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An adaptive mulitresolution method based on a second-order finite volume discretization
is presented for solving the three-dimensional compressible Navier–Stokes equations in
Cartesian geometry. The explicit time discretization is of second-order and for flux evalu-
ation a 2–4 Mac Cormack scheme is used. Coherent Vortex Simulations (CVS) are per-
formed by decomposing the flow variables into coherent and incoherent contributions.
The coherent part is computed deterministically on a locally refined grid using the adaptive
multiresolution method while the influence of the incoherent part is neglected to model
turbulent dissipation. The computational efficiency of this approach in terms of memory
and CPU time compression is illustrated for turbulent mixing layers in the weakly com-
pressible regime and for Reynolds numbers based on the mixing layer thickness between
50 and 200. Comparisons with direct numerical simulations allow to assess the precision
and efficiency of CVS.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The intrinsic multiscale character of turbulent flows in space and time is still a major challenge in computational fluid
dynamics. The numerical simulation of fully developed turbulent flows requires turbulence models to reduce the computa-
tional complexity as direct approaches are still beyond the frontiers of the available computational resources and hence they
will be limited to low Reynolds number flows in the near future.

In the above context the compressible turbulent regime is even more challenging than the incompressible one, as in addi-
tion to the large range of involved temporal and spatial scales, shocks appear and interact nonlinearly with coherent vortices.
Their accurate and efficient numerical simulation becomes more complex.

Different directions for turbulence modeling have been entered upon. The large eddy simulation approach seems to be
the most advanced, however reliable simulation of turbulent flow still requires the tuning of ad hoc parameters [15].

In the recent past, multiscale methods for the simulation of turbulent flows have become more and more fashionable, also
for compressible flows. A review can be found in the book of Sagaut and coworkers [22]. Wavelet methods in computational
fluid dynamics have been reviewed in [25].
. All rights reserved.
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The Coherent Vortex Simulation (CVS), which fits into the framework of multiscale methods, has been introduced by Far-
ge, Schneider and coworkers for modeling incompressible turbulent flows [8,7]. The underlying idea is the decomposition of
the flow into coherent and incoherent contributions by means of an orthogonal wavelet filtering of the vorticity field. The
coherent flow is then computed deterministically, while the influence of the incoherent background flow is statistically mod-
elled or neglected. In Okamoto et al. [19] it has been shown that for incompressible isotropic turbulence the number of de-
grees of freedom N required for CVS grows slower with the Reynolds number Re, i.e. N / Re3:9, than for DNS where
Kolmogorov type arguments imply N / Re4:5. This motivates the development of CVS for computing fully developed turbu-
lent flows. Adaptive space discretizations are hereby a key ingredient to be able to benefit from the efficient representation of
the coherent flow to be computed in terms of memory and CPU time savings.

Adaptive multiresolution schemes have been developed in the past with the subject to speed up classical numerical dis-
cretization methods for PDEs, like finite differences or finite volumes, by locally adapting the grid to the solution which can
then result in significant memory reduction. Therewith the costly evaluation of the nonlinear terms can also be reduced
without degrading the precision of the solution. Three ingredients of multiresolution analysis are hereby essential: estima-
tion of the local regularity of the solution, thresholding of weak coefficients in the multiresolution representation of the solu-
tion and fast interpolation of the solution from the locally refined grid to locally equidistant grids. A comprehensible
overview on this rapidly growing topic is given in the book of Müller [17].

The aim of the present work is the extension of the CVS method to subsonic compressible turbulent flows using the adap-
tive multiresolution algorithm originally developed by Roussel and coworkers [21]. The formalism of CVS is adapted to the
compressible Navier–Stokes equations which are written in primitive variables. The influence of the wavelet filtering of the
conserved quantities is investigated and the choice of the filter tolerance and the normalization of the wavelets is studied.

The remainder of the paper is organized as follows. The governing equations and their numerical discretization are pre-
sented in Section 2. Section 3 recalls the multiresolution representation and introduces the CVS method for compressible
flows. Section 4 shows various numerical results for weakly compressible, time-developing mixing layers. Finally, in Section
5 conclusion are drawn and some perspectives for future work are given.
2. Governing equations and numerical discretization

2.1. Navier–Stokes equations for compressible fluid flows

We consider a three-dimensional compressible flow of a Newtonian fluid in the Stokes hypothesis in a domain X � R3.
Using Einstein’s summation convention, the balance equations in Cartesian coordinates can be written in the following
dimensionless form, see e.g. [14],
@q
@t
¼ � @

@xj
ðqujÞ;

@

@t
ðquiÞ ¼ �

@

@xj
ðquiuj þ pdi;j � si;jÞ; ð1Þ

@

@t
ðqeÞ ¼ � @

@xj
ðqeþ pÞuj � uisi;j � k

@T
@xj

� �
:

In the above equations, q; p; T and e denote the dimensionless density, pressure, temperature and specific total energy per
unit of mass, respectively; ðu1;u2;u3ÞT is the dimensionless velocity vector. The components of the dimensionless viscous
strain tensor si;j are
si;j ¼
l
Re

@ui

@xj
þ @uj

@xi
� 2

3
@uk

@xk
di;j

� �
; ð2Þ
where l denotes the dimensionless molecular viscosity and Re the Reynolds number. The dimensionless conductivity k is
defined by
k ¼ l
ðc� 1ÞMa2RePr

; ð3Þ
where c; Ma and Pr, respectively denote the specific heat ratio and the Mach and Prandtl numbers.
The system is completed by an equation of state for a calorically ideal gas
p ¼ qT

cMa2 : ð4Þ
and suitable initial and boundary conditions.
Assuming the temperature to be larger than 120 K, the molecular viscosity varies with the temperature according to the

dimensionless Sutherland law
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l ¼ T
3
2

1þ Ts

T þ Ts

� �
; ð5Þ
where Ts � 0:404.
Denoting by ðx; y; zÞ the three Cartesian directions, this system of equations can be written in the following compact form
@U
@t
¼ � @F

@x
� @G
@y
� @H
@z

; ð6Þ
where U ¼ ðq;qu1;qu2;qu3;qeÞT denotes the vector of the conservative quantities, and F, G, H are the flux vectors in the
directions x, y, and z, respectively.

