completed with periodic boundary conditions and a suitable initial condition. Here
and in the following, we omit the arguments x and t , unless otherwise stated.

We assume that the particle size is sufficiently smaller than the Kolmogorov scale and the
particle density ρp is sufficiently larger than the fluid density ρ (i.e., ρp/ρ � 1). Then, on the basis
of the point-particle approximation, Lagrangian motion of inertial heavy particles [2,7,8] can be
described by

dxp

dt
= v, (3)

dv

dt
= −v − u

τp
, (4)

where xp and v are the position and velocity of a Lagrangian particle and τp is the relaxation time
of particle motion. Assuming the Stokes flow for a spherical particle (i.e., the Stokes drag), τp is
given by

τp = ρp

ρ

2a2

9ν
, (5)

where a is the particle radius. The Stokes drag is valid for Rep � 0.1 but is often relaxed to Rep � 1,
where Rep = 2a|u − v|/ν is the particle Reynolds number, cf. the discussion in Ref. [54].

The important parameters in this paper are the Taylor-microscale based Reynolds number
Reλ and the Stokes number St. The Taylor-microscale-based Reynolds number Reλ is defined as
Reλ ≡ u′λ/ν, where u′ is the turbulent velocity fluctuation u′ ≡

√
〈|u|2〉/3 and λ is the Taylor

microscale λ ≡
√

15νu′2/ε. ε is the energy dissipation rate, defined by ε ≡ ν〈 ∂ui
∂x j

∂ui
∂x j

〉 and 〈·〉 denotes
an ensemble average. The Stokes number St indicates the contribution of particle inertia and defined
as St ≡ τp/τη, where τη is the Kolmogorov time (τη ≡ √

ν/ε). In homogeneous turbulence, the
ensemble average can be regarded as a space and time average under appropriate assumptions.

In the equations above, we assumed that the effects of the reaction of particle motion to fluid flow
and the interactions between particles were neglected (i.e., one-way coupling) because these effects
are typically small in the timescale of τη for sufficiently dilute particles such as cloud droplets in
atmospheric turbulence [4].

B. Direct numerical simulation

The DNS of particle-laden turbulence was performed using the same DNS program as used
in Ref. [3]. Equations (1) and (2) were solved on Cartesian staggered grids. The fourth-order
central-difference schemes were used for the advection and viscous terms [55] and the second-order

064304-4



SCALE-DEPENDENT STATISTICS OF INERTIAL …

TABLE I. DNS parameters and statistics of obtained turbulence, the number of grid points Ngrid, the
Reynolds number of DNS Re = ν−1, the Taylor-microscale based Reynolds number Reλ, the turbulent velocity
fluctuation u′, kmaxη, the number of particles Np, the particle relaxation time τp, the Stokes number St ≡ τp/τη,
and the time step 	t .

Ngrid Re Reλ u′ kmaxη Np τp St 	t

Flow 1 512 909 204 1.01 2.02 1.07 ×109 5.71 × 10−4 0.01 2 × 10−4

1.14 × 10−3 0.02
2.86 × 10−3 0.05 1 × 10−3

5.71 × 10−3 0.1
1.14 × 10−2 0.2
2.86 × 10−2 0.5
5.71 × 10−2 1.0
1.14 × 10−1 2.0
2.86 × 10−1 5.0

Flow 2 1024 2220 328 1.00 2.12 5.00 ×107 3.87 × 10−2 1.0 2 × 10−4

Flow 3 2048 5595 531 1.00 2.14 4.00 ×108 2.52 × 10−2 1.0 1 × 10−4

Runge–Kutta scheme was used for time integration. The velocity and pressure were coupled by the
highly simplified marker and cell method [56], where the second-order central difference scheme
was used for the pressure gradient. To obtain statistically steady-state turbulence, a parallelized
external solenoidal forcing [57] was applied to the large scales satisfying k < 2.5. Here k = |k| is
a magnitude of wave number vector k. Equations (3) and (4) were solved for discrete Lagrangian
points. The time integration scheme was the same as that for the flow field.

The computational cubic domain has side length of 2π . Periodic boundary conditions are applied
in x1, x2, and x3 directions. The domain was discretized uniformly into N3

grid grid points, giving a grid
spacing of 	 = 2π/Ngrid. The DNS was performed for three turbulent flows at different Reynolds
numbers: Flow 1, flow 2, and flow 3. The resolution was chosen to satisfy kmaxη ≈ 2, where kmax

is the maximum wave number given by kmax = π/	 and η = (ν3/ε)1/4 is the Kolmogorov scale.
Inertial particles were imposed uniformly and randomly in the computational domain at t = 0,
where the turbulent flow field had reached a statistically steady state. Particle position data were
sampled at 10 time instants of t = 11T0 to 20T0 at interval of T0, where T0 is the dimensionless time
unit and comparable to the eddy-turnover time. The Stokes number St of inertial particles was set
to 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 for flow 1, and the particle motion of St = 1.0
was tracked for flow 2 and flow 3. The statistics of the obtained turbulent flows and the number of
particles Np are summarized in Table I. Note that Np particles were tracked for each case of St for
flow 1. Time average for the statistics was taken for the period of 10T0 � t � 20T0. The time step
	t for St = 0.01 and 0.02 in flow 1 is smaller than that for 0.05 � St � 5.0 so that it is smaller than
τp. We confirmed that the statistics of turbulence and particle clustering do not change when 	t is
decreased to one-fifth (figures are omitted for brevity).

