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Abstract. Adaptive Galerkin numerical schemes integrate time-dependent partial differential equa-
tions with a finite number of basis functions, and a subset of them is selected at each
time step. This subset changes over time discontinuously according to the evolution of the
solution; therefore the corresponding projection operator is time-dependent and nondiffer-
entiable, and we propose using an integral formulation in time. We analyze the existence
and uniqueness of this weak form of adaptive Galerkin schemes and prove that nonsmooth
projection operators can introduce energy dissipation, which is a crucial result for adaptive
Galerkin schemes. To illustrate this, we study an adaptive Galerkin wavelet scheme which
computes the time evolution of the inviscid Burgers equation in one dimension and of the
incompressible Euler equations in two and three dimensions with a pseudospectral scheme,
together with coherent vorticity simulation which uses wavelet denoising. With the help
of the continuous wavelet representation we analyze the time evolution of the solution
of the 1D inviscid Burgers equation: We first observe that numerical resonances appear
when energy reaches the smallest resolved scale, then they spread in both space and scale
until they reach energy equipartition between all basis functions, as thermal noise does.
Finally we show how adaptive wavelet schemes denoise and regularize the solution of the
Galerkin truncated inviscid equations, and for the inviscid Burgers case wavelet denoising
even yields convergence towards the exact dissipative solution, also called entropy solution.
These results motivate in particular adaptive wavelet Galerkin schemes for nonlinear hy-
perbolic conservation laws. This SIGEST article is a revised and extended version of the
article [R. M. Pereira, N. Nguyen van yen, K. Schneider, and M. Farge, Multiscale Model.
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I. Introduction. Since most nonlinear partial differential equations (PDEs) can-
not be solved analytically, it is often necessary to use numerical experimentation to
explore their approximate solutions with numerical techniques and computers. This
can be illustrated in a remark by Bertrand Russell, from 1931: “Although this may
seem a paradox, all exact science is dominated by the idea of approximation” [21].
The intrinsic limitations of computers impose that numerical methods for PDEs only
solve the truncated system with a finite number of modes, which is designed to closely
approach the exact solution. In some cases, however, the truncation has drastic ef-
fects that completely destroy the desired approximation. A first historical example
for which this happened was probably the symmetric finite-difference scheme designed
by von Neumann in the 1940s for nonlinear conservation laws. As recalled in [39], it
was indeed shown in the 1980s that when applying von Neumann’s scheme, even to
the simplest case of the one-dimensional (1D) inviscid Burgers equation, convergence
to the correct solution is lost as soon as the first shock appears. Other schemes were
then specifically designed to dissipate energy at the location of shocks (see, e.g., [71]),
which do not suffer from this limitation and yield the desired solution.
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Motivated by achieving high accuracy at reduced computational cost compared
to uniform grid methods, numerous adaptive discretization schemes to solve evolu-
tionary PDEs have been developed for decades; see, e.g., [6]. Applied problems, for
instance, studying fluid and plasma turbulence, typically involve a multitude of active
spatial and temporal scales. To solve them, numerically adaptive schemes concentrate
the computational effort at locations and time instants where it is necessary to ensure
a given numerical accuracy, whereas elsewhere efforts can be significantly reduced.
Among them, multiresolution and wavelet-based methods offer an attractive possi-
bility to introduce locally refined grids, which dynamically track the evolution of the
solution in space and scale. Examples for the 1D Burgers equation can be found in
[47], reaction-diffusion equations in [32, 34], Stokes equations in [12, 13], and Navier—
Stokes equations in [33, 35]. Automatic error control of the adaptive discretization
with respect to a uniform grid solution is hereby an advantageous feature [10]. For a
review of adaptive wavelet methods in the context of computational fluid dynamics,
we refer the reader to [67].

In many applications, in particular in computational fluid dynamics, Galerkin
truncated discretizations of PDEs with a finite number of modes are the methods of
choice. Spectral methods [60, 7, 63] are a prominent example, and Fourier—Galerkin
schemes are widely used for direct numerical simulation of turbulence [40] due to
their high accuracy. Today state-of-the-art direct numerical simulations of the in-
compressible three-dimensional (3D) Navier—Stokes equations currently use up to 6
trillion grid points [74]. For efficiency reasons the convolution product in spectral
space, due to the nonlinear quadratic term which is typically encountered in hydro-
dynamic equations, is evaluated in physical space and aliasing errors are completely
removed. This implementation, called pseudospectral formulation with full dealias-
ing using the 2/3 rule, is equivalent to a Fourier—Galerkin scheme up to round-off
errors of the computer [60, 7, 63]. Thus the discretization conserves the L?-norm of
the solution. A classical test to check the stability of pseudospectral codes, e.g., for
viscous Burgers or Navier—Stokes equations, is to perform simulations with zero vis-
cosity. This allows one to verify if the L?-norm of the solution, i.e., typically energy,
is conserved and given that time steps are sufficiently small, the truncated Galerkin
schemes are stable. However, after some time the solution of the Galerkin truncated
inviscid equations, e.g., inviscid Burgers or incompressible Euler, develops a peculiar
behavior when localized oscillations appear due to numerical resonances and spread
in space and wavenumber as a white noise, a behavior leading to energy equipartition
between all Fourier coefficients known as thermalization. This energy equipartition
had already been predicted in 1952 by Lee [45] for spectral approximations of 3D
incompressible Euler by applying Liouville’s theorem from statistical mechanics.

The effect of truncating Fourier—Galerkin schemes was studied in [48] for the 1D
Burgers equation and in [8] for the 3D incompressible Euler equation. Detailed numer-
ical studies were carried out for the 1D Burgers equation [65], where high-wavenumber
oscillations were observed and interpreted as first manifestations of thermalization
[45]. We also refer the reader to the discussion on the statistical equilibrium in two-
dimensional (2D) turbulence using the truncated Euler equations by Kraichnan [44].
In [50] it was then proposed that those oscillations may be eliminated by canceling a
few Fourier modes in a narrow band next to the cut-off (Nyquist) wavenumber. In
[64] early time numerical resonances and singularities in the inviscid Burgers equation
were analyzed. In [18] it was shown for 1D Burgers that the process of thermalization
first takes place in well-defined subdomains, before filling the whole space. In [51] fur-
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ther studies for the 3D incompressible Euler equation were performed and the seeds
of thermalization were modeled as an effective 1D problem. In [43] a study of the
3D axisymmetric Galerkin truncated incompressible Euler equations was performed
and potentially singular solutions were examined showing likewise the presence of
oscillatory structures.