3. Multiresolution analysis and coherent vortex simulation

In the following we describe the cell-average multiresolution analysis used to accelerate the previously introduced finite
volume scheme. Then the principle of the CVS approach applied to compressible flows is presented.

3.1. Cell-average multiresolution analysis

The principle of the multiresolution analysis is to represent a set of data on a set of nested dyadic grids. The data given on
a fine grid is decomposed into values on a coarser grid plus a series of differences at different levels of dyadic grids. These
differences contain the information of the solution when going from a coarse to a finer grid. In particular, these coefficients
are small in regions where the solution is smooth [12] and yield hence high compression rates for functions with inhomo-
geneous regularity.

Depending on the choice of the numerical method, several multiresolution analyses can be used. For methods of approx-
imation based on point-values, like e.g. finite differences, a point-value multiresolution analysis is well adapted [13]. In the
present paper, to ensure the conservativity of mass, momentum and energy, the finite volume method has been chosen, to-
gether with a cell-average multiresolution analysis.

Let us consider a three-dimensional Cartesian domain X � R3 and let us partition it into a set of nested dyadic grids
Gl; l 2 f0; . . . ; Lg, each one containing 23l cells Xl;i;j;k; i; j; k 2 f0; . . . ;2l�1g.

The set of nested dyadic grids is usually represented as a tree structure. In the present article, we use the following ter-
minology: a tree structure is composed of a root cell X0;0;0;0, which is the basis of the tree, the nodes which are elements of the
tree, and the leaves which are the upper elements. In three dimensions, a parent cell at a level l has always 23 ¼ 8 children
cells at the level lþ 1. On the left of Fig. 1, a tree structure is represented by its visible part, i.e. its leaves. For the incoming
and outgoing flux computations, a leaf at the level l has sometimes no neighbour at the same level and needs to get infor-
mation from a leaf at the level l� 1. Therefore, virtual leaves are created. They only exist for the flux computation and no
time evolution is made on them (Fig. 1, right). In order to be graded, the tree must verify that each leaf at a level l has always
adjacent cells of level at least equal to l� 1 in each direction, the diagonal being included (see Fig. 1).

Each node Xl;i;j;k of the tree contains the cell-average value of U, denoted by Ul;i;j;k. To compute the average value of a cell at
level l from the ones of cells at level lþ 1, we use the projection (or restriction) operator Plþ1!l. It is exact and unique, given
that the cell-average value of a parent cell is the weighted average value of its children cell-averages. Denoting Ul the vector
of the cell-average values at the level l, i.e.
Ul ¼ ðUl;i;j;kÞi;j;k;
z

y

x

z

y
x

Fig. 1. Left: graded tree structure in 3D. Right: leaves (plain) and virtual leaves (striped) on the ðx; zÞ plan.
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we have
Plþ1!l : Ulþ1 # Ul:
The prediction (or prolongation) operator Pl!lþ1 maps Ul to an approximation bUlþ1 of Ulþ1.
Pl!lþ1 : Ul # bUlþ1
In contrast with the projection operator, there is an infinite number of choices for the definition of Pl!lþ1. Nevertheless, in
order to be applicable in a graded tree structure, it needs to be local [2], i.e. based on an interpolation using the s nearest
neighbours in each direction, and consistent with the projection, i.e. Plþ1!l � Pl!lþ1 ¼ Id.

In the present paper, we chose a prediction operator based on an interpolation of the cell-averages in the first nearest
neighbours in every direction, diagonal included. This operator in one, two and three dimensions is fully described in [21].

The detail is the difference between the exact and predicted values. The vector Dl of the details at level l therefore verifies
Dl ¼ Ul � bUl. Thanks to the consistency assumption, the sum of the details on all the children of a parent cell is equal to zero
[12]. For a general curvilinear grid with non-equidistant points, the sum of the weighted details is equal to zero, the weights
being the cell sizes: length in 1D, area in 2D, and volume in 3D.

Therefore, in three dimensions, the knowledge of the 8 children cell-averages of a given parent cell is equivalent to the
knowledge of the parent cell-average and 7 details, i.e. Ul $ ðUl�1;DlÞ. Repeating the operation on L levels, one gets the
so-called multiresolution transform [12]
M : UL # ðU0;D1; . . . ;DLÞ: ð7Þ
In other words, the ensemble of cell-average values on the level L is equivalent to the cell-average value on the root cell and
the ensemble of details from the level 1 to the level L.

The threshold operator consists in removing leaves where details are smaller than a prescribed tolerance, without violat-
ing the graded tree data structure. After thresholding, one more level is also added to forecast the tree evolution at the next
time step. The choice for the accurate value of the tolerance for each scale in fact depends on the normalization of the cor-
responding wavelet basis. This is the subject of the next subsections.

The cell-average multiresolution analysis is intimely linked to a biorthogonal wavelet basis [2,3]. Hence a quantity u can
be expressed as follows,
uðx; y; zÞ ¼
X
i;j;k

�u0;i;j;k/0;i;j;kðx; y; zÞ þ
X

l;i;j;k;l

�dl
l;i;j;kw

l
l;i;j;kðx; y; zÞ; ð8Þ
with the scaling coefficients �u0;i;j;k ¼ hu; ~/0;i;j;ki corresponding to the cell-averages at level l ¼ 0 and the wavelet coefficients
�dl

l;i;j;k ¼ u; ~wl
l;i;j;k

D E
corresponding to the details at level l in one of the possible 7 directions l, and where

hf ; gi ¼
R

X f ðx; y; zÞgðx; y; zÞdxdydz denotes the L2-product. The couple /; ~/ denotes the biorthogonal scaling functions and

w; ~w are the corresponding biorthogonal wavelets [4].