Since the one-way coupling is assumed in this paper, each particle motion is independent of
the number of particles. The physics relevant to inertial particle clustering does not differ from the
sufficiently dilute condition even when increasing the number of particles. Thus, we use a huge
number of particles to reduce influence of the Poisson noise, particularly for flow 1. We note that
the particle number density for flow 1 is much larger than that in real cloud turbulence. When we
consider water droplets in air flow, where ρp/ρ = 840 at 1 atm and 298 K, the particle mass and
volume fractions for St = 1.0 in flow 1 are 2.9 and 3.5 × 10−3, respectively. This implies that if the
particle number density were the same as that of flow 1, the effects of the reaction of particle motion
onto the flow and the interaction between particles would not be negligibly small.

It should also be noted that, when we consider cloud droplets with ρp/ρ = 840, the root mean
square of the particle Reynolds number Rep for St � 0.2 becomes smaller than 0.03, and it becomes
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0.11, 0.26, 0.62, and 1.7 for St = 0.5, 1.0, 2.0, and 5.0, respectively. For St = 5.0, the DNS results
may not be directly applied to cloud droplets. We included St = 5.0 because Rep depends on the
particle size a/η = √

9St/(2ρp/ρ) and can be smaller than 1 when ρp/ρ is sufficiently large.

C. Number density fluctuations

The number density field of the discrete particle positions can be described as

nδ (x, t ) = 1

n0

Np∑
m=1

δ(x − xp,m(t )), (6)

where δ(x) is the Dirac delta function, the subscript m denotes the identification number of the
particle, and n0 is the scaling factor: The mean dimensional number density n0 = Np/(2π )3 is used
so that 〈nδ〉 = 1. However, wavelet analysis cannot be applied directly to nδ (x, t ). Thus, to apply
the wavelet analysis, the number density field in Eq. (6) was converted to the number density field
data on equidistant grid points based on the histogram method; i.e., the computational domain was
discretized into an array of N3

g equally sized boxes and the number of particles in each box was
counted. The histogram method, which corresponds to the zeroth-order kernel density estimation,
retains fine clustering structures better than higher-order kernels. The number density field based on
the histogram method is given by

n(x, t ) =
Ng−1∑

i1,i2,i3=0

{∫
T 3

Kh(xi1,i2,i3 − x′)nδ (x′, t )dx′
}

h3Kh(x − xi1,i2,i3 ), (7)

where T = 2πR/Z, xi1,i2,i3 is the box position given by xi1,i2,i3 = h(i1 + 1/2, i2 + 1/2, i3 + 1/2)
and Kh(x) is a piecewise constant function defined as Kh(x) = 1/h3 for −h/2 � xi < h/2 (i =
1, 2, 3), while Kh(x) = 0 otherwise. Here h denotes the width of the piecewise function, and for
the histogram we have h = 2π/Ng. Note that Eq. (7) satisfies 〈n〉 = 1. For the number density
field n(x, t ), the number of grid points in each direction was set to Ng = 1024, independently of
the number of grid points Ngrid in the DNS. The influence of Ng on the wavelet-based statistics is
discussed in Appendix B. Bassenne et al. [52] also used the histogram method to obtain the number
density field for the wavelet analysis. Nguyen et al. [58] used the kernel density estimation with the
Gaussian kernel but the Gaussian kernel smooths out fine clustering structures because it works as
a blunt low-pass filter.

III. WAVELET ANALYSIS OF THE NUMBER DENSITY FIELD

The scale-dependent statistics of the particle number density field n(x, t ), Eq. (7), are based on
an orthogonal wavelet decomposition which is summarized in Sec. III A. For details on wavelets,
we refer the reader to textbooks, e.g., Refs. [59,60]. The scale-dependent moments of the number
density field yield statistical estimators of the different quantities considered, such as variance,
skewness, and flatness values, and are defined in Sec. III B.

A. Orthogonal wavelet decomposition

We consider here a scalar field n(x, t ), i.e., the particle number density field at a given instant t , in
the (2π )3 periodic cube. The field is decomposed into a 3D orthogonal wavelet series, and it is thus
unfolded into scale, position, and seven directions (μ = 1, · · · , 7). The 3D mother wavelet ψμ(x)
is hereby based on a tensor product construction and a family of wavelets ψμ,γ (x) can be generated
by dilation and translation. This family yields an orthogonal basis of L2(R3). The multi-index
γ = ( j, i1, i2, i3) denotes the scale 2− j and position 2π × 2− j i = 2π × 2− j (i1, i2, i3) of the wavelets
for each direction, and i = 0, · · · , 2 j − 1 ( = 1, 2, 3). The wavelets are well-localized in space
around position 2π × 2− j i and scale 2− j , oscillating, and smooth. Application of a periodization
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technique [60] to the wavelets likewise generates an orthogonal basis of L2(T 3). The spatial
average of ψμ,γ (x), defined by 〈ψμ,γ〉 = (2π )−3

∫
T 3 ψμ,γ (x)dx, vanishes for each index, which is a

necessary condition for being a wavelet.
The number density field n(x) sampled on N3

g = 23J equidistant grid points can be developed
into an orthogonal wavelet series,

n(x) = 〈n(x)〉 +
J−1∑
j=0

n j (x), (8)

where n j (x) is the contribution of n(x) at scale 2− j defined by

n j (x) =
7∑

μ=1

2 j−1∑
i1,i2,i3=0

ñμ,γψμ,γ (x), (9)

and 〈n(x)〉 is the mean value. Due to orthogonality of the wavelets, the coefficients are
given by ñμ,γ = 〈n, ψμ,γ〉, where 〈·, ·〉 denotes the L2-inner product defined by 〈ξ, ζ 〉 =
(2π )−3

∫
T 3 ξ (x) ζ (x)dx. At scale 2− j , we have 7 × 23 j wavelet coefficients for n(x). Thus, in

total we have N3
g − 1 wavelet coefficients and the nonvanishing mean value. These coefficients are

efficiently computed from the N3
g grid point values for n(x) using the fast wavelet transform, which

has linear computational complexity.
The scale 2− j of the wavelet transform and the wave number k j of the Fourier transform are

related via

k j = kψ2 j, (10)

where kψ is the centroid wave number of the chosen wavelet. For the Coiflet 12 wavelet chosen
here, which has four vanishing moments, we have kψ = 0.77.

