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We consider wavelet estimation of the time-dependent (evo-
lutionary) power spectrum of a locally stationary time series.
Hereby, wavelets are used to provide an adaptive local smooth-
ing of a short-time periodogram in the time–frequency plane. For
this, in contrast to classical nonparametric (linear) approaches, we
use nonlinear thresholding of the empirical wavelet coefficients.
We show how these techniques allow for both adaptively recon-
structing the local structure in the time–frequency plane and for
denoising the resulting estimates. To this end, a threshold choice
is derived which results into a near-optimal L2-minimax rate for
the resulting spectral estimator. Our approach is based on a 2-d or-
thogonal wavelet transform modified by using a cardinal Lagrange
interpolation function on the finest scale. As an example, we apply
our procedure to a time-varying spectrum motivated from mobile
radio propagation. c© 1996 Academic Press, Inc.

1. INTRODUCTION

Estimating power spectra which (slowly) change over
time is an important problem for describing and analyz-
ing many physical phenomena which exhibit an instationary
behavior over time (quasi-oscillating behavior, transients,
etc.). Examples are numerous and can be found, e.g., in
the field of speech and sound analysis. There are a lot
of approaches trying to model this by introducing time–
frequency spectra, among which the Wigner–Ville (WV)
spectrum plays a prominent role (see, e.g., [11]).

In our approach we start from a locally stationary process
as underlying model and use an extension of the definition
of the WV spectrum introduced by Dahlhaus [4], the so-
called evolutionary spectrum. It allows for both the unique
definition and the consistent estimation of what might be
called the spectrum of a nonstationary time series in a sin-
gle time point. In contrast to the (parametric) approach in
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[4], here, we address the problem of nonparametrically es-
timating the underlying time-varying spectrum by a short-
time periodogram. Then, immediately the question arises
how to smooth this eratic estimator as a function of both
time and frequency. Here, we suggest the use of 2-d wavelet
thresholding. This approach can be interpreted in a twofold
context: on one hand, it serves as a starting point in consid-
ering the general problem in time–frequency analysis and
estimation: How can one adapt to the underlying time–
frequency content of a nonstationary time series? On the
other hand, the original smoothing problem can be con-
sidered as a special example in the more general context
of two-dimensional adaptive smoothing problems. Here, for
time-varying spectrum estimation, further difficulties arise
from the non-Gaussian and 2-d dependent error structure
of the considered random variables.

More specifically, in order to solve this smoothing prob-
lem, we use a two-dimensional periodic wavelet expansion
of the short-time periodogram over segments of length N
of the data X1, . . . , XT. Thereby we choose as orthonormal
wavelet basis, in the resulting two-dimensional multires-
olution analysis, periodized splines of the Battle–Lemarié
family (see, e.g., [8]). In contrast to classical wavelet trans-
formation, by use of a cardinal Lagrange interpolation func-
tion on the finest scale we prevent from losing information
of our sampled periodogram data on this finest scale. More-
over, both numerical approximation and statistical proper-
ties of our resulting wavelet coefficients are improved by
this “collocation” wavelet transform. By nonlinear thresh-
olding (see, e.g., [6]) of the empirical wavelet coefficients,
analogously to the work of [9] for stationary time series,
we provide a local smoothing procedure, i.e., a denoised
estimator which adapts to the local structure of the non-
stationary time series. Moreover, we show that our esti-
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mator attains a near-optimal minimax L2-convergence rate
uniformly over a whole function class. Hence, its asymp-
totic properties parallel what can be found in a variety of
seminal papers by Donoho et al. (cf. [6], e.g., and [7] for
a short overview): Here we only like to mention the su-
periority of nonlinear threshold estimators over traditional
linear schemes, e.g., global kernel smoothers, for functions
of inhomogeneously distributed low regularity (like those
of bounded variation).

The content of the present paper is organized as follows:
A two-dimensional periodic multiresolution and a colloca-
tion wavelet transform is recalled in Section 2. Then, in
Section 3, we review the concept of evolutionary spectra of
a locally stationary process, as described in [4]. Moreover,
we introduce the short-time periodogram as a localized pe-
riodogram over segments of the original time series. Section
4, the main part, treats wavelet estimation of the evolution-
ary spectrum by nonlinear thresholding of the empirical co-
efficients, i.e., the coefficients of the localized periodogram
estimates. We first investigate their statistical behavior and
estimate their tail probability to end up with an appropri-
ate threshold. Our main theorem shows that the resulting
threshold estimator achieves a near-optimal rate of conver-
gence of the L2-risk, i.e., the integrated mean-squared error
between estimate and true spectrum. At this place, we re-
strict to rigorously derive the results for Hölder function
classes only, mainly in order to simplify the proofs. How-
ever, by adopting techniques similar to those in [15] we
were able to generalize our main results to more interest-
ing functions of lower inhomogeneously distributed regu-
larity. With this, basically continuous functions of bounded
variation are included. Finally, Section 5 deals with appli-
cations and simulations. We give an example from mobile
radio propagation [10] and study the performance of our
nonlinear wavelet estimate by simulating this example of a
time-dependent spectrum. Also, we give a comparison with
a linear estimate, a globally smoothed wavelet estimator. It
turns out that with local smoothing we are able to suppress
most of the noise in the estimate without losing relevant
structure of the spectrum.