3.2. Time evolution

The time evolution is performed on the leaves of the tree only. The cell-average values in the other nodes are obtained by
projection from the leaves. In order to avoid numerical diffusion, we use an explicit 2–4 Mac Cormack scheme, which is sec-
ond-order accurate in time, fourth-order in space for the convective terms, and second-order in space for the diffusive terms
(see, Gottlieb and Turkel [11]). The time integration is decomposed into two stages, the first stage being decentered in one
direction, the second one in the other direction. To avoid an accumulation of error in one direction, we alternate the direc-
tions at each time step. One gets the following scheme to compute the cell-averages Unþ1 at time tnþ1 from the given cell-
averages Un at time tn
U�l;i;j;k ¼ Un
l;i;j;k þ Dt

�7Fn
l;i;j;k þ 8Fn

l;iþ1;j;k � Fn
l;iþ2;j;k

6Dxl

 !
þ Dt

�7Gn
l;i;j;k þ 8Gn

l;1;jþ1;k � Gn
l;i;jþ2;k

6Dyl

 !

þ Dt
�7Hn

l;i;j;k þ 8Hn
l;1;j;kþ1 � Hn

l;i;j;kþ2

6Dzl

 !
; ð9Þ

Unþ1
l;i;j;k ¼

Un
l;i;j;k þ U�l;i;j;k

2
þ Dt

2
�7Fn

l;i;j;k þ 8Fn
l;i�1;j;k � Fn

l;i�2;j;k

6Dxl

 !
þ Dt

2
�7Gn

l;i;j;k þ 8Gn
l;1;j�1;k � Gn

l;i;j�2;k

6Dyl

 !

þ Dt
2
�7Hn

l;i;j;k þ 8Hn
l;1;j;k�1 � Hn

l;i;j;k�2

6Dzl

 !
; ð10Þ
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where Dxl ¼ 2�lLx; Dyl ¼ 2�lLy, and Dzl ¼ 2�lLz denote the space steps at a level l in the three directions. Here Lx; Ly, and Lz,
denote the lengths of the computational domain in the x; y, and z directions, respectively.

For the computation of the diffusive terms, we do not need to use a decentered scheme. Here the diffusive terms are
approximated the same way as if we were using a second-order Runge–Kutta–Heun method in time, together with a sec-
ond-order centered scheme in space.
3.3. Principle of CVS

The CVS of incompressible turbulent flows is based on the decomposition of the vorticity x ¼ r� u into coherent and
incoherent parts using thresholding of the wavelet coefficients. The corresponding coherent and incoherent velocity fields
are then obtained by applying Biot–Savart’s kernel. In the CVS method, the evolution of the coherent flow is then computed
deterministically in a dynamically adapted wavelet basis and the influence of the incoherent components is statistically
modelled or simply neglected [8,7,24].

For compressible flows, the situation is different, since both vortical and potential components are present. Here we
decided to decompose the conservative variables U ¼ ðq; qu1; qu2; qu3; qeÞ into a biorthogonal wavelet series (8) by
applying the cell-average multiresolution transform previously described. In [20], we applied the same biorthogonal wavelet
decomposition to incompressible isotropic turbulence to decompose the flow into coherent and incoherent parts. We con-
cluded that the biorthogonal decomposition yield reasonable results compared to the orthogonal wavelet decomposition
typically used for CVS, which justifies the application of the former to compressible turbulence. A decomposition of the con-
servative variables into coherent and incoherent components is then obtained by decomposing the conservative variables
into wavelet coefficients, applying a thresholding and reconstructing the coherent and incoherent contributions from the
strong and weak coefficients, respectively.

First the dimensionless density and pressure are decomposed into
q ¼ qC þ qI; ð11Þ
p ¼ pC þ pI:
where qC and pC , respectively denote the coherent part of the density and pressure fields, while qI and pI denote the corre-
sponding incoherent parts.

Then the other remaining variables, i.e. the velocity components u1;u2;u3, the temperature T and energy e, are decom-
posed using the Favre averaging technique [9], i.e. density weighted, as done in RANS and LES of compressible flows to sim-
plify modeling [15]. This technique avoids the introduction of unresolved terms into the equation of mass conservation and
trilinear terms into the momentum equation. For a quantity u corresponding to one of these remaining variables, we obtain
the following decomposition,
u ¼ uC þuI; where uC ¼
ðquÞC
ðqÞC

: ð12Þ
For sake of clarity, we use the notation uC ¼ �u. Retaining only the coherent contributions of the conservative variables we
obtain the filtered compressible Navier–Stokes equations which describe the flow evolution of the coherent flow
@�q
@t
¼ � @

@xj
ð�q�ujÞ;

@

@t
ð�q�uiÞ ¼ �

@

@xj
ð�q�ui�uj þ �pdi;j � �si;j þ Ai;jÞ; ð13Þ

@

@t
ð�q�eÞ ¼ � @

@xj
ð�q�eþ �pÞ�uj � �ui�si;j � �k

@T
@xj
þ Bj

 !
;

�p ¼
�qT

cMa2 ;
where the terms
Ai;j ¼ �q uiuj � �ui �uj
� �

� si;j þ �si;j; ð14Þ

Bj ¼ �qðuje� �uj�eÞ þ ujp� �uj�p� ujsi;j þ �uj�si;j � k
@T
@xj
þ �k

@T
@xj

;

constitute the influence of the incoherent contributions. In the current paper, these terms are completely neglected. We also
use the approximation �l ¼ lðTÞ and �k ¼ kðTÞ. Note that modeling of the incoherent contributions, similar to LES approaches,
has been proposed in [10], which allows for larger choices of the threshold and thus higher compression rates. A review of
the different modeling strategies can be found in [25].
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3.4. Choice of the thresholding rule

In the CVS of incompressible turbulence, the vorticity field is decomposed into orthogonal wavelets and filtered using a
fixed threshold �0 based on the enstrophy, i.e. on the L2-norm of vorticity.