Motivated by [65, 61], a detailed numerical analysis of Fourier—Galerkin methods
for nonlinear evolutionary PDEs was performed in [4], proving spectral convergence
for smooth solutions of the inviscid Burgers equation and the incompressible Eu-
ler equations. However, when the solution lacks sufficient smoothness, then both
the spectral and pseudospectral Fourier methods with 2/3 dealiasing exhibit nonlin-
ear instabilities which generate high-wavenumber oscillations. In particular it was
shown that after the shock formation in the inviscid Burgers equation, the total vari-
ation of bounded (pseudo)spectral Fourier solutions must increase with the number
of modes. The L?-energy conservation of the spectral solution is reflected through
high-wavenumber oscillations, which is in contrast with energy dissipating Onsager
solutions [56]. Omsager conjectured the existence of dissipative solutions with any
Holder exponent smaller than 1/3 [11, 15].

These issues are closely related to what is known in the turbulence literature as the
dissipative anomaly. This refers to the fact that time reversal symmetry is not restored
in the limit where the symmetry breaking parameter, i.e., viscosity, goes to zero. To
reproduce the expected dissipative behavior in truncated Galerkin approximations,
these numerical resonances must be removed. For this purpose different numerical
regularization techniques have been proposed, which are commonly used in numerical
methods for solving hyperbolic conservation laws. If the solution is not unique, the
regularized numerical scheme selects one weak solution, which should correspond to
the physically relevant one, e.g., the entropy solution of the inviscid Burgers equation,
which can be computed exactly using the Legendre transform [73]. These approaches
include upwind techniques [58], total variation diminishing schemes [38], shock limiters
[71], spectral vanishing viscosity [72, 36], inviscid regularization schemes [3, 41], and
classical viscosity and hyperviscosity [5]. In the case of hyperviscosity, it has been
shown [30, 2] that for sufficiently high powers of the Laplacian in the dissipative term,
the unregularized conservative dynamics is recovered, while for moderate powers a
bottleneck effect occurs in the energy spectrum [31], i.e., a bump in the spectrum
between the inertial and dissipation ranges. As mentioned above, a method based
on the suppression of a narrow band of Fourier modes at discrete time intervals was
recently proposed in [50], and the resulting solution exhibits numerical convergence
to the entropy solution as the spatial resolution increases. This method, which has
almost no additional computational cost, can be viewed as a periodic filtering in
Fourier space, where the Galerkin projection space changes discontinuously at regular
time intervals. These discontinuous changes in the projection operators are precisely
the type of situation we intended to formalize in [62] and in the present paper, but
on more general grounds, taking into account other possible projection bases.

In the context of adaptive wavelet schemes, numerical experiments with the 1D
inviscid Burgers equation showed that wavelet filtering of the Fourier—Galerkin trun-
cated solution in each time step, which corresponds to denoising and which removes
the numerical resonances, yields the solution to the viscous Burgers equation [52, 61].
For the 2D incompressible Euler equations [53, 61] different wavelet techniques for reg-
ularizing truncated Fourier—Galerkin solutions were studied using either real-valued
or complex-valued wavelets, and the results were compared with viscous and hyper-
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viscous regularization methods. The results show that nonlinear wavelet filtering with
complex-valued wavelets preserves the flow dynamics and suggests L? convergence to
the reference solution. The wavelet representation offers at the same time a nonneg-
ligible compression rate of about 3 for fully developed 2D turbulence [27, 68].

Simulations of the 3D wavelet-filtered Navier-Stokes equations [55] showed that
statistical predictability of isotropic turbulence can be preserved with a reduced num-
ber of degrees of freedom. This approach, called coherent vorticity simulation (CVS)
[27, 25], is a multiscale method to compute incompressible turbulent flows using
wavelet-based denoising of the vorticity field at each time step. The coherent vor-
ticity, corresponding to the few wavelet coefficients whose modulus is larger than a
threshold, represents the organized and energetic flow part, while the remaining inco-
herent vorticity induces a velocity field which is similar to a Gaussian white noise and
corresponds to thermalization [24]. Applications to different canonical turbulent flows
can be found in [24, 28, 66, 54], including MHD and plasma turbulence [26]. Applying
wavelet-based denoising to the 3D Galerkin truncated incompressible Euler equations
confirmed that this adaptive regularization models turbulent dissipation and thus al-
lows one to compute turbulent flows which exhibit intermittent nonlinear dynamics
and a k~%/3 Kolmogorov energy spectrum [23]. A significant compression rate of the
wavelet coefficients of vorticity is likewise observed which reduces the number of active
degrees of freedom to be computed.

The aim of the current work is to provide a mathematical framework to ana-
lyze the properties of evolutionary PDEs discretized with adaptive Galerkin schemes.
Galerkin schemes are particularly appealing due to their optimality properties, regard-
ing best approximation in the energy norm, conservation of energy, and the ease of
numerical analysis using Hilbert space techniques. Introducing space adaptivity, such
as a wavelet filtering in each time step, implies that the projection operator changes
over time as only a subset of basis functions is used. Hence, the projection operator
is nondifferentiable in time and we propose the use of an integral formulation. The
projected equations are then analyzed with respect to existence and uniqueness of the
solution. It is proven that nonsmooth projection operators introduce dissipation, a
result which is crucial for adaptive discretizations of nonlinear PDEs. Existence and
uniqueness of the solution of the projected equations is likewise shown. Tools from
countable systems of ordinary differential equations (ODEs) and functional analysis in
Banach spaces are used. For related background we refer the reader to the textbooks
[16, 69] and [29].

The outline of the article is as follows. First the mathematical framework of adap-
tive Galerkin schemes is defined in section 2, and the existence and uniqueness of the
projected equations is analyzed, providing an explanation to the energy dissipation.
Space and time discretizations of the Burgers and incompressible Euler equations are
described in section 3, presenting likewise wavelet denoising and the coherent vorticity
simulation method. Numerical examples in section 4 in which a single coeflicient is
discarded illustrate the dissipation mechanism. Section 5 analyzes in both space and
scale how numerical resonances appear and develop in the solution of the Fourier-
truncated 1D inviscid Burgers equation by using complex-valued wavelets, which are
continuously dilated and translated. It is then shown how wavelet denoising removes
those numerical resonances in the 1D inviscid Burgers equation and the 2D and 3D
incompressible Euler equations. A conclusion is drawn in section 6.