2. PERIODIC ORTHONORMAL WAVELET BASES

2.1. Periodic Multiresolution of L2(T2)
This section serves to recall the construction of a mul-

tiresolution analysis (MRA) of L2(T), the space of real-
valued square integrable 1-periodic functions living on the
torus T = R/Z [16, 12]. It is equipped with the inner prod-
uct 〈f, g〉T =

∫
T f(x)g(x)dx and the corresponding norm

‖f‖2
2 = 〈f, f〉T. A periodic MRA of L2(T), which is a se-

quence of embedded subspaces Vj ⊂ Vj+1, j á 0 of L2(T),
can be obtained through periodization of the scaling func-
tions ϕ̃ and the wavelets ψ̃ constituting a MRA of L2(R) by

the relation

ϕj,k(x) =
∑
n∈Z

ϕ̃j,k(x− n) = 2j/2
∑
n∈Z

ϕ̃(2j(x− n) − k).

The definition of a MRA in the periodic case carries over
from the nonperiodic case with only slight technical modi-
fications; see [16]. In the classical case the scaling functions
{ϕj,k, k = 0, . . . , 2j − 1} constitute an orthonormal basis of
Vj, so that 〈ϕj,i, ϕj,k〉T = δi,k. The orthogonal complement
space Wj of Vj in Vj+1 is given by

Wj = span{ψj,k(x), k = 0, . . . , 2j − 1}
with the orthogonal wavelets ψj,k(x) = ψj,0(x− k/2j).

We obtain a two-dimensional MRA of L2(T2) through
the tensor product of two one-dimensional MRAs of L2(T)
[12]. We define the bivariate scaling function via Φ(x, y) =
ϕ(x)ϕ(y) and the corresponding wavelets via Ψh(x, y) =
ϕ(x)ψ(y),Ψv(x, y) = ψ(x)ϕ(y), Ψd(x, y) = ψ(x)ψ(y). Simi-
larly defining the space Vj = Vj

⊗
Vj, we get for its or-

thogonal complement in Vj+1 the space Wj, j á 0,

Wj = span{Ψ
µ
jk(x, y) : k = (k1, k2),

ki = 0, . . . , 2j − 1, µ = h, v, d},
i.e., consisting of three different wavelets (horizontal, ver-
tical and diagonal). Thereby, we obtain a decomposition of
L2(T2) into mutually orthogonal subspaces

L2(T2) = V0

⊕
já0

Wj

and a decomposition of a function f ∈ L2(T2) by

f(x, y) = c00 +
∞∑
j=0

2j−1∑
k=0

∑
µ=h,v,d

d
µ
jkΨ

µ
jk(x, y) (2.1)

with the wavelet coefficients

d
µ
jk = 〈f(x, y),Ψ

µ
j,k(x, y)〉T2 , c00 =

∫
T2
f(x, y)dx dy. (2.2)

Due to the periodicity, the index range in (2.1) is of finite
length 2j. Furthermore, there exists a coarsest scale j = 0,
because ϕj,k = 1 for j à 0 as

∑
k ϕ̃j,k = 1.

2.2. Collocation Wavelet Transform on L2(T2)

The projection fJ = PJf of f ∈ L2(T2) onto the 22J-
dimensional subspace VJ ⊂ L2(T2) is somewhat arbitrary.
Identification of the sampled values of f(k1/2J, k2/2J) with
the scaling coefficients cJ,k1,k2 results in an approximation of
low order O(2−J), only. Therefore we choose a collocation
projection fJ, defined by

fJ(x, y) =
2J−1∑
k1=0

2J−1∑
k2=0

f

(
k1

2J
,
k2

2J

)
SJ

(
x− k1

2J
, y − k2

2J

)
(2.3)
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which prevents from losing information on the finest scale
J. In (2.3), SJ(x, y) denotes the cardinal Lagrange function
of the space VJ defined in [20].

The calculation of the scaling coefficients cJk starting
with samples of f at grid points {k1/2J, k2/2J} is done with
a discrete 2J-periodic interpolation filter LJ(k) = 〈SJ(x, y),
ΦJ,k(x, y)〉T2 [16], which is an optimal quadrature formula
in VJ.