In most papers on adaptive multiresolution methods [2,4,17,21], the conserved quantities are filtered using furthermore
biorthogonal wavelets which are normalized with respect to the L1-norm, which is well adapted to the finite volume discret-

ization, i.e. ewl
j;i;j;k

��� ���
L1
¼ 1. In the adaptive multiresolution method (see e.g. [21]) typically detail coefficients �dl

j;i;j;k ¼ u; ~wl
j;i;j;k

D E
of a conserved quantity are removed if
�dl
l;i;j;k

��� ��� < 2dðl�LÞ�; ð15Þ
where d denotes the space dimension (here d ¼ 3), � the threshold, and L is the finest level present in the computations. The
above choice of the threshold takes the L1-normalization of the wavelets into account. The computations using this L1 based
thresholding rule are denoted by ‘‘Norm #1” results.

To investigate the influence of the thresholding rule and to compare with the classical CVS scheme which uses L2-normal-
ization of the wavelets and filters vorticity, which corresponds to the anti-symmetric part of the velocity gradient tensor, we
consider two additional thresholding rules:

� one using the L2-normalization of the wavelets for which we obtain the thresholding rule
�dl
l;i;j;k

��� ��� < 2dðl�LÞ=2�; ð16Þ
denoted in the following ‘‘Norm #2” results,
� and one based on the H1-normalization of the wavelets for which we obtain the thresholding rule
�dl
l;i;j;k

��� ��� < 2ðd�2Þðl�LÞ=2�; ð17Þ
denoted in the following ‘‘Norm #3” results. The H1 thresholding rule is motivated by the fact that here the filtering is
adapted to the gradients, which mimics filtering of vorticity. However, in addition to vortical regions, strain-dominated
regions are also retained in the coherent velocity field.

To apply the threshold to the vector valued function U of the dimensionless conservative quantities, we divide each com-
ponent of the detail vector by the mean-value of the corresponding dimensionless quantity in the whole computational do-
main. Concerning the velocity vector ðu1;u2;u3Þ, to avoid anisotropy in the threshold of the details, we compute only one
detail for the velocity
�dl
l;i;j;kðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dl

l;i;j;k

	 
2
ðu1Þ þ �dl

l;i;j;k

	 
2
ðu2Þ þ �dl

l;i;j;k

	 
2
ðu3Þ

r
;

and we divide this component of the detail vector by the mean-value of the velocity in the whole computational domain.
Details of all components of U are removed only if all components are below the given threshold. The incoherent part UI

corresponds hence to the conservative quantities for which, for a given index fl; i; j; k;lg, all details are below the threshold.
The coherent part UC corresponds to the remainder. This choice implies that only one tree data structure is necessary to store
all coherent components of the conserved variables. By construction we have U ¼ UC þ UI , however the sum is not orthog-
onal due to the use of biorthogonal wavelets instead of orthogonal ones (see e.g. [20] for a discussion on this topic).

3.5. Summary of the CVS algorithm

In the following, we briefly summarize the CVS algorithm. For more details on the general adaptive MR algorithm, we
refer to [21]. First, depending on the initial condition, an initial graded tree is created. Then, given the graded tree structure,
a time evolution is made on the leaves. Finally, details are computed by multiresolution transform, in order to remesh the tree.

Denoting by EðDtÞ the discrete time evolution operator, the global algorithm can schematically be summarized by
Unþ1 ¼M�1 	 Tð�Þ 	M 	 EðDtÞ 	 Un; ð18Þ
where M is the multiresolution transform operator, and Tð�Þ is the threshold operator with tolerance �. The threshold operator
depends on the choice of the thresholding rule.

4. Numerical results

As test-case for the CVS method we consider in the following a three-dimensional weakly compressible temporally devel-
oping turbulent mixing layer. For a complete description of this test-case in the LES framework, we refer the reader to
[26,27].
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The CVS results are compared with a DNS reference computation, using a finite volume scheme on the finest regular grid.
We study the impact of the different thresholding rules, the choice of the threshold, and the influence of the Reynolds num-
ber to assess the precision and efficiency of CVS.

4.1. Flow configuration of the mixing layer

We initialize the test-case by setting two layers of a fluid stacked one upon the other one, each of them with the same
velocity norm but opposed directions (Fig. 2).

For every computation with L ¼ 7 scales, the computational domain is a three-dimensional cube X ¼ ½�30;30
3 with side-
length LX ¼ LY ¼ LZ ¼ 60, and the final time of all computations corresponds to t ¼ 80. We set periodic boundary conditions
for the x- and y-direction and Neumann conditions are imposed in the z-direction, i.e. on the top and bottom boundaries. The
Prandtl and Mach numbers are set to 0.71 and 0.3 respectively, whereas the specific heat ratio c equals 1.4. The CFL number
is set to 0.4 and the maximal resolution is 1283, which corresponds to L ¼ 7 scales. Then, in Section 4.5, L ¼ 8 scales are con-
sidered, i.e. a maximal resolution of 2563.