2. Adaptive Galerkin Schemes. Evolutionary PDEs can be discretized with
a Galerkin method in space by projecting the equation onto a sequence of finite-
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dimensional linear spaces, which approximate the solution in space when the dis-
cretization parameter, h, goes to zero. Using truncation to a finite number of modes,
the infinite-dimensional countable system of ODEs in time can be reduced. An im-
portant restriction of such methods is that the projection space typically does not
evolve in time and the number of modes is fixed. Here, we propose a formulation of
adaptive Galerkin discretizations where the projection operator and the number of
modes can change over time, and we show that, under suitable conditions, adaptation
can introduce dissipation.

2.1. Galerkin Projection. Let H be a Banach space, and consider the evolution
equation

(2.1) u' = f(u),

where u’ denotes the weak time derivative of u and f is defined and continuous from
some sub-Banach space D(f) C H into H. Equation (2.1) is completed by a suitable
initial condition u(0) = u(t = 0). To be more specific, we shall focus below on the
case of the 1D Burgers equation on the torus R/Z,

(2.2) Ot + u0,u = VOypu,
which corresponds to (2.1) with
(2.3) fw) = v0ppu — udu

and u = u(x,t).
The classical Galerkin discretization of (2.1) is defined as follows: for A > 0, let
Hj, be a fixed finite-dimensional subspace of D(f), such that

U H, =H,
h>0

where the adherence is taken in H, and let P, be the orthogonal projector on Hy.
Find wy, : [0,T] € Hj, such that

(2.4) uﬁl = Ppf(up) = Pr(vO0yzupn — uhﬁxuh).

Now for ¢ € [0,T], assume that P (t) is an orthogonal projector on some finite-
dimensional subspace Hp(t) of H. The dimension of Hy(t) is allowed to change in
time, but we assume that Hj(t) remains within a fixed finite-dimensional subspace
HY. Py, therefore takes its values in the set of orthogonal projectors HY — HJ, which
we denote by II9, with its natural smooth manifold structure as a closed subset of
all linear mappings HY — Hp. We want to find uy : [0,7] € Hp(t), which is an
approximation of u.

2.2. Time-Dependent Galerkin Schemes. Let us first assume that P, is a
smooth function of time. As in the case where P} is time independent, we apply
Py (t) to the differential equation to get

(2.5) Py (t)uy, (t) = P (t) f(un(t)),

but now, since P does not commute with the time derivative, this equation is not
sufficient to determine uj, (¢) entirely. We need another equation to fix the component
of uj,(t) which is in the orthogonal of Hy(t), i.e., in Hj-(t).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/23 to 147.94.135.172 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

ARE ADAPTIVE GALERKIN SCHEMES DISSIPATIVE!? 1115

To derive this equation, we start from the condition that u,(t) € Hy(t) for every
t, which is equivalent to

(2.6) P, (t)up(t) = up(t).
Differentiating this identity in time leads to

(2.7) Pr(t)un (8) + P (H)un = uj(8),
or equivalently

(2.8) (1 = Pu(t)) up,(t) = Pp(t)un(t),

which is precisely the equation we were looking for. By adding (2.5) and (2.8) together,
we obtain the definition of the adaptive Galerkin scheme:

(2.9) up(t) = Pu(t)f (un(t)) + Py (H)un(?).

By comparing this differential equation with (2.4), we observe the appearance of
a new term proportional to the time derivative of P,. This is the essential ingredient
which characterizes the adaptive Galerkin scheme. We now show the following.

LEMMA 2.1. Any solution of (2.9) such that up(0) € Hp(0) also satisfies up(t) €
Hy,(t) for all t, and moreover

1d
2 dt

Proof. By differentiating P, (t)? = P, (t) and Py,(t)> = Py(t), respectively, we
obtain the identities

(2.10) lun(@)I* = (un(t), f(un(t).

Ph(t)Ph(t)/ + Ph(t)lph(t) = Ph(t)/ and Ph(t)Ph(t)/Ph(t) =0,

which imply that

(2.11) < 10— Pu)u 0] =0,

and the first part follows. To prove the second part, take the inner product of the
equation with uy:

1d

(2.12) §a||uh(t)||2 = (un(t), f(un(t))) + (un(t), P, (t)un(t)),

where the last term can be rewritten as

(Pr(t)un(t), Py (t) Pu(t)un(t)) = (un(t), Pu(t) Py (t) Pn(t)un(t)) = 0,
which proves (2.10). O

2.3. Nonsmooth Time-Dependent Galerkin Schemes. The above computa-
tions are valid when P, is differentiable. This is a severe restriction preventing us
in particular from switching on and off dynamically some functions in the basis of
integration, which is the goal that we had set ourselves in the beginning, i.e., adap-
tive Galerkin schemes where basis functions are selected with respect to an adaption
criterion at discrete time steps. To proceed we therefore need to extend the definition
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of the scheme to nondifferentiable P,. For this we consider the integral formulation
of (2.9), namely,

(2.13) up (t) :uh(O)—i—/O Ph(T)f(uh(T))dT+/0 P/ (1)up(7)dr.

This equation can be rewritten using a Stieltjes integral with respect to Pj:

t t
1) w®=w0)+ [ PO+ [ AP
which we call the integral formulation of the adaptive Galerkin scheme.

This equation makes sense as soon as P}, has bounded variation (BV), which gives
it a much wider range of applicability than (2.9), allowing in particular discontinuities
in P,. To solve such an equation we need to resort to the theory of generalized ODEs,
which we now recall.

The rigorous setting for integral equations such as (2.14) involving Stieltjes inte-
grals is explained in detail in the book [69]. An alternative introduction can be found
in [59]. We summarize the main consequences of the theory for our problem in the
following.

THEOREM 2.2. Assume that Pn(t) : [0,T] — is of bounded variation and left-
continuous, that Py (0)up(0) = up(0) (i.e., un(0) € Hy(0)), and that f : HY — H is
locally Lipschitz. Then

(i) there exists T*, 0 <T* < T, such that the integral equation

215)  un(t) = un(0) + / Po(r) f (un (7)) dr + / AP, (r)un ()

has a unique BV, left-continuous solution uy, : [0, T*] — HY;
(i) this solution satisfies

(2.16) Vt € [0, T, Prn(t)un(t) = un(t);

(iii) wyp, s continuous at any point of continuity of Pr, and more generally for any
t:
(2.17) up(th) —up(t) = [Pu(th) — Pu(t)] un(t),

or equivalently
(2.18) up(t) = Pu(t)un(t);

(iv) the energy equation (2.10) for smooth Py is replaced in general by
1 2 2
(2.19) 5 (lun@I” — llun(0)[I%)
2

= [ ) stunear =3 3 ([0 =Pttt

{ilt: <t}

where (t;)ien are the points of discontinuity of Py,.