B. Wavelet-based statistics of the particle number density field

Scale-dependent statistics of the particle number density field n(x) are defined by using scale-
dependent moments based on the wavelet decomposition of Eq. (8). We define the qth-order
moments of nj (x) as

Mq[n j] = 〈(n j )
q〉, (11)

and note that by construction the mean value vanishes, 〈nj〉 = 0. The moments are thus cen-
tral moments. These scale-dependent moments are intimately related to the qth-order structure
functions [43].

In the following, we consider the second-order moment M2[n j], the third-order moment M3[n j],
and the fourth-order moment M4[n j]. The wavelet energy spectrum of n j (x) can be defined using
the second-order moment M2[n j] and Eq. (10),

E [n j] = 1

	k j
M2[n j], (12)

where 	k j = (k j+1 − k j ) ln 2 [39]. The wavelet spectrum E [n j] corresponds to a smoothed version
of the Fourier energy spectrum [38,39]. The orthogonality of the wavelets implies that we obtain
the variance of the number density field from

∑J−1
j=0 E [n j]	k j . Similarly to the Fourier spectra

reported by Bassenne et al. [52], the energy spectrum obtained by Eq. (12) has the particle-number
dependence due to the Poisson noise. In this paper, we have analytically obtained the effect of the
Poisson noise on M2[n j], which is given by

M2,random[n j] = 7 · 23 j

Np
. (13)
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The details on the analytical procedure are summarized in Appendix A. Hence, instead of Eq. (12),
we use the following definition for the wavelet energy spectrum:

E [n j] = 1

	k j

{
M2[n j] − 7 · 23 j

Np

}
, (14)

where the influence of the Poisson noise has been removed. The asymmetry of the PDF of nj (x) can
be quantified by its skewness defined as

S[n j] = M3[n j]

(M2[n j])3/2 . (15)

The scale-dependent flatness, which measures the intermittency at scale 2− j , is defined by

F [n j] = M4[n j]

(M2[n j])2 . (16)

For a Gaussian distribution, the flatness equals three at all scales. In Ref. [44], it was shown that
the flatness is directly related to the energy spectrum of Eq. (12) and the standard deviation of the
spatial variability of E [nj] = M2[n j]/	k j ,

F [n j] =
(

ϑ[n j]

M2[n j]

)2

+ 1 , (17)

where ϑ[n j] is the standard deviation and defined as ϑ[n j] = √
M4[n j] − (M2[n j])2. This relation

explains that intermittency can be quantified by scale-dependent flatness. The influence of the
Poisson noise on M3[n j] and M4[n j] is briefly discussed in Appendix A. This influence cannot
be removed only by subtracting the moments for randomly distributed particles. Thus, we use the
conventional definition of Eqs. (15) and (16). Note that the particle number dependence of skewness
and flatness is assessed in Appendix B.

IV. NUMERICAL RESULTS

A. Scale-dependence of particle clusters and voids

Figure 1 presents wavelet spectra of number density fluctuations E [nj] together with number
density Fourier spectra En(k) at different Stokes numbers. The wave numbers k j and k are normal-
ized by the Kolmogorov scale η. The time-averaged values obtained from particle position data at
ten time instants are plotted. The error bars for E [nj] indicate plus-minus one standard deviation
of the wavelet energy spectrum for ten time instants. In Fig. 1, we can see that when St � 1.0, the
spectra E [nj] increase with St for each k jη, having a peak at k jη ≈ 0.2. This increase suggests that
the particle clustering becomes prominent as St becomes larger. In the case that St � 1.0, at larger
scales k jη � 10−1, the spectra become larger with St. In contrast, at scales satisfying k jη � 10−1,
the spectra become smaller for each k jη, as St increases from unity. This nonmonotonic behavior
of E [n j] in terms of St shows that the scale of the most intense particle clustering becomes larger
with St(�1.0). The St dependence of E [n j] is in accordance with that reported by Ref. [3]. We can
also see that for each St, E [nj] is in good agreement with the number density Fourier spectra En(k).
It should be noted that a number density Fourier spectrum could contain the Poisson noise caused
by the discrete nature of particle distribution when the standard Fourier transform is applied to the
number density field [61]. In the Fourier spectra in Fig. 1, the Poisson noise is removed by using the
analytical Fourier transform technique of Ref. [3].

As explained in Sec. III B, the noise is also removed in the wavelet spectra. The wavelet spectra
E [n j] based on Eq. (12) are plotted for the case of random particle positions with uniform proba-
bility as reference. Similarly to the inertial particle cases, the average for ten realizations is taken.
We confirmed that E [n j] for the randomly distributed particles agrees with the analytical estimate
E [n j] = M2,random[n j]/	k j . As shown in Fig. 1, the influence of the noise can be comparable to
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FIG. 1. Wavelet spectra E [nj] (black) and Fourier spectra En(k) (red) of number density fluctuation at
Reλ = 204 for the cases of (a) St � 0.2 and (b) St � 0.5. The error bars for E [nj] indicate plus-minus one
standard deviation obtained from particle position data at ten time instants.

or larger than the wavelet spectra. In this paper, we use the ratio of the energy spectrum E [nj]
for inertial particles to that for randomly distributed particles as the signal/noise ratio (SNR); i.e.,
SNR = E [nj]	k j/M2,random[n j]. The effect of the Poisson noise on the statistics is negligibly small
when SNR is larger than 10, and otherwise the statistics are contaminated by the Poisson noise (see
also Appendix B).