In this test-case, the initial dimensionless velocity profile is
u0ðxÞ ¼
tanhðzÞ

0
0

0B@
1CA ð19Þ
and the initial dimensionless density and temperature profiles are constant and set to 1.
A sinusoidal perturbation of the form
u0ðxÞ ¼ AðzÞ 1
2

cos
2pðxþ yÞ

L
þ 1

2
cos

2pðx� yÞ
L

þ
Xb�1

k¼1

cos
2kþ1px

L

 !
; ð20Þ
is superimposed to the initial velocity in the streamwise direction, where
AðzÞ ¼ 1

b cosh2ðzÞ
:

is the amplitude of the perturbation, L ¼ 60 is the length of the computational domain, and b denotes the maximal number of
modes used for the computation, b ¼ 3 in this case. The cosh2ðzÞ term is added to limit the perturbation to the junction of the
two stacked-up fluid layers. This way, we spare unnecessary waste of CPU resources. Here, we have added only one oblique
mode disturbance, so that we can distinguish more easily the structures. The same amount of intensity is given to each of the
three modes.
Lx

Ly

Lz

Uo

Fig. 2. Flow configuration: domain and initial basic flow u0 of the three-dimensional mixing layer.
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4.2. Time evolution of a mixing layer

For the DNS reference computation, we use the finite volume scheme on the regular grid with resolution 1283. The Rey-
nolds number based on the initial velocity and half the initial layer thickness is set to Re ¼ 100.

Fig. 3 shows the time evolution of the mixing layer.
At t � 19, the Kelvin–Helmholtz instability generates four rollers in the streamwise direction (Fig. 3, left side). The num-

ber of vortices at the initial stage depends on the number of modes b used in the initial perturbance and of the size of the
Fig. 3. Time evolution of a weakly compressible mixing layer for Re ¼ 100. First row: isolines of vorticity in the plane y ¼ 0 for the DNS solution. Second
row: same isolines for the CVS computation with � ¼ 0:03 and Norm #3. Third row: Corresponding isosurfaces of vorticity kxk ¼ 0:5 (black) and kxk ¼ 0:25
(gray). Fourth row: Adaptive meshes for the CVS computation. The time instants are t = 19 (left), t = 37 (center) and t = 78 (right).
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domain X. At the beginning, the mixing layer remains approximately two-dimensional, since we have introduced only one
oblique mode. Later on, the vortices begin to pair so that, at t � 37, we observe two vortex pairings (Fig. 3, center). At t � 78,
these two pairings are finished and three-dimensional structures appear, generated by the oblique mode between the two
remaining vortices (Fig. 3, right side). For longer computational times, assuming that the domain is large enough, these two
vortices would pair again, thus leading to only one vortex.
4.3. Choice of the thresholding rule

In this section, we perform a series of CVS computations for Re ¼ 100 using the three different thresholding rules (Norms
#1, #2 and #3) previously presented, and compare the results with the reference DNS computation on the finest grid, using
the same numerical scheme. For each thresholding rule, we perform first several computations with different tolerances to
determine its optimal value �opt . To assess which thresholding rule yields the best results, we compare then the energy spec-
tra, the energy and enstrophy evolutions, as well as the corresponding computational resources (CPU time and memory)
spent.

Once we have the optimal value for each norm, we compare those optimal computations and decide which norm shows
better results.
4.3.1. Results using the L1-normalization (Norm #1)
In Table 1, we show the results of the CVS computations for the Norm #1 together with the DNS reference run. We ob-

serve that the CVS computations require much less CPU time (between 26% and 40%) and memory (between 26% and 43%)
than DNS, except for a very small value of � ¼ 0:01. For the latter we see that the results of CVS are almost identical with the
DNS run, as energy and enstrophy is almost perfectly retained. Memory is still reduced (<60%) but the CPU time is almost
doubled with respect to DNS. The time evolution of energy shown in Fig. 4 (left side) illustrates that, for all considered values
of �, the CVS result matches well with the DNS reference solution. For the evolution of the enstrophy (Fig. 4, right side), we
see however that the dynamics differs from the DNS reference, which shows that the numerical dissipation of the CVS is not
sufficient.

The spectral distribution of energy in the streamwise direction is given in Fig. 5. For � = 0.2 and 0.1, the CVS results agree
well with the DNS reference in the large scales, but still differ in the small scales.
Table 1
Results obtained with the Norm #1. Percentages of CPU time (required on a Pentium IV, 2.5 GHz), memory compression, and errors in comparison with the DNS
solution for kinetic energy E and enstrophy Z at t ¼ 80 with different � and for N ¼ 1283.

Method � CPU time % CPU % Mem % E % Z

DNS 7 d 6 h 100 100 100 100
MR 0.3 2 d 2 h 28.74 25.96 99.83 83.19
MR 0.25 2 d 14 h 35.63 29.48 99.92 83.80
MR 0.2 2 d 15 h 36.21 33.44 99.92 84.85
MR 0.1 3 d 4 h 43.68 42.91 99.89 94.18
MR 0.01 13 d 20 h 190.80 75.93 99.98 99.99
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Fig. 4. Results obtained with the Norm #1. Kinetic energy vs. time (left) and enstrophy vs. time (right) for the reference DNS and the CVS with several
tolerance values.
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4.3.2. Results using the L2-normalization (Norm #2)
Table 2 shows the results of the CVS computations for the Norm #2, together with the DNS reference computation. The

CVS computations exhibit a significant reduction of CPU time and memory requirements with respect to the reference DNS
computation, while the final kinetic energy and enstrophy are reasonably well predicted.

Fig. 6 shows the time evolution of the kinetic energy and the enstrophy for the Norm #2. The evolution of the enstrophy
for the CVS computations (Fig. 6, right side) follows well the DNS reference computation until t � 30. For longer times, we
observe a significant error growth. In particular for � ¼ 0:08, the CVS underpredicts the enstrophy, the difference with re-
spect to DNS becoming larger than 7% at t = 80. The evolution of the kinetic energy (Fig. 6, left side) presents, as for the Norm
#1 results, a good agreement with the reference DNS computation, whatever the tolerance.

Concerning the final streamwise energy spectra (Fig. 7), it is shown that the agreement between the CVS computations
and the reference DNS is significantly improved when compared to the results of the Norm #1. For the large scales, i.e. when
k < 6, the CVS spectra almost coincide with the DNS. However, for k > 6, the differences becomes visible.