Proof. To prove part (i) of the theorem we first need to familiarize ourselves with
a few key concepts used by [69].
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DEFINITION 2.3. Let G = {x € R" | ||z|| < ¢} x [0,T], let h : [0,T] — R be
a nondecreasing, continuous from the left function, and let w : [0,4+00) — R be a
continuous, increasing function with w(0) = 0.

We will say that a function F' : G — R™ belongs to the class F(G, h,w) if and

only if

(2:20) [ F (2, t2) — F(z, t1)]| < [h(t2) — h(t1)]
and
(221)  |[[F(x,t2) — F(z,t1) — F(y,t2) + F(y, t1)|| < w(l|z — y|)IA(t2) — h(t1)]

for all (z,t2), (z,t1), (y,t2), (y,t1) € G.

The proof of the existence is based on the Schauder—Tichonov fixed point theorem,
using [69, p. 114, Theorem 4.2]. The uniqueness can be shown using [69, p. 122,
Theorem 4.8] proving the local uniqueness property in the future, i.e., for increasing
t.

Now let us turn to (ii). The idea is to approximate P, by a family of smooth
functions P, ., € > 0, and then to apply Lemma 2.1 to the corresponding solution
Un,z, giving

(222) [1 - Ph,s(t)] uh,s(t) =0

and then passing to the limit. For this we need up (t) — up(t), which means that
the solution depends continuously on P, (see Chapter 8, “Continuous Dependence on
Parameters” [69, p. 262]).

The continuity of wy, in part (iii) follows directly from the fact that P, is left-
continuous and BV.

The energy equation in part (iv) can be shown by integrating (2.12) in time and
replacing P (t)up(t) by [1 — P (t)] u},(t); cf. (2.8). |

In the case when the projector Py (t) depends on u(t), e.g., when using adaptive
wavelet thresholding, we have

(2.23a) up(t) = up(0) +/O Ph(T)f(uh(T))dT—l—/o AP, (T)un(T),
(2.23b) Py (t) = ®(upn(t)),

where @ is a given function depending on the projected solution wuy,.

CONJECTURE 1. Under certain conditions the system (2.23) has a unique solu-
tion.

Proof. A possible proof of this conjecture may proceed by iteration. Let PP be
the projector on the time-independent approximation space Hj, and let uf be the
corresponding solution of (2.23a). We then define recursively

(2.24) Pri(t) = @ (uj (1)
and u) ! as the solution of (2.23a) with P, = P/, d

3. Numerical Discretization Applied to the Inviscid Burgers and the Incom-
pressible Euler Equations. Supposing space and time separation, we first apply a
Galerkin discretization in space and obtain a finite number of ODEs. Then explicit
time discretization is applied for time integration. In addition we present wavelet-
based denoising and CVS which is founded on wavelet filtering.
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3.1. Space Discretization. For space discretization in the numerical results be-
low we use a classical Fourier pseudospectral scheme [60, 7, 63], where the spatial
derivatives are computed in spectral space, while the nonlinear term is evaluated in
physical space. For quadratic nonlinearities this avoids the computation of costly con-
volution products in spectral space. The drawback of this method are aliasing errors,
which can be removed at the price of increasing the number of computed modes. The
spectral Fourier projection of u € L*(T%) where T = R/(27Z) is given by

3.1 Pyu(z) = un(x) = Uy e | Uy, = 1 u(x) e *T dz.
d
k| <N/2 (2m)¢ Jza

Note that |k| < N/2 is understood in the sense —N/2 < k < N/2 and correspondingly
in higher dimensions for each component of k.
Applying the spectral discretization to the 1D inviscid Burgers equation (d = 1),

1
(3.2) Oru + 58wU2 =0 for z€T and t>0

with periodic boundary conditions and suitable initial condition u(x,t = 0) = wug(x),
yields the Galerkin scheme

1
(3.3) Oyun + 551” (Py(un)?) =0 for €T and t>0,

which corresponds to a nonlinear system of N coupled ODEs for uy(t) with |k| < N/2.
A pseudospectral evaluation of the nonlinear term is utilized, and the product in
physical space is fully dealiased. In other words, the Fourier modes retained in the
expansion of the solution are such that |k| < k¢, where k¢ is the desired cut-off wave
number, but the grid has N = 3k¢ points in each direction, versus N = 2k¢ for a
nondealiased, critically sampled product. This dealiasing makes the pseudospectral
scheme equivalent to a Fourier—Galerkin scheme up to round-off errors [60, 7, 63], and
is thus conservative.

For the 2D and 3D incompressible Euler equations (d = 2, 3) with periodic bound-
ary conditions,

(3.4) du+ (u-V)u = —Vp for £eT? and t>0,
V-u=0,

a similar spectral discretization can be applied. The pressure p is eliminated using the
Leray projection onto divergence-free vector fields. Eventually a nonlinear system of
coupled ODE:s is obtained for the Fourier coefficients of the velocity ug(t). Similarly
to the Burgers equation, the nonlinear term is evaluated with a pseudospectral method
and aliasing errors are completely removed.

3.2. Time Discretization. For time discretization of the resulting ODE systems
we use classical explicit Runge-Kutta schemes, of order 4 for the 1D Burgers equation
and the 3D Euler equations. For 2D Euler, third order Runge-Kutta with a low
storage formulation is used; see [57]. For details on the convergence and stability of
the above spectral schemes we refer the reader to [4]. Implementation features for the
1D Burgers equation and the 2D Euler equation can be found in [53] and [61]. For
details on the scheme for 3D Euler we refer the reader to [23].
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Fig. | Shannon wavelet (top) and Meyer wavelet (bottom) in physical space ¥(x) (left) and the
corresponding modulus of the Fourier transform |v (k)| (right).

3.3. Wavelet Denoising and Coherent Vorticity Simulation. The Fourier space
discretization described above could be replaced by any other Galerkin discretization,
using, for instance, finite elements, or wavelets as basis functions. The interest of
using wavelets is to introduce adaptive discretizations; see, e.g., [67, 20]. In this case
the projector P is changing over time and is nonsmooth, which means that dissipa-
tion is introduced by removing/adding basis functions during the time stepping. This
technique has been previously used for regularizing the Burgers equation and the
incompressible Euler equations without a rigorous mathematical justification [61].