To get intuitive ideas about particle clustering and its scale dependence, we visualize spa-
tial distributions of scale-dependent number density fields nj in a two-dimensional plane at
different scales for St = 1.0 and St = 0.05 together with the total number density fields n(x)
in Fig. 2 for Reλ = 204. The scale-dependent number density field n j is normalized by σ [n j],
the standard deviation of nj . Here, σ [n j] = √

M2[n j]. In Figs. 2(a) and 2(b), we can see the
prominence of the particle clusters and void regions, especially at St = 1.0. The prominence of
the clusters becomes substantial as scales become smaller, i.e., the scale index j increases. In
addition, it seems that the clusters and the voids are distributed more intermittently in space
with increasing j for each St. At the scale j = 8 (k8η = 1.6) for St = 0.05, the SNR is smaller
than 1, which means that the spatial fluctuation of nj in Fig. 2(h) is mostly due to the Poisson
noise.

B. Reynolds number dependence

We examine the influence of the Reynolds number Reλ on the scale-dependent skewness and
flatness values, S[n j] and F [n j]. The DNS for the three Reynolds numbers, Reλ, uses different num-
ber of particles (imposed by their computational cost), as shown in Table I. Thus, we also consider
three sets of randomly distributed particles with the corresponding number of particles. Figure 3
shows that for St = 1.0 the skewness S[n j] and flatness F [n j] increase with k jη, irrespective of the
values of Reλ. Similarly to Fig. 1, the time-averaged values of S[nj] and F [n j] for the data at ten
time instants are plotted, together with the error bars indicating plus-minus one standard deviation
of S[n j] or F [n j] calculated from the data at ten time instants. In Fig. 3(a), we can see that the
skewness values S[n j] for three Reλ well collapse in the range 0.02 � k jη � 0.2, which suggests
the Reλ dependence of S[n j] is negligible in this k jη range. In contrast, Fig. 3(b) shows that F [n j]
increases weakly with Reλ for fixed k jη in the same range. We note that the increase is small in the
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FIG. 2. Spatial distributions of total number density field n(x) (a, b) and scale contributions nj (x) at j = 2
(k2η = 2.4 × 10−2) (c, d), j = 4 (k4η = 9.7 × 10−2) (e, f), and j = 8 (k8η = 1.6) (g, h) in a x1-x2 cross section;
(a, c, e, g) St = 1.0, (b, d, f, h) St = 0.05 for Reλ = 204.

figure but sufficiently larger than the standard deviation shown by the error bar. It is conjectured that
the scale-dependent particle density field in this range becomes more intermittent with increasing
Reλ.

Note that the statistics of the particle-number density field for randomly distributed particles
are equivalent to those for fluid particles (St = 0). The number density of the fluid particles is
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FIG. 3. Reynolds number dependence of scale-dependent skewness S[nj] and flatness F [nj] for St = 1.0.
For St = 1.0, solid lines connect the symbols at the scales for which SNR � 10, and dotted lines are used
otherwise. The error bars indicate plus-minus one standard deviation obtained from particle position data at ten
time instants.

uniform due to the volume-preserving nature of the incompressible flow. Thus, void and cluster
regions are absent. For the case of randomly distributed particles, the skewness values vanish and
flatness values remain constant if the number of particles Np is sufficiently large. The deviation
of the skewness and flatness values for the randomly distributed particles in Fig. 3 is mainly due
to the finite numbers of particles Np. It is confirmed in Appendix B that, for the case of inertial
particles, the Np dependence due to the Poisson noise is negligibly small for S[nj] and F [n j] at
scales where SNR � 10. Thus, in Fig. 3, the skewness and flatness values for St = 1.0 are connected
by solid lines at scales where SNR � 10 and dotted lines are used otherwise. For Reλ = 204,
S[n j] and F [n j] are nearly independent of Np for k jη � 2. For the higher Reynolds number cases,
as illustrated by the dotted lines, the Np dependence of S[n j] and F [n j] is not quantitatively
negligible for k jη � 0.2. Thus, here we limit the discussion of the Reλ dependence only to the
range k jη � 0.2.

C. Stokes number dependence

The Stokes number dependence of F [n j] and S[n j] is assessed. Figure 4 shows the scale-
dependent flatness F [nj] for different Stokes numbers. Similar to Fig. 3, the values for inertial
particles are connected by solid lines at scales where SNR � 10 and dotted lines are used otherwise.
For the case of 0.5 � St � 2.0, F [n j] increases as the scale becomes smaller, showing that intermit-
tency of clustering is significant in small scales. For St = 5.0, F [nj] is smaller than that of St = 2.0
for k jη � 0.3; i.e., clusters are less intermittently distributed at small scales. This observation for
St = 5.0 is attributed to weak sensitivity of the particles to small eddies. The most interesting
point in this result is that, for St � 0.2, the flatness F [n j] at intermediate scales (0.02 � k jη � 0.4)
increases as the Stokes number decreases. One might think that this result is in contradiction to the
intuition that the inertial particle distribution becomes close to a random distribution as the Stokes
number decreases. However, we should note that this is not due to the lack of statistical samples
because the standard deviation, which represents the statistical error, is sufficiently small compared
with the difference of F [nj] from the random case. In addition, as discussed in Appendix B, both
the Ng dependence and Np dependence are negligibly small at these scales.

Bassenne et al. [53] also applied wavelet analysis to their DNS data for St = 0.1, 1 and 10 at
Reλ = 81. Note that they used a different forcing scheme and the definitions of the characteristic
scales slightly differ. They evaluated the flatness of the local wavelet energy spectra F [Ej,i], where
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FIG. 4. Scale-dependent flatness F [nj] at Reλ = 204 for (a) St � 0.2 and (b) St � 0.5. Solid lines connect
the symbols at the scales for which SNR � 10, and dotted lines are used otherwise. The error bars indicate
plus-minus one standard deviation obtained from particle position data at ten time instants.