Still, the slight difference between CVS and DNS in the large scales (k < 6) involves a larger energy loss than the apparently
larger energy difference in the smaller ones (k > 6), because of the logarithmically scaled plot. As we can observe in Table 2,
the CVS with e ¼ 0:08 and the CVS with e ¼ 0:07 yield, respectively relative errors on energy eE of 0.0004 and 0.0011. Norm
#2 presents better results than the Norm #1, but the results on enstrophy are not accurate enough.
4.3.3. Results using the H1-normalization (Norm #3)
Fig. 8 shows that CVS computations based on the H1-normalization yield better results for the enstrophy and follow well

the dynamics of the DNS computation. Hereby the difference between DNS and CVS decreases for decreasing threshold val-
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Fig. 5. Results obtained with the Norm #1. Energy spectra in the streamwise direction at t ¼ 80 for � ¼ 0:3 (top left), � ¼ 0:25 (top right), � ¼ 0:2 (bottom
left), and � ¼ 0:1 (bottom right).

Table 2
Results obtained with the Norm #2. Percentages of CPU time (required on a Pentium IV, 2.5 GHz), memory compression, and errors in comparison with the DNS
solution for the kinetic energy E and the enstrophy Z at t ¼ 80 with different � and for N ¼ 1283.

Method e CPU time % CPU % Mem % E % Z

DNS 7 d 6 h 100 100 100 100
MR 0.5 7 h 57 min 4.58 5.44 97.84 89.35
MR 0.08 2 d 18 h 37.93 30.55 99.96 88.17
MR 0.07 3 d 5 h 44.25 32.73 99.90 92.46
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Fig. 7. Results obtained with the Norm #2. Energy spectra in the streamwise direction at t ¼ 80 for � ¼ 0:08 (left) and � ¼ 0:07 (right).
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ues and for � ¼ 0:03 we find the optimal agreement for the largest compression rate. These observations are confirmed in
Table 3.

Fig. 9 shows the final streamwise energy spectra for DNS and CVS computations with different tolerance values. Again the
agreement between CVS and DNS improves for decreasing tolerances. The CVS computation with � ¼ 0:03 seems to be the
optimal choice, since both DNS and CVS energy spectra almost coincide everywhere, whatever the wavenumber.

Table 3 shows the efficiency and accuracy of the CVS computations with the Norm #3. We observe that only 34.54% of the
memory requirements of the DNS are used to reproduce about 99.88% of the energy and 98.66% of the enstrophy of the DNS



Table 3
Results obtained with the Norm #3. Percentages of CPU time (required on a Pentium IV, 2.5 GHz), memory compression, and errors in comparison with the DNS
solution for the kinetic energy E and enstrophy Z at t ¼ 80 with different �, N ¼ 1283.

Method e CPU time % CPU % Mem % E % Z

DNS 7 d 6 h 100 100 100 100
MR 0.06 2 d 0 h 27.59 24.23 99.93 90.60
MR 0.05 2 d 2 h 28.74 27.46 99.69 92.81
MR 0.04 2 d 10 h 29.89 30.80 99.80 96.12
MR 0.03 2 d 8 h 32.18 34.54 99.88 98.66
MR 0.01 4 d 6 h 58.62 48.20 99.95 99.91
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Fig. 9. Results obtained with the Norm #3. Energy spectra in the streamwise direction at t ¼ 80 for different tolerance values: e ¼ 0:06 (top left), e ¼ 0:05
(top right), e ¼ 0:04 (bottom left), e ¼ 0:03 (bottom right).
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computation. For this computation, less than one third of the CPU time of the DNS is required, which means that the CVS is
more than three times faster than the DNS.

The vorticity fields in Fig. 3 confirm that we have a very good agreement between DNS and CVS computation with Norm
#3 and � ¼ 0:03. The last row of the figure presents the adaptive mesh at three different times and illustrates that the mesh
dynamically adapts to the flow evolution and concentrates points in the shear layer, without any heuristical refinement
criterion.

Concerning the DNS computation, it is shown that all the scales of the turbulent flow are well resolved. In fact, the energy
107 times lower than the largest energy is reached at the wavenumber k � 20. This value is much lower than the largest
admissible wavenumber k ¼ 64, when using a resolution 1283.

4.3.4. Influence of the incoherent part of the CVS computation (Norm #3)
In this part, we compute the energy spectrum of the discarded part of the CVS computation at the final time. We take the

difference between the DNS and CVS computations at t ¼ 80. We compare this result with the DNS data where we applied
the coherent vortex extraction (CVE) of the final solution using the same wavelet filtering (Fig. 10).

We observe a good agreement between the filtered DNS data (Fig. 10, right) and the CVS computation (Fig. 10, left). The
incoherent contributions are strongly reduced at all scales and they exhibit a k�2 decay behavior which corresponds to an
equipartition of enstrophy, i.e. the incoherent vorticity is decorrelated in physical space. The probability distribution func-
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tions of the total, coherent and incoherent velocities, the latter obtained either from the velocity difference between the DNS
and CVS computations or the velocity difference between the DNS and the CVS applied to the DNS solution, are shown in
Fig. 11. The results confirm the strongly reduced variance of the incoherent contributions with respect to both, the total
and coherent velocities and show that the high order statistics of the CVS computation are in good agreement with the
DNS. Furthermore we find that the incoherent velocity exhibits a Gaussian-like distribution. Thus neglecting incoherent con-
tributions during the flow evolution could justify the modeling of turbulent dissipation.
4.4. Influence of the Reynolds number

In this section, we study the influence of the Reynolds number. In addition to the previous case with Re ¼ 100, we perform
computations for Re ¼ 50 and 200. For every CVS computation, we use the Norm #3 and the optimal tolerance �opt ¼ 0:03.
4.4.1. Results with Re ¼ 50
The plots in Fig. 12 show the more dissipative behaviour of the flow compared to the case with Re ¼ 100 (see Fig. 3). The

two first rows of Fig. 12 are two-dimensional isolines of vorticity in the plane y ¼ 0 for both DNS and CVS computations. They
confirm that the solutions agree as well as in the case Re ¼ 100. At the bottom of Fig. 12, the evolution of the adaptive mesh
for the CVS computation is plotted, which confirms the efficient self-adaptive behaviour of the multiresolution algorithm.