In the following we describe the orthogonal wavelet representation and test the
influence of wavelet thresholding for denoising. Therewith we introduce the concept
of pseudoadaptive simulations. The Fourier—Galerkin discretization is still used to
solve the PDE, but in each time step the numerical solution uy is decomposed into a
periodic orthogonal wavelet series of L?(T%). For d = 1 we thus have the 1D truncated
wavelet series

J—129-1

(35)  Prun(z) =uy(x) =Tgo + Z Z ujiyi(x), Uy = /TUN(CUWﬁ(f)d%

=0 i=0

where Tgg is the mean value of the solution and the u;; are its wavelet coefficients. The
wavelet 1;;(z) = 27/2)(272 — i) quantifies fluctuations at scale 277 around position
/27 and N = 27 denotes the total number of grid points, corresponding to the finest
resolution. Figure 1 illustrates Shannon and Meyer wavelets which are not compactly
supported, together with the corresponding Fourier transforms which have compact
support. This implies that both are trigonometric polynomials and can be spanned by
a Fourier basis. For extension to higher dimensions using tensor product construction
of wavelets, we refer the reader to [14]. From a computational point of view the
additional cost of wavelet thresholding is negligible, as the fast wavelet transform has
only O(N) complexity, compared to O(N log N) for the fast Fourier transform used
in the pseudospectral schemes.
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Wavelet denoising is the basis of the coherent vorticity simulation (CVS) method
designed in 1999 to solve the Navier—Stokes equations [27, 25]. It introduces a sparse
representation of the solution by removing the weak wavelet coefficients corresponding
to Gaussian white noise. It is based on the idea that Donoho and Johnstone proposed
in 1994 for denoising signals corrupted with Gaussian white noise via wavelet shrinkage
[19]. Thresholding on the wavelet coefficients with a threshold depending on the
variance of the noise is performed at each time step. This yields a projection of the
numerical solution uy,

J—129-1

(3.6) Pjuy (z) = u! (x) = Tgo + Z Z pe (Uji) ¥ji(),

=0 i=0

where € is the threshold and p, is the (hard) thresholding operator defined as

_J =z for |z| > e,
(3.7) pe(x) = { 0 for |z| <e.

The thresholding error can be estimated (see, e.g., [10]), and we have
||Pyun () — Pjun(z)||2 < Ce.

Using pseudoadaptive simulations the CVS algorithm can be summarized as fol-
lows [61]:

(i) The Fourier coefficients of the solution @y, for |k| < N/2 are advanced in time
to t = t,41 and an inverse Fourier transform is applied on a grid of size N to
obtain uy.

(ii) A forward wavelet transform is performed to obtain Pyuy(z), according to
equation (3.5).

(iii) CVS filtering removes wavelet coefficients having magnitude below the thresh-
old e. The threshold value is determined iteratively [1] and initialized with
€0 = q+/||u|]2/2/N, where ¢ is a compression parameter. The iteration steps
are then obtained by €s41 = go[uj;] until €511 = €5, where u3; are the wavelet
coefficients below €, and o[] is the standard deviation of the set of these
coeflicients.

(iv) A safety zone is added in wavelet space to track the solution in space and
scale. The index set of retained wavelet coeflicients in step (iii) is denoted
by A, and for each retained wavelet coefficient indexed by (j,i) € A, neigh-
boring coefficients in position and scale (5 in the present case) are added, as
illustrated in Figure 2.

(v) An inverse wavelet transform is applied to the wavelet coefficients above the
final threshold and a Fourier transform is then performed to obtain the Fourier
coefficients of the filtered solution at time step t,,41.

The value of the compression parameter ¢ in the CVS algorithm (iii) controls the
number of discarded coefficients, and in previous studies [61] we found experimentally
the value ¢ = 5 for Kingslets (complex-valued wavelets) and ¢ = 8 for orthogonal real
wavelets.

Various choices of wavelet basis for regularizing the solution of the Galerkin trun-
cated inviscid equations have been tested, e.g., in [61], including several orthogonal
wavelet bases as well as the dual-tree complex wavelet basis introduced by Kings-
bury in 2001 [42], whose wavelets are called Kingslets (the code is available on
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Fig. 2 Safety zone in wavelet coefficient space around an active coefficient (j,i) in position i and
finer (j 4+ 1) and coarser scale (j — 1), where |i/2] is the floor function, which yields the
integer part of its argument.
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Fig. 3 Complex wavelet basis functions (Q-shift dual-tree complex-valued wavelet transform) for
levels 1 to 3. Basis functions for adjacent sampling points are shown dotted. Courtesy of N.
Kingsbury.

GitHub; see https://github.com/rjw57/dtcwt). This discrete wavelet transform gen-
erates complex-valued coefficients, and a dual tree of wavelet filters is used to obtain
their real and imaginary parts. Thus a redundant representation is produced with
a redundancy of 2¢, where d once again denotes the dimension of the signal. How-
ever, the transform provides approximate shift invariance and directionally selective
filters. The classical properties of perfect reconstruction and computational efficiency
are preserved and with good well-balanced frequency responses. Analysis of the shift
invariance of the transform can be found in [42], together with an estimation of its ac-
curacy and the design of suitable filters. An example for quarter-sample shift (Q-shift)
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filters, along with the resulting wavelet basis functions, is presented in Figure 3.

Adding a safety zone as mentioned in step (iv) above, an idea originally intro-
duced in [47], is necessary due to the lack of translational invariance of orthogonal
wavelets, but also for local dealiasing. The idea is to keep neighboring coefficients
in space and scale and to account for translation of shocks or steep gradients and
the generation of finer scale structures. For the complex-valued wavelets, which are
translation invariant, no safety zone is required, as shown in [61]. For details and
further discussion on possible and more efficient choices of the safety zone we refer
the reader to [55].

Finally, let us also mention an interesting link with large eddy simulations (LES)
where only the large scales of the flow are computed, while the influence of small scales
is modeled [70, 17, 46, 9]. In [68] we pointed out that there is an equivalence between
nonlinear wavelet thresholding (using Haar wavelets) and a single step of explicitly
discretized nonlinear diffusion used in LES, shown in [49] in the context of nonlinear
diffusion filtering for image processing.

4. Numerical Experiments Discarding One Coefficient.

4.1. Numerical Setup. In the following we show results to illustrate the proper-
ties of the adaptive Galerkin scheme and in particular their ability to introduce energy
dissipation into the numerical method, which can be useful for stabilization. For ex-
amples we consider first the inviscid 1D Burgers equation using periodic boundary
conditions. The initial condition is a simple sine wave given by u(z,t = 0) = sin(27z)
for x € T. Unless explicitly noted, computations are done with N = 2048 collocation
points, and the time step At is chosen so that Az/At = 16, where Az = 1/N is the
grid discretization size. This choice ensures the CFL condition is met [7].