Ej,i = (N3
g 2−3 j/	k j )

∑7
μ=1(̃nμ,γ )2, (i.e., eighth-order scale-dependent statistics) to quantify the

intermittency of particle clustering. Their statistics are not equivalent to F [nj] but the St dependence
in their results (Fig. 7 in Ref. [53]) is qualitatively similar to our results: i.e., in Ref. [53], the flatness
for St = 0.1 is larger than that for St = 1 at 0.02 � k jη � 0.1, whereas the flatness for St = 1 is
close to that for random particles in the same wave-number range. Since Fig. 4(a) contains F [n j]
for smaller St, we can conclude that for 0.01 � St � 0.2 the intermittency of particle clustering at
the intermediate scales increases when decreasing St.

Figure 5 shows the scale-dependent skewness S[nj] for different Stokes numbers. For the cases
of 0.5 � St � 2.0, S[n j] increases as the scale becomes smaller, and, for St = 5.0, the increase
with k jη is weaker. For St � 0.2, the skewness S[n j] shows negative values at intermediate scales
(0.02 � k jη � 0.4). For these intermediate scales, we observe that for St � 0.2 the skewness locally
has a concave shape, corresponding in the flatness to a locally convex shape. The local minima of
skewness values and the local maxima of the flatness occur at similar scales. Physical insights of
the negative skewness are given in Sec. IV D.

FIG. 5. Scale-dependent skewness S[nj] at Reλ = 204 for (a) St � 0.2 and (b) St � 0.5. Solid lines connect
the symbols at the scales for which SNR � 10, and dotted lines are used otherwise. The error bars indicate
plus-minus one standard deviation obtained from particle position data at 10 time instants.

064304-12



SCALE-DEPENDENT STATISTICS OF INERTIAL …

FIG. 6. PDF of the normalized scale-dependent particle number density nj/σ [nj] for (a) St = 1.0 and (b)
St = 0.05 at Reλ = 204. Solid lines are used for the scales for which SNR � 10, and dashed lines for the scales
for which SNR < 10. The dotted lines correspond to the Gaussian distribution N (0, 1).

The St dependence of S[n j] and F [n j] in the limit of St → 0 would be of interest to the readers.
It is conjectured that when we neglect the effect of Poisson noise, the scale contribution of the
number density n j becomes zero as St decreases to zero. Thus, we expect that the second-, third-,
and fourth-order moments (i.e., M2[n j], M3[n j], and M4[n j]) also become zero for St → 0. This
means that the S[nj] and F [n j] values in the limit of St → 0 can be indefinite due to the definition
in Eqs. (15) and (16). This suggests that the increase of the absolute values of S[nj] and F [n j] can be
observed when St decreases. When we consider a finite number of particles, the variance of nj due
to the inertial effect would become smaller than the variance due to the Poisson noise for sufficiently
small St because M2,random[n j] does not depend on St. When the variance of n j is smaller than the
variance due to the Poisson noise, the S[nj] and F [n j] values would become close to the values
for randomly distributed particles. This trend can be observed in Figs. 4(a) and 5(a) for large wave
numbers where SNR < 10.

D. Cluster-pronounced and void-pronounced structures

To give a physical interpretation to the St dependence of the skewness and flatness, the PDFs of
n j (x) normalized by the standard deviation σ [n j] for St = 1.0 and St = 0.05 are shown in Fig. 6.
For St = 1.0, skewness S[n j] is positive for k jη � 0.05 ( j = 4, · · · , 9) as shown in Fig. 5(a). The
PDFs in Fig. 6(a) have heavier tails on the positive side for each j ( j = 4, · · · , 9). In contrast, for
St = 0.05, the PDFs in Fig. 6(b) have heavier tails on the negative side for each j ( j = 2, · · · , 6),
where S[nj] is negative (i.e., 0.02 � k jη � 0.4) as shown in Fig. 5(a). These trends in the PDFs
imply that nj (x) has higher probability of large positive values when S[nj] > 0, while n j (x) has
higher probability of large negative values when S[nj] < 0. Thus, the spatial distribution of nj (x)
is expected to behave like in the schematic figures shown in Fig. 7, and S[n j] > 0 and S[n j] < 0
would suggest cluster-pronounced and void-pronounced structures, respectively. To clarify whether
negative skewness is a sign of void-pronounced structures, we verify the relationship between the
large negative values of nj (x) and void regions. Figures 8(a) and 8(b), respectively, show magnified
views of Figs. 2(b) and 2(f), which are the total number density n(x) and the scale contribution for
j = 4, corresponding to k4η = 9.7 × 10−2. Note that the scale index j = 4 corresponds to the scale
at which the skewness value is minimum at this Stokes number, St = 0.05. Figure 8 shows that
the location of large negative values in nj (x) corresponds to void regions in n(x). We can therefore
conclude that for St � 0.2, negative skewness values are indeed indicators for void-pronounced
structures.
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FIG. 7. Schematic figures of (a) cluster- and (b) void-pronounced structures for nj .

For 0.01 � St � 0.2, the scales of local minima of the negative skewness in Fig. 5(a) almost
correspond to the scales of local maxima of the flatness in Fig. 4(a). This suggests that the flatness at
intermediate scales for 0.01 � St � 0.2 is attributed to the intermittent distribution of void regions.
It should also be noted that Figs. 5(a) and 4(a) show negative S[n j] and positive F [n j] for St � 0.1
at the scale k jη ≈ 0.2, which corresponds to the peak location of the energy spectra E [nj]. Thus,
the intermittent void distributions play an important role for inertial particle clustering for 0.01 �
St � 0.1 .