The decomposition of fJ ∈ VJ into contributions from
V0 and Wj, j = J−1, . . . , 0, is calculated subsequently with
projections onto Vj−1 and Wj−1 by recursive application of
discrete periodic filters G and H [16]. The filters G and H
are defined as follows [12]:

G
µ
j (n) = 〈Ψµ

j−1,0(x, y),Φj,n(x, y)〉T2

Hj(n) = 〈Φj−1,0(x, y),Φj,n(x, y)〉T2 . (2.4)

The efficient realization of the periodic wavelet transform
is based on fast convolution techniques [16] employing dis-
crete fast Fourier transforms (FFT) and downsampling in
Fourier space [8]. The analytic expressions in Fourier space
for the wavelets, scaling functions, the cardinal Lagrange
function and the discrete filters for spline wavelets of the
Battle–Lemarié family, used in the present work, are given
in [16, 8]. With the choice m = 6, where m denotes the order
of the splines, we experienced good results, and this seems
to be a good compromise between localization in Fourier
and physical space. Furthermore the resulting wavelets are
in C4(T2) and are symmetric.

This setup will be used in section 4 for 2-d wavelet
smoothing of an estimator of the evolutionary spectrum. We
will introduce this particular class of time-varying spectra
for so-called locally stationary processes in the following
section.

3. EVOLUTIONARY SPECTRA OF LOCALLY
STATIONARY PROCESSES

We start with a review of the model of a locally stationary
process as given by Dahlhaus in [4, Sect. 2], which gener-
alizes the Cramér representation of a stationary stochastic
process.

Definition 3.1. A sequence of stochastic processes
{Xt,T}t=1,...,T is called locally stationary with transfer func-
tion Ao and trend µ if there exists a representation

Xt,T = µ

(
t

T

)
+
∫ 1/2

−1/2
Aot,T(λ) exp(2πiλt)dξ(λ), (3.1)

where
(i) ξ(λ) is a stochastic process on [−1/2, 1/2] with

ξ(λ) = ξ(−λ),Eξ(λ) = 0 and orthonormal increments, i.e.,
cov(dξ(λ), dξ(λ′)) = δ(λ−λ′)dλ, cum{dξ(λ1), . . . , dξ(λk)} =
η
(∑k

j=1 λj
)
hk(λ1, . . . , λk−1)dλ1 . . . dλk, where cum{. . .}

denotes the cumulant of order k, |hk(λ1, . . . , λk−1)| à
constk for all k (with h1 = 0, h2(λ) = 1) and η(λ) =∑∞
j=−∞ δ(λ + j), and where
(ii) there exists a positive constant K and a smooth func-

tion A(u, λ) on [0, 1] × [−1/2, 1/2] which is 1-periodic in
λ, with A(u,−λ) = A(u, λ) such that for all T,

sup
t,λ

|Aot,T(λ) − A(t/T, λ)| à KT−1. (3.2)

A(u, λ) and µ(u) are assumed to be continuous in u.

This class of locally stationary processes includes ARMA
processes with time-varying coefficients (see [5, Theorem
2.3]), and, of course, if A and µ do not depend on t and
T, ordinary stationary processes. For simplicity, we assume
that µ(u) = 0; i.e., we do not treat the problem of estimating
the mean of the time series. Also, here we restrict ourselves
to Gaussian processes—mainly for reasons of using proof
techniques which are somewhat similar to those of [9]. But
we like to note that using techniques as in [14] will enable us
to derive similar results also for the non-Gaussian situation.

In this model the smoothness of A in u restricts the de-
parture from stationarity and ensures the locally stationary
behavior of the process. It also allows us to define a unique
underlying time-varying spectrum of {Xt,T}, as follows.

Consider first the so-called Wigner–Ville spectrum (see,
e.g., [11]), which for fixed T in this situation is

fT(u, λ)

=
∞∑

s=−∞
cov{X[uT−s/2],T;X[uT+s/2],T} exp(−2πiλs), (3.3)

where Xt,T is defined by (3.1), with Aot,T(λ) = A(0, λ) for
t < 1 and Aot,T(λ) = A(1, λ) for t > T.

Then, by the following definition, fT(u, λ) will be related
to the smooth amplitude function A(u, λ):

Definition 3.2. As evolutionary spectrum of {Xt,T}
given in (3.1) we define, for u ∈ (0, 1),

f(u, λ) := |A(u, λ)|2. (3.4)

This f(u, λ) is, in general in some mean-square sense, the
limit of fT(u, λ) as T → ∞.