4.2. Application in Fourier Basis. The simplest illustration which we develop as
a proof of concept is a punctual selection in the Fourier basis. Starting at some time
instant ¢, and during an entire interval [tp,t.], we set to zero the Fourier coefficients
corresponding to a given wavenumber ky after each time step (both positive and
negative modes are erased, such that the solution remains real). The projection
operator thus becomes time dependent and discontinuous, and we have

kf Z‘kISN/ZlM?ékf ak €ikx fOI‘ t € [tb,te],
(4.1) Py (), 0, 0(®) = = ik Isewh
Z\MSN/Q Uk € elsewhere.

The removal of these modes will instantly dissipate energy of the numerical solution,
but from there on energy is conserved. And this is still the case after the reintro-
duction of the coefficients in the projection basis, despite the discontinuity of the
projection operator. Indeed, according to (2.19) dissipation is observed as long as
||l — Pu(t")] un(t)||? is nonzero, but at t = ¢, this quantity is null and therefore en-
ergy is conserved. We note that since a multistage time marching scheme is employed,
it is necessary to reset to zero the removed coefficients after each substage, to ensure
they have no effect on the solution.

We show in Figure 4(a) the time evolution of the energy when the filtering wave
number is ky = 2. The projection operator changes at ¢, = 0.16 and is then restored
at t. = 0.2. Dissipation is introduced by this change of projection basis and, up
to numerical errors, the lost energy amounts to the energy content of the discarded
coefficients. This can be seen in Figure 5, where we plot, as a function of the time
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Fig. 4 Filtering of one mode in (a) Fourier space and (b) in wavelet space for the inviscid 1D
Burgers equation. Time evolution of energy. As expected, energy loss is observed.
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Fig. 5 Difference between dissipated energy and filtered energy (equation (4.2)) as a function of
the time step At, when a single Fourier mode or wavelet coefficient is filtered. A residual
difference remains when Daubechies wavelets are employed.

step At, the quantity

@2 5= (un O~ fux(@)?) — [ (1= Py ) uxi)]

which should be zero according to (2.19), since the PDE is energy conserving up to
time t,. One observes that 0 indeed converges to zero up to machine precision (of
order 10715) as At is decreased. Here, it is interesting to mention that the method
developed in [50] employs a punctual periodic filtering in Fourier space to regularize
solutions of the inviscid Burgers equation, so the above discussion formalizes the
dissipation step used there.

4.3. Application in Wavelet Basis. To illustrate dissipation through reprojec-
tion on a wavelet basis, we extend the previous idea of a punctual selection now to
wavelet space. The solution of the Fourier—Galerkin method is decomposed in each
time step into a real-valued orthogonal wavelet basis, as in (3.5). One single energy
containing coefficient, of scale index j; and position index iy, is then set to zero after
every time step during some given time interval [t;,t.]. The projection operator is
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once again time dependent and discontinuous and may be written as
(4.3)

u00+2( Do glaﬂzpﬂ(x)( —35j,0u,) for te€ [ty te],
UOO+Z Z@ 0 uj’bwjl(x) elsewhere

for a chosen orthogonal wavelet ;;(x).

We show in Figure 4(b) the energy time evolution for the case of projections in
the Meyer wavelet basis. The filtered coeflicient corresponds to jy = 1 and iy = 1.
As before, the filtering happens from time ¢, = 0.16 to t. = 0.2. Energy is punctually
dissipated as of the first change in the projector, but is otherwise conserved. Figure 5
also shows the convergence of the quantity § from (4.2), now with the projector
replaced by (4.3). Similar results are also obtained with projections onto a Shannon
wavelet basis.

Interestingly, the same convergence is not observed in Figure 5 when Daubechies
wavelets are used. As illustrated in Figure 1, working with Shannon wavelets is actu-
ally equivalent to working with the Fourier basis, since it is compactly supported in
spectral space, with a sharp cut-off. Combining multiscale Shannon wavelets amounts
to covering the spectral space up to some Galerkin cut-off frequency. When project-
ing with this basis, one is simply damping some existing Fourier coefficients without
introducing new wavenumbers. Hence, when going back to the fully dealiased Fourier
space, no further energy is lost. The Meyer wavelet is likewise compactly supported
in spectral space; however, the projection onto Meyer wavelets is only equivalent to a
Fourier projection when the number of Fourier modes is increased from N to 3/2N,
which is the case when dealiasing is applied. Therefore, in both cases the dissipated
energy indeed corresponds to the energy lost due to the discontinuity of the projection
operator. The Daubechies wavelet, on the other hand, is not compactly supported in
spectral space. When a projection is made in wavelet space and some coefficient is
discarded, this will affect wavenumbers beyond the dealiased ones, which then cease
to vanish. After returning to Fourier space, the dealiasing operation will set all these
to zero and further energy dissipation occurs. For this reason, the quantity J shows
a residual value as the time step decreases and does not attain machine precision, as
seen in Figure 5. In this simulation, Daubechies 12 wavelets were employed and the
projector corresponds to (4.3) with j; = 0 and iy = 0. Note that the indices are
chosen so that the amount of dissipated energy is comparable in all cases.

This additional energy dissipation can once again be understood as being due
to a change in the projector, i.e., going from the wavelet projector removing one
coefficient, given in (4.3), to the Fourier projector given in (3.1). In other words, it
is the fact that these two projectors do not commute when Daubechies wavelets are
used (or any other basis not compactly supported in Fourier space, i.e., within the
fully dealiased spectral space) which leads to more dissipation than that introduced
by the filtering. This shows that pseudoadaptive simulations, such as those discussed
in section 3, must be taken with care, since they may not exactly reproduce what
one would get with a fully adaptive scheme in wavelet space. Still, they are valuable
tools to predict the solution’s behavior in a simpler and faster setup, and we shall
apply them to illustrate the introduction of dissipation in conservation laws through
an adaptive Galerkin scheme.

PJ(t)ftbe]u(x) =

5. Application of Wavelets to the Inviscid Burgers and Incompressible Euler
Equations. In the following section we present in a concise way some results from
the literature to illustrate the dissipation properties of adaptive Galerkin methods
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using CVS denoising. We show some numerical examples for the 1D inviscid Burgers
equation, including continuous wavelet analysis and some space-time convergence,
and for the incompressible Euler equations in two and three dimensions. For details
on the numerical simulations we refer the reader to [61] and [23].