The physical mechanism of the intermittent void distributions can be explained by the idea
of the local Stokes number [20,62], which was introduced to discuss the effect of intermittency
of turbulence on particle collision. Dallas and Vassilicos [62] defined the local Stokes number in
two-dimensional turbulence as St∗ ≡ τp

√
2si js ji, where si j is the strain-rate tensor, and Onishi and

Vassilicos [20] applied that to 3D turbulence. The above local Stokes number was defined to discuss
particle collision in cluster regions. To discuss void formation, we define the local Stokes number
here using the local enstrophy � = |ω|2/2 as St∗ ≡ τp

√
2�, where ω ≡ ∇ × u. Particles with the

relaxation time τp are sensitive to a vortex with timescale of τ f ∼ 1/
√

2� when τp is comparable to
τ f , i.e., St∗ ∼ 1. In other words, particles are hardly affected by the vortex when St∗  1 or St∗ � 1.
For small Stokes number particles, most vortices have τ f much larger than τp but strong vortices
have τ f comparable to τp. Such strong vortices are distributed intermittently due to the intermittent
nature of turbulence. Thus, the void regions are generated only by these strong vortices and are

FIG. 8. Magnified spatial distributions of (a) total number density n(x) and (b) scale contributions nj (x) at
j = 4 (k4η = 9.7 × 10−2) for St = 0.05 in the same x1-x2 cross section as Fig. 2.
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likewise distributed intermittently. As the Stokes number decreases, the number of vortices that
satisfy St∗ ∼ 1 decreases and that results in the increase of the absolute values of S[nj] and F [n j].
Sakurai and Ishihara [63] reported that the width of low-density regions in conditional averaged
number density fields in large enstrophy regions is approximately 10η for St = 0.1, and this scale is
approximately the same as the diameter of vortex tubes. This scale agrees with the scale of negative
S[n j] values for St � 0.05. They also showed that the width of low-density regions increases as
St increases, but it remains smaller than 20η for St � 1. This fact suggests that the increase of
S[n j] at k jη � 0.1 for 0.1 � St � 1.0 is not due to the increase of the void size but rather due to
the increase of the prominence of small-scale clusters. That is, as St increases (St � 1.0), the void
size increases and clusters are confined in a lower-dimensional manifold in space, forming fractal
structures thinner than η. Since clusters compensate for the mass loss in the void regions, the clusters
become more pronounced than void regions.

Negative skewness values can also be observed in Fig. 3: For Reλ � 328, S[n j] shows negative
values at large scales k jη � 0.02. Note that the absolute values of S[nj] in 0.003 � k jη � 0.01
for Reλ = 531 are larger than the error bars. It is conjectured that even for St ∼ 1, void regions
are pronounced at large scales, while clusters are pronounced at small scales. This result could be
connected to “cloud voids” reported by Karpińska et al. [64]. They observed many void regions
with the diameter of up to 12 cm during mountain observations and explained that the phenomenon
is caused by the inertial motion of cloud particles.

V. CONCLUSION

We have studied scale-dependent statistics of the particle distribution to get insight into the
nonuniform and intermittent distribution of inertial particles, i.e., clusters and voids, in isotropic
turbulence at high Reynolds number. To this end, orthogonal wavelet analyses have been applied to
particle data obtained by performing 3D DNS of particle-laden homogeneous isotropic turbulence
for 204 � Reλ � 531, using up to 109 particles for 0.01 � St � 5.0. The number density fields
n(x, t ) are obtained by the histogram method using equidistant bins and are then decomposed
into scale-dependent contributions nj (x, t ) at scale 2− j using orthogonal wavelet filtering. Scale-
dependent skewness and flatness values have been investigated and the influence of the Reynolds
and Stokes number has been assessed. We have also evaluated the wavelet energy spectra E [nj] for
inertial particles, in which the influence of the Poisson noise is removed. We defined the SNR as the
ratio of E [nj] for inertial particles to that for the Poisson noise and discussed the scale-dependent
skewness and flatness values at scales where SNR is larger than 10. The following conclusions can
be drawn.

We observed that the scale-dependent skewness and flatness values, S[nj] and F [n j], are sig-
nificantly influenced by the Stokes number St. For 0.5 � St � 2.0, both the skewness and flatness
values become larger, when the scale decreases. This suggests intermittent cluster distribution at
small scales. The intermittency is reflected by the increasing flatness values, while the cluster
distribution can be explained by the increasing skewness values.

We also found that for small Stokes numbers, 0.01 � St � 0.2, the skewness S[n j] exhibits
negative values at intermediate scales, i.e., for scales larger than the Kolmogorov scale and smaller
than the integral scale of the flow, and the flatness F [nj] at the intermediate scales increases as St
decreases. We have shown that negative values of S[n j] imply higher probability of large negative
values of n j . Our visualizations show that these large negative values of nj can be attributed to void
regions of the particle-number density. Hence we can conclude that void regions at the intermediate
scales are pronounced and intermittently distributed for 0.01 � St � 0.2. The range of negative
S[n j] and positive F [n j] for 0.01 � St � 0.1 includes the scale of the peak of the energy spectra
E [n j]. Thus, we conjecture that intermittent void distributions play an important role for inertial
particle clustering for 0.01 � St � 0.1 for Reλ = 204. Our results for higher Reynolds numbers,
i.e., for Reλ = 328 and 531, confirm that negative values of the skewness S[n j] are likewise observed
at large scales for St = 1.0. This suggests that even for St ∼ 1, void regions are pronounced at large
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scales, while clusters are pronounced at small scales. We also found that for St = 1.0, the flatness
F [n j] increases weakly as Reλ increases at scales larger than the Kolmogorov scale, while the Reλ

dependence of the skewness S[n j] is negligibly small. These results suggest that the scale-dependent
particle density field in these scales becomes more intermittent with increasing Reλ.