Table 4 gives the performance of the CVS computation in comparison with the DNS one. The percentages are very similar
to the ones otained for Re ¼ 100 using the optimal tolerance (see Table 3), which shows the robustness of the choice of the
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Fig. 11. Results obtained with the Norm #3. Probability distribution functions of the velocity at t ¼ 80 for a tolerance e ¼ 0:03; Re ¼ 100. Left side: total,
coherent and incoherent part, the latter obtained from the difference between the DNS and CVS computations. Right side: total, coherent and incoherent
part, the latter obtained from the difference between the DNS and the CVE of the final DNS solution.



Fig. 12. Time evolution of a weakly compressible mixing layer for Re ¼ 50. First row: isolines of vorticity in the plane y ¼ 0 for the DNS solution. Second
row: same isolines for the CVS computation with � ¼ 0:03 and Norm #3. Third row: Corresponding isosurfaces of vorticity of the CVS kxk ¼ 0:5 (black) and
kxk ¼ 0:25 (gray). Fourth row: Adaptive mesh of the CVS computation. The time instants are t = 19 (left), t = 37 (center) and t = 78 (right).

Table 4
Percentages of CPU time, memory compression, and errors in comparison with the reference DNS solution for the kinetic energy E and the enstrophy Z at
t ¼ 80;N3 ¼ 1283 ;Re ¼ 50.

Method CPU time % CPU % Mem % E % Z

DNS 7 d 100 100 100 100
CVS 2 d 9 h 33.93 33.73 99.82 98.60
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tolerance. The energy spectra obtained with CVS agrees well for every scale with the reference DNS (Fig. 13, left side). The
time evolution of the kinetic energy and the enstrophy (Fig. 13, center and right side) shows likewise a good agreement be-
tween CVS and DNS.

4.4.2. Re ¼ 200
Compared with the case Re ¼ 100 (Fig. 3), we observe that the structures are less dissipated for Re ¼ 200 and that three-

dimensional effects are, as expected, more intense (Fig. 14). The isolines of the two-dimensional vorticity in the plane y ¼ 0
(Fig. 14) look identical for CVS and DNS computations, except a slight difference for the left vortex at t ¼ 78.

The results given in Table 5 for the percentages of CPU time, memory, energy and enstrophy are also very close to the ones
computed with Re ¼ 100 (see Table 3) using the same tolerance � ¼ 0:03.

The final energy spectra in the streamwise direction obtained by CVS and DNS methods are shown in Fig. 15. They are in
good accordance for almost every wavenumber. However, in the smallest scales (k > 10), the energy spectra loses accuracy.
Despite this, the CVS computation conserves 99.82% of the energy and 98.24% of the enstrophy of the DNS, which satisfies
our expectations.

The time evolution of energy and enstrophy (Fig. 15, center and right side) confirm the good agreement between the CVS
and DNS computations, keeping in mind that CVS requires around one third of the CPU time and the memory required by the
DNS (Table 5).

4.4.3. Comparison of energy spectra for different Reynolds numbers
In order to assess the influence of the Reynolds number on the streamwise energy spectra, we compare computations for

three Reynolds numbers (Fig. 16).
In every case we find a good agreement between the CVS and DNS computations for the whole range of wavenumbers. For

increasing Reynolds, we also see that the range of active wavenumbers increases and that the CVS is able to reproduce well
the small scale behaviour.

4.4.4. Dependance of the relative error on final energy and enstrophy with the Reynolds number
Additional computations for Re ¼ 75; Re ¼ 125; Re ¼ 150 and Re ¼ 175 have been performed, to check if the relative er-

ror of energy and enstrophy for CVS compared to DNS shows a Reynolds number dependence or remains constant. The en-
ergy and enstrophy values at t ¼ 80 vs. the Reynolds number are plotted in Fig. 17, for both DNS and CVS computations. First,
we observe that both energy and enstrophy increase with Re and that the gap between CVS and DNS computations slightly
increases.

However, we find that, for the kinetic energy, the relative error yields eE ¼ 1:797� 10�3 for Re ¼ 50, whereas, for
Re ¼ 200, we have eE ¼ 1:722� 10�3. This means that the relative error remains almost constant. For the enstrophy, similar
observations can be made, i.e. for Re ¼ 50 the relative error of enstrophy is eZ ¼ 1:397� 10�2 and for Re ¼ 200 we have
eZ ¼ 1:764� 10�2. This shows that the relative error on enstrophy slightly increases, but is still of the same order of magni-
tude. We conclude that the relative errors on energy and enstrophy remain stable for the investigated range of Reynolds
numbers.

4.5. Time evolution of a mixing layer computed at resolution 2563

Finally we present a CVS computation with norm #3 and � ¼ 0:03 at resolution N ¼ 2563. The domain is now set to
½�60;60
3, so that the smallest space step is the same as in the case 1283. As before, the Reynolds number is set to
Re ¼ 200, and the final time corresponds to t ¼ 80.
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Fig. 13. Energy spectra in the streamwise direction at t ¼ 80 (left), time evolution of the kinetic energy (center) and the enstrophy (right) for both DNS and
CVS computations, N3 ¼ 1283;Re ¼ 50.