5.1. Continuous Wavelet Analysis of Inviscid I1D Burgers Equation. To gain
some insight into the formation of the resonance, we perform a continuous wavelet
analysis of the Galerkin truncated solutions to the inviscid Burgers equation, as done
in [61]. The wavelet representation unfolds the solution in both space and scale in a
continuous fashion. It thus allows us to visualize at which wavenumbers and positions
the resonances are generated and subsequently propagated.

The continuous wavelet coefficients of the Galerkin truncated inviscid Burgers
equation are calculated as the inner products of the velocity u(z,t) at a given instant
t with a set of wavelet functions ¢, ,(x) of scales ¢ centered around positions z, i.e.,

(5.1) g (t) = /0 ", ) () de,

where

Veale!) = 22 (“"”;:”)

and (z) = Ce=2"/o"(gime _ ¢7*0”/4) with a = 4, C a normalization factor, and -*
denoting the complex conjugate. This mother wavelet, which is the complex-valued
Morlet wavelet [37], has excellent analysis properties [22, 26]. The results, presented
in Figure 6, show the logarithm of the modulus of wavelet coefficients at different
positions x and scales ¢ (represented by the equivalent wavenumbers k = %"’, ky
being the centroid wavenumber of the chosen wavelet [22]). The horizontal black line
indicates the Galerkin truncation frequency, and the velocity fields themselves are
also shown at the top of each figure for convenience.

Figures 6(a) and 6(b) show, respectively, a harmonic initial condition, here ug(z) =
sin(27x) + sin(4wx + 0.9) + sin(67z), and how the precursors of the shocks develop.
The solution is computed with a truncated Fourier—Galerkin method, described in sec-
tion 3 using N = 8192 modes. Figure 6(c) shows the solution when the first preshock
reaches the cut-off scale and becomes a shock, i.e., when nonnegligible energy reaches
the scale indicated by the horizontal black line. We observe that the first numerical
resonances appear immediately after that and then spread all over space. Note the
small time interval between Figures 6(c) and 6(d). Figure 6(e) shows the formation of
the bulges around the resonant locations. They stretch until they reach the Galerkin
scale and then generate more truncation waves, as shown in Figure 6(f). After that,
perturbations at all scales start to spread throughout the solution and even more
so when the second shock is formed, as in Figure 6(g). For much longer times the
Burgers solution then becomes very noisy (Figure 6(h)) on its way towards energy
equipartition. Corresponding movies showing the time evolution of the solution and
the corresponding wavelet coefficients can be found online.!

5.2. Discrete Wavelet Filtering of Inviscid 1D Burgers Equation. We consider

the inviscid Burgers equation (3.2), discretized with a Fourier pseudospectral method

1Videos with the time evolution of the continuous wavelet coefficients can be found
at http://www.youtube.com/watch?v=WX2YIHGR7LA and http://www.youtube.com/watch?v=
jAVIBGgSy30.
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Fig. 6 Plots of the logio of moduli of the continuous wavelet coefficients g (t) of the Galerkin
truncated solution at ttmes (a) ¢ = 0, (b) t = 0.02749, (c) ¢t = 0.03505, (d) ¢t = 0.03538,
(e) t = 0.03648, (f) t = 0.03998, (g) t = 0.05897, and (h) t = 0.19989. Each plot shows
the solution on the top and below the logio of the modulus of the corresponding continuous
wavelet coefficients. The corresponding wavenumber spectrum is plotted vertically on the left.
Note that the initial condition here is ug(xz) = sin(2wz) + sin(4nx + 0.9) + sin(67z). Figure
reprinted from [61] with permission from the American Physical Society.

and endowed with CVS filtering, described in section 3, using N = 16384 Fourier
modes. For the used sinusoidal initial condition u(z,t = 0) = sin(27t) the time evolu-
tion of the reference solution, the so-called entropy solution, can be easily computed
with the method of characteristics, separately in each half of the domain. Figure 7
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Fig. 7 CVS denoised Galerkin truncated inviscid Burgers equation using complex-valued wavelets
(Kingslets, in black) together with the nondissipative Galerkin truncated solution (blue) at
times t = 0.1644, 0.1793, and 0.3. The solutions are periodically shifted to the right, so that
both the resonances and the shocks can be easily seen.

shows the solution of the standard Fourier—Galerkin method, which preserves energy,
and the solution obtained with the dynamic Galerkin scheme using CVS filtering with
Kingslets. We observe that the oscillations (also called resonances; see [65]), which
appear as soon as the shock is formed, are removed using CVS denoising. This is
further confirmed in Figure 9 (left), where the oscillations are shown to be completely
filtered out and a smooth solution close to the reference solution is obtained.

To assess the filtering performance, we develop a space-time convergence analysis
by computing the time integrated relative L?-distance from the denoised solution ux
to the analytical reference solution u..s. We compute

N un(t) — ()]
(5:2) 5‘/t0 oI

for different space resolutions while keeping fixed the previous relation between time
and space discretization, that is, Axz/At = 16. Since the filtering is only relevant
after the shock formation, we actually start the analysis from a time right before
the shock time ty = inf, [-1/u/(z,0)] =~ 0.1592, i.e., to = t; — At, and carry on
the integration up to t; = 0.3. Results for complex-valued Kingslets and real-valued
Shannon wavelets with and without the safety zone discussed in section 3 are shown
in Figure 8. We can observe that CVS with Kingslets is in excellent agreement with
the reference solution, showing an O(Ax) convergence rate. Although typically one
order of magnitude poorer (an underperformance that we now quantify but which
has only been visually verified in [61]), CVS with Shannon wavelets also shows first
order convergence towards the reference solution if the safety zone is present. We note
that this is the same convergence rate observed with the periodic Fourier filtering of
[50]. In comparison to this method, CVS has the disadvantage of being less simply
implemented, but offers the attractive feature of compression, with only a very reduced
number of degrees of freedom being necessary to reproduce the physical reference
solution. Meanwhile, as anticipated in section 3, Figure 8(c) shows that CVS is not
able to properly regularize the solution when employing real orthogonal wavelets if a
safety zone is not introduced.

The evolution of the energy E = 1||u||?> shown in Figure 9 (right) further quan-
tifies the dissipation of the adaptive schemes for different real orthogonal wavelets.
Once again, in the presence of the safety zone the wavelet adaptation removes suffi-
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Fig. 8 Time integrated relative L?-error (equation (5.2)) as a function of space resolution Az. (a)
Kingslets. (b) Shannon wavelet with the safety zone. (c) Shannon wavelet without the safety
zone. The straight lines have slope 1.
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—¢—Reference
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—— Meyer - no safety zone

0.2 0.25 0.3

Fig. 9 (a) Detail of the solution of CVS-denoised Galerkin truncated inviscid Burgers equation
using complez-valued wavelets (Kingslets, in black) together with the nondissipative Galerkin
truncated solution (blue) at time t = 0.1644. (b) Time evolution of the energy E(t) of
CVS filtered solutions for different wavelets with and without safety zone together with the
analytical result.

cient energy, matching thus the analytical energy evolution. However, it is now seen
that without the safety zone not enough energy is dissipated and the solution is not
properly regularized. For a detailed description of similar simulations and a physical
interpretation we refer the reader to [61].