The dynamics of scale-dependent cluster and void formation at scales larger than the Kolmogorov
scale is still an open issue and its clarification is of importance for modeling inertial particle
clustering in high Reynolds number turbulence. The present results could contribute to improve
the empirical model for the Fourier spectrum [3,4] and the analytical estimates [31,36] of multiscale
inertial clustering, which are based on the assumption of Gaussianity. The divergence of the particle
velocity also plays a key role, as recently shown in Ref. [65]. Analyzing the dynamics of the
scale-dependent divergence is an interesting perspective for future work.
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APPENDIX A: ANALYTICAL ESTIMATES FOR POISSON NOISE

1. Second-order moment

To obtain an analytical estimate of the second-order scale-dependent moment for Poisson noise,
we first explain the contribution of the Poisson noise in the correlation function of the particle
distribution. To this end, we consider the spatial correlation function for nδ (x, t ) of Eq. (6),
defined as

�δ (r) ≡ 〈nδ (x + r)nδ (x)〉

=
〈
(2π )−3

∫
T 3

nδ (x + r)nδ (x)dx
〉
. (A1)

As mentioned in Ref. [4], the spatial correlation function �δ (r) is discontinuous at r = 0 because
the particle distribution is composed of spatially discrete points. The discontinuity is explained by
decomposing the correlation as follows: Substituting Eq. (6) into Eq. (A1) results in

�δ (r) = 1

n2
0

〈 Np∑
m=1

δ(x + r − xp,m)δ(x − xp,m)

〉
+ 1

n2
0

〈 Np∑
m=1

δ(x + r − xp,m)
Np∑

m′=1,m′ �=m

δ(x − xp,m′ )

〉
.

(A2)

The first term represents the correlation of identical particle positions and the second term represents
the correlation between different particles. When we consider the discrete particle distribution as
a stochastic realization in a certain probability density field, the second term corresponds to the
correlation of the probability density field. Thus, the second term does not depend on the number of
particles. On the other hand, the first term appears only for the case of discrete particle distributions.
For the case of randomly distributed particles with uniform probability, the second term becomes
a constant, 〈n〉2. Therefore, the first term can be considered as the Poisson noise contribution. By
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applying spatial averaging (integration with respect to x) to the first term, we obtain

�δ (r) = 1

n0
δ(r) + �(r), (A3)

where �(r) is the spatial correlation function of the probability density field. Similar arguments to
Eq. (A3) are also given in Refs. [4,61].

When we apply the wavelet transform, the number-density field data on equidistant grid points
are obtained based on the histogram method as described by Eq. (7). To account for the contribution
of the histogram method, we consider the spatial correlation function for n(x), defined as �K (r) ≡
〈n(x + r)n(x)〉. By using the continuous definition of n(x), i.e., n(x) = ∫

T 3 Kh(x − x′)nδ (x′)dx′,
�K (r) is given by

�K (r) = 1

n0
K2

h (r) +
∫
T 3

K2
h (r − r′)�(r′)dr′, (A4)

where K2
h (x) is defined as K2

h (x) = ∫
T 3 Kh(x − x′)Kh(x′)dx′ and where Kh(x) is a kernel function,

corresponding in the current case of the histogram to a piecewise constant function (see also
Sec. II C).

Using the spatial correlation function �K (r), we evaluate the contribution of the Poisson noise
for the second-order moment M2[n j]. Due to the orthogonality of wavelets, M2[n j] is given by

M2[n j] =
7∑

μ=1

2 j−1∑
i1,i2,i3=0

(̃nμ,γ )2 . (A5)

Inserting the L2 inner product of ñμ,γ = 〈n, ψμ,γ 〉, we obtain

M2[n j] = (2π )−6
7∑

μ=1

2 j−1∑
i1,i2,i3=0

∫
T 3

∫
T 3

n(x + r)n(x)ψμ,γ (x + r)ψμ,γ (x)dr dx . (A6)

In Eq. (A6),
∑2 j−1

i1,i2,i3=0 ψμ,γ (x + r)ψμ,γ (x) is for fixed r a 2π/2 j periodic oscillating function for x
over the space of T 3, and it is statistically uncorrelated with n(x + r)n(x). Thus, when the sample
number 23 j is sufficiently large, M2[n j] is approximately given by

M2[n j] ≈ (2π )−3 23 j
7∑

μ=1

∫
T 3

�K (r)�2
μ, j (r)dr, (A7)

where �2
μ, j (r) is the spatial correlation function of the wavelet and defined as �2

μ, j (r) ≡
(2π )−3

∫
T 3 ψμ,γ (x + r)ψμ,γ (x)dx. Note that �2

μ, j (r) is independent of the translation of wavelets.
Substitution of Eq. (A4) into Eq. (A7) yields

M2[n j] = 23 j

Np

7∑
μ=1

∫
T 3

K2
h (r)�2

μ, j (r)dr + (2π )−3 23 j
7∑

μ=1

∫
T 3

∫
T 3

K2
h (r − r′)�(r′)dr′�2

μ, j (r)dr,

(A8)

where the first term is the contribution of the Poisson noise and the second term is the statistics
of the probability density field. To estimate the contribution of the Poisson noise accurately,
we consider the discrete form of the integral

∫
T 3 K2

h (r)�2
μ, j (r)dr, using the trapezoidal rule∑Ng−1

i1,i2,i3=0 h3K2
h (ri1,i2,i3 )�2

μ, j (ri1,i2,i3 ) with h = 2π/Ng. Since K2
h (xi1,i2,i3 ) is in the current case zero

except at the point i1 = i2 = i3 = 0, it yields
∫
T 3 K2

h (r)�2
μ, j (r)dr = �2

μ, j (0) = 〈ψμ,γ , ψμ,γ〉 = 1.
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In the consequence, we obtain

M2[n j] = 7 · 23 j

Np
+ (2π )−3 23 j

7∑
μ=1

∫
T 3

∫
T 3

K2
h (r − r′)�(r′)dr′�2

μ, j (r)dr. (A9)

For the case of randomly distributed particles with uniform probability, the second term vanishes.
Thus, the effect of the Poisson noise on M2[n j] is given by Eq. (13) and the wavelet energy spectrum
after removing the Poisson noise contribution is given by Eq. (14).