Fig. 14. Time evolution of a weakly compressible mixing layer for Re ¼ 200. First row: Isolines of vorticity in the plane y ¼ 0 for the reference DNS solution.
Second row: same isolines for the CVS computation with � ¼ 0:03 and norm #3. Third row: Corresponding isosurfaces of vorticity kxk ¼ 0:5 (black) and
kxk ¼ 0:25 (gray) for the CVS computation. Fourth row: Adaptive mesh for the CVS computation. The time instants are t = 19 (left), t = 37 (center) and t = 78
(right).

Table 5
Percentages of CPU time, memory compression, and errors for E and Z, in comparison with the DNS solution, N3 ¼ 1283, Re ¼ 200.

Method CPU time % CPU % Mem % E % Z

DNS 8 d 14 h 100 100 100 100
CVS 2 d 13 h 29.81 34.93 99.83 98.24
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Fig. 15. Energy spectra in the streamwise direction at t ¼ 80 (left). Time evolution of the kinetic energy (center) and enstrophy (right) for the CVS and DNS
computations, N3 ¼ 1283;Re ¼ 200.
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Fig. 16. DNS and CVS energy spectra at t ¼ 80 for Re ¼ 50 (left), Re ¼ 100 (center) and Re ¼ 200 (right).
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Fig. 17. Final energy E (left) and enstrophy Z (right) vs. the Reynolds number for the DNS and CVS computations.
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Since the method has previously been validated for the same smallest space step, and since the DNS computation would
require more than two months, we only perform the CVS computation here. The goal of this test-case is not to validate the
method, but to show that larger CPU time and memory compressions can be reached with this method when using a larger
maximal resolution. To estimate the CPU time that such a DNS computation would require, we performed the DNS compu-
tation on a few iterations only. We found that the DNS computation would approximately require 71 days of CPU time on a
single PC.



Fig. 18. Time evolution of a weakly compressible mixing layer at resolution N ¼ 2563. CVS computation with � ¼ 0:03 and norm #3. First row: Two-
dimensional isolines of vorticity in the plane y ¼ 0, 10 isolines between 0.1 and 1. Second row: Corresponding isosurfaces of vorticity kxk ¼ 0:5 (black) and
kxk ¼ 0:25 (gray). Third Row: Adaptive mesh of the CVS computation. The corresponding time instants are t = 19 (left), t = 37 (center) and t = 78 (right).

Table 6
Percentages of CPU time, and CPU and memory compression for the CVS computation. Results for Re ¼ 200 and N3 ¼ 2563.

Method CPU time % CPU % Mem

CVS 16 d 17 h 23.40 17.06
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The time evolution of the mixing layer is shown in Fig. 18. As before, we observe the efficient self-adaptive behavior of the
algorithm, which exhibits more points in the shear zone, and less points far from this zone. The performance of the CVS com-
putation is shown in Table 6. As expected, the performance increases with the number of scales, and the CVS computation is
here more than four times faster than the DNS one (see Fig. 19).
5. Conclusion and perspectives

In the present paper, an adaptive multiresolution method is presented to solve the three-dimensional compressible Na-
vier–Stokes equations in a Cartesian geometry. The Coherent Vortex Simulation approach previously developed for incom-
pressible turbulence has been extended to compressible flows. It was shown that the time evolution of the coherent flow
contributions can be computed efficiently using the adaptive multiresolution method. As generic test-case for free shear
flows, we considered weakly compressible turbulent mixing layers at low Reynolds numbers (50 < Re < 200). Different
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Fig. 19. Energy spectra in the streamwise direction at t ¼ 80 (left). Time evolution of the kinetic energy (center) and enstrophy (right) for the CVS
computations at Re ¼ 200, N ¼ 2563.
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thresholding rules based on different norms, i.e. L1; L2 and H1 norms, have been investigated. We found that the H1 based
threshold yield the best results in terms of accuracy and efficiency. Concerning the computational efficiency, we showed that
the CVS computation is approximatively three time faster than the DNS for a maximal resolution of 1283, and more than four
times faster for a maximal resolution 2563. The CVS computation also requires less than one third of the memory that the
DNS requires for a maximal resolution of 1283. In the case 2563, this factor is reduced to almost one sixth. Additionally, all
the dynamically active scales of the flow are well resolved. The above CVS results are of course problem dependent, i.e. on the
considered flow and its dimensionless parameters. This work can be seen as a first feasability study of CVS for weakly com-
pressible shear flows and further investigations for higher Reynolds and Mach numbers and other flow types are necessary
and will be reported in future work. Applications of the adaptive multiresolution method to supersonic flows considering the
compressible Euler equations can be found in [6], which illustrates the potential of the adaptive multiresolution method for
higher Mach numbers.

To improve further the compression of the CVS computations the threshold value � has to be increased and thus more
wavelet coefficients are discarded. However in this case the corresponding incoherent flow contributions cannot be simply
neglected and some subgrid scale modeling is required to account for turbulent dissipation, similar to LES models. This ap-
proach called SCALES has been introduced in [10] and could be one possible direction for future work.

From numerical point of view one drawback of the current approach is the explicit time discretization, which imposes a
time step limitation due to stability reasons, i.e. the smallest spatial scale dictates the actual size of the time step. A possible
solution to circumvent this obstacle is the use of local time stepping strategies proposed in [5,18]. Using local time stepping,
one is able to increase the time step on larger scales without violating the stability criterion of the explicit time integration
and hence to further speed up the computation.

The restriction to Cartesian geometries can be surmounted using a volume penalization approach, introduced originally
by Angot et al. [1] for incompressible flows and successfully applied with adaptive wavelet methods in [23]. An extension of
the volume penalization to compressible flows has been published recently in [16] where, in addition to the permeability
parameter, an impedance parameter is introduced to get rid of the sound waves inside the obstacle or solid wall regions.
Current work is going in this direction to develop efficient CVS methods for compressible flows in complex geometries.
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