5.3. Discrete Wavelet Denoising of Incompressible 2D Euler Equation. To
illustrate the effect of dissipation when adapting the basis functions using projectors
changing over time we consider the incompressible Euler equations given in (3.4) and
discretize them with a classical Fourier—Galerkin scheme. In these pseudoadaptive
simulations we apply in each time step CVS denoising. Detailed results can be found
in [61] and [23] for the 2D and 3D cases, respectively.

In the 2D case a random initial condition is evolved in time with third order
Runge-Kutta time integration using a resolution of N = 10242 Fourier modes [61].
Visualizations of the Laplacian of the vorticity field w = V x wu in the fully devel-
oped nonlinear regime are shown in Figure 10 (left). For the Galerkin truncated
solution we find numerical resonances on the isolines of V2w= (0,5 + dyy) w (a small
scale quantity, which is sensitive to oscillations), while the regularized solution using
complex-valued wavelets with CVS filtering yields a smooth solution. A 1D cut in
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Fig. 10 Filtering of 2D incompressible Euler using complez-valued wavelets (Kingslets). Left: Con-
tours of the Laplacian of vorticity V2w at t = 0.71. The Galerkin truncated solution is
shown in gray, and the CVS solution is given in black. Right: 1D cut of the Laplacian
of vorticity for the oscillatory Galerkin truncated solution and the wavelet-filtered smooth
solution. Figure reprinted from [61] with permission from the American Physical Society.
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Fig. 11  Filtering of 2D incompressible Euler using complez-valued wavelets (Kingslets). Evolution

of enstrophy 1/2||w||3 for the Galerkin truncated case and the adaptive wavelet denoised case
using Kingslets. Figure reprinted from [61] with permission from the American Physical
Society.

Figure 10 (right) illustrates that in the CVS solution the oscillations have been indeed
removed. Time evolution of enstrophy in Figure 11, defined as %||w||3, shows that
in contrast to the Galerkin truncated simulation, the CVS computation is dissipa-
tive, with enstrophy departing from the one of the conservative Galerkin truncated
case and decaying for times larger than 1.4. For more details including a physical
interpretation we refer the reader to [61].

5.4. Discrete Wavelet Denoising of Incompressible 3D Euler Equation. The
three-dimensional Fourier—Galerkin computations of incompressible Euler have been
performed at resolution N = 5123 in a periodic cubic domain with a fourth order
Runge-Kutta scheme for time integration [23]. A statistically stationary flow of fully
developed homogeneous isotropic turbulence obtained by DNS is used as initial con-
dition. For CVS filtering, Coiflet 12 wavelets [14] were used. Note that the wavelet
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Fig. 12 Energy (left) and enstrophy (right) evolution for 3D incompressible Euler using Galerkin
truncated Euler (Euler), wavelet denoised Euler (CVS), and Navier—Stokes (NS). HV and
EV stand for hyperviscous regularization and Euler—Voigt, respectively, which are not dis-
cussed here. Figure reprinted from [23] with permission from the American Physical Society.

Fig. 13 Vorticity isosurfaces, |w| = M + 40 (where M is the mean value and o the standard
deviation of the modulus of vorticity of Navier—Stokes) for 3D incompressible Euler using
Galerkin truncated Euler (Euler, left), wavelet filtered Euler (CVS, center) and Navier—
Stokes (NS, right) at time t/7 = 3.4, where T is the initial eddy turn over time. Figure
reprinted from [23] with permission from the American Physical Society.

decomposition and subsequent filtering have been applied to the vorticity w =V x u
(and not to the velocity u) in each time step, and subsequently the filtered velocity
has been computed by applying the Biot—Savart operator (Vx)~! in Fourier space.

The time evolution of the energy, 3||u||3, and enstrophy, 3||w||3, in Figure 12
first shows that the Galerkin truncated Euler computation preserves energy and that
enstrophy grows rapidly in time due to the absence of regularization. For CVS we can
observe that energy is dissipated, similar to what is observed for Navier—Stokes and
that enstrophy also exhibits a similar evolution to that of Navier—Stokes and does not
grow rapidly.

Visualizations of intense vorticity structures in Figure 13 for CVS and Navier—
Stokes show their similar tube-like character, while the Galerkin truncated Euler
solution is similar to Gaussian white noise without the presence of coherent structures.
For details including a physical interpretation of the results we refer the reader to [23].

6. Conclusion. We presented a mathematical framework for analyzing adaptive
Galerkin discretizations of evolutionary PDEs. The concept of weak formulations of
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countable ODEs with nonsmooth right-hand side in Banach spaces was used. We
showed that changing the set of active basis functions, which implies that the pro-
jection operator is nondifferentiable in time, can introduce energy dissipation. This
feature is of crucial interest when using adaptive schemes for time-dependent equations
and yields a mathematical explanation for their regularizing properties due to dissi-
pation. Existence and uniqueness of the weak formulation of the adaptive Galerkin
solution were likewise proven.

Numerical experiments illustrated the above results for the inviscid Burgers equa-
tion in one dimension and the incompressible Euler equations in two and three space
dimensions. To this end we performed simulations with the classical Fourier—Galerkin
discretization and tested the influence of wavelet thresholding for denoising, compar-
ing different choices of wavelets. The results showed that adaptive wavelet-based
regularization (i.e., filtering out the weak wavelet coefficients) of Galerkin schemes
introduces dissipation. The latter can be used for reducing the computational cost
in fully adaptive computations. Moreover, for the 1D Burgers equation we showed
convergence towards the entropy solution. For the 2D and 3D Euler equations we
found that numerical resonances present in the Galerkin truncated case are removed
and energy is dissipated. However, for 2D and 3D Euler in general no exact reference
solutions are available and further analyses are necessary, which are left for future
work.

The main perspective of this work is the further study of adaptive Galerkin dis-
cretization, in particular wavelet-based schemes, with possible applications to the
understanding of turbulent flows and nonlinear hyperbolic conservation laws.

Acknowledgment. The authors would like to thank Greg Hammett for a discus-
sion which strongly motivated this work.
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