Removing the influence of Poisson noise on second-order statistics of the particle distribution
has been proposed previously. Similar computations have been done in Refs. [3,61] for the Fourier
spectrum and in Ref. [66] to correct the variance of number-density fields obtained by the box-
counting method.

2. Higher-order moments

For higher-order moments, the Poisson noise contribution cannot be removed by subtracting the
moments for the randomly distributed particles. For example, in the case of the third-order moment,
the third-order spatial correlation function for nδ (x) is defined as

�δ,3(r1, r2) ≡ 〈nδ (x)nδ (x + r1)nδ (x + r2)〉

= (2π )−3

〈∫
T 3

nδ (x)nδ (x + r1)nδ (x + r2)dx
〉
. (A10)

Similar to �δ (r), �δ,3(r1, r2) is also discontinuous due to the spatial correlation of identical
particles. For the case of randomly distributed particles with uniform probability, the discontinuity
of �δ,3(r1, r2) at r1 = r2 = 0 (i.e., three particles are identical) gives the finite values of M3[n j].
However, when the probability density field is not uniform, the discontinuity at r1 = 0 or r2 = 0 or
r1 = r2 (i.e., two of three particles are identical) also results in the particle number dependence of
M3[n j]. Thus, M3[n j] without the Poisson noise contribution cannot be obtained only by subtracting
M3[n j] for randomly distributed particles. Similar arguments hold for higher order moments.

APPENDIX B: GRID NUMBER AND PARTICLE NUMBER DEPENDENCE

The influence of the numerical parameters, i.e., the number of grid points Ng and the number of
particles Np in simulations, can be crucial when performing statistical analyses, especially for higher
order statistics. We check the influence of these parameters on the energy spectra E [nj], scale-
dependent skewness S[nj], and flatness F [n j] of particle-number density fields n(x) in the DNS for
St = 1.0 and Reλ = 204. In addition, we compare them with randomly distributed particles. Figure 9
quantifies the impact of Ng and Np on the scale-dependent statistics, E [n j], S[n j], and F [n j], plotted
as a function of k jη. Figure 9(a) illustrates that doubling Ng from 512 to 1024 has a small influence
on the energy spectrum of inertial particles at small scales due to the difference of the filter size
for the histogram method in Eq. (7), while the doubling does not impact the spectrum for randomly
distributed particles. Changing the number of particles Np, while keeping the grid size fixed (Ng =
1024), shows large impact for randomly distributed particles in Fig. 9(b). We have confirmed that
the spectra for randomly distributed particles are consistent with our analytical estimate given by
M2,random[n j]/	k j . Figure 9(b) further shows that the Np dependence of the spectra is negligibly
small, meaning that the Poisson noise is appropriately removed by Eq. (14).

Figure 9(c) shows that the number of grid points Ng has small impact on S[n j] only at the smallest
scale of each Ng. The influence of Ng becomes even weaker for F [n j], as shown in Fig. 9(e). For
the random cases, we observe that for each Ng, S[n j] increases only weakly with decreasing scale
and F [n j] even remains almost constant. Thus, the influence of Ng on S[n j] and F [n j] is negligibly
small (less than 3%) except at the smallest scale. However, as observed in Figs. 9(d) and 9(f),
the number of particles Np has some impact on both S[n j] and F [n j]. For inertial particles, we
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FIG. 9. Wavelet spectra E [nj] (a, b), scale-dependent skewness S[nj] (c, d), and scale-dependent flatness
F [nj] (e, f) at Reλ = 204 and St = 1.0 for (a, c, e) Ng = 512 and 1024 at fixed Np(= 1.07 × 109) and for (b, d,
f) Np = 1.68 × 107, 1.34 × 108 and 1.07 × 109 at fixed Ng(=1024). Dotted lines for S[nj] and F [nj] indicate
SNR < 10.

find that the growth of S[n j] and F [n j] with k jη becomes more pronounced when increasing the
number of particles from Np = 1.68 × 107 to Np = 1.07 × 109. For the random case, this trend
is inverted: Increasing Np yields more stable statistical estimators and thus the growth of S[n j]
and F [nj] with k jη is reduced. As for randomly distributed particles, void and cluster regions are
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absent, the skewness values should vanish, and the flatness values should remain constant with
scale. In other words, deviation of the skewness and flatness values for the random case is caused
by statistical sampling, i.e., the finite numbers of particles Np. The above observations illustrate the
importance of using a sufficiently large number of particles to get statistically converged results
and to observe skewness and flatness values independent of Np. The increasing values of S[n j]
and F [n j] with k jη, i.e., for decreasing scale, in the random cases can thus be used to determine
whether Np is sufficiently large or not. In this paper, we introduced the SNR defined by SNR =
E [n j]	k j/M2,random[n j]. For inertial particles S[n j] and F [n j] values at scales where SNR � 10 are
connected by solid lines, while dotted lies are used for SNR < 10, cf. Fig. 9. When we consider
only the values for SNR � 10, the error due to the Np dependence is less than 2% for S[nj] and less
than 4% for F [n j], which means that the Np dependence is negligibly small.
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