By [5, Theorem 2.2], if A(u, λ) is uniformly Lipschitz in
u and λ with index α > 1/2, then, for all u ∈ (0, 1),∫ 1/2

−1/2
|fT(u, λ) − f(u, λ)|2dλ = o(1). (3.5)

Remark 3.3. The representation (3.1) is based on a se-
quence of functions Aot,T(λ) instead of the smooth func-
tion A(t/T, λ) itself. For some simple examples, like time-
dependent moving average processes, Aot,T(λ) = A(t/T, λ).
However, in general, the time-varying second order struc-
ture of the process is only assumed to be coupled to some
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“asymptotically” smooth behavior. In particular, this is nec-
essary to include the class of autoregressive processes with
time-varying coefficients.

If we restrict to a subclass of locally stationary processes
with a representation in (3.1) which is based directly on
a smooth A(t/T, λ) with uniformly bounded first partial
derivatives, then Eq. (3.5) holds in an almost everywhere
pointwise sense. If we were to consider less regular A(u, λ)
being only continuous and of bounded 2-d total variation,
then Eq. (3.5) will continue to hold in some L2-sense (see
[15]). This is the least regular class of functions which we
can allow for the generalization of our main Theorem 4.10
to hold (see Remark 4.9 in the next section).

Remark 3.4. In (3.1)–(3.3), t and s denote time points
in the interval [1, T] while u denotes a time point in the
rescaled interval [0, 1], i.e., u = t/T. Note that (3.1) does
not define a finer and finer discretized continuous time pro-
cess as T tends to infinity. It rather means that more and
more data of the same local structure, given by A(t/T, λ),
are observed with increasing T. As illustration we cite an
example given in [4], which is

A

(
t

T
, λ

)
= 1[1/4,1/2]

(
t

T

)
δ(λ − λ1)

+ 1(1/2,3/4]

(
t

T

)
δ(λ − λ2). (3.6)

With increasing T more and more periods of the two har-
monics exp(2πiλ1t) and exp(2πiλ2t) are observed.

We can interpret this approach of rescaling in time as try-
ing to bound the complexity of the spectrum as the object
which defines the underlying model: Without any rescaling
(or related further assumptions) it is per se not possible to
make statistical inference on a spectrum f(t, λ) which de-
pends on t in a naive way, i.e., t = 1, . . . , T, even with T
tending to infinity. Consider for a moment, however, non-
parametric regression, where with growing sample size we
get more and more statistical information due to a denser
and denser regression design. There the object which de-
fines the underlying model is a fixed regression function (on
some unit interval). Hence, back to considering the spec-
trum, by rescaling f(t/T, λ) and assuming smoothness the
complexity of this new object now increases slower as the
amount of statistical information when the length T of the
series grows.

Moreover, Definition 3.2, under the smoothness assump-
tions of (3.5), turns out to be unique (cf. the uniqueness
of the Wigner–Ville spectrum, pointed out in [11, Sect. 2,
B.7]). This is an inherent advantage of the approach given
in [4] when trying to define what is meant by “the spectrum
of a nonstationary process X1, . . . , XT at a fixed time point
t0”: Due to the nonstationarity only a few points around t0
may have the same spectral structure. It is clear that the

probability structure of these few points does not specify a
spectral density uniquely. But as pointed out before and as
can be observed by (3.3), the number of observations in a
neighborhood around any fixed t0 is growing with T. Hence,
we can think of an inherent “length of stationarity,” which
in rescaled time u0 = t0/T asymptotically shrinks but in ac-
tual time is allowed to grow more slowly than the length T
of the series. By this, it is possible to end up with a unique
spectral density f(u0, λ) = |A(u0, λ)|2 at a fixed time point
based on infinitely many observations of the same kind at
this fixed time. (More details on that can be found in [4,
Sect. 2], and in [5], also).

Having defined the evolutionary spectrum as our under-
lying object of interest, we now turn to what we like to call
a localized periodogram estimator of this object. It is a lo-
cal version of the classical periodogram over a segment of
length N of the tapered data Xt,T, 1 à t à T, with midpoint
[uT],

IN(u, λ)

= H−1
2,N

∣∣∣∣∣N−1∑
s=0

h

(
s

N

)
X[uT−(N/2)+s+1],T exp(−2πiλs)

∣∣∣∣∣
2

,

(3.7)

where h : [0, 1] → [0, 1] is a sufficiently smooth taper-
function (“window”) and H2,N =

∑N−1
s=0 h

2(s/N) the appro-
priate norming factor with H2,N ∼ N (see again [4]). Using
data-tapers, e.g., a Hanning-window which is of cosine form

h(u) =


1
2 (1 − (cos 2πu))

h(1 − u)


 u ∈ [0, 1

2 ]

u ∈ [ 1
2 , 1]

, (3.8)

is a well-known remedy in spectral estimation to reduce
leakage effects, which occur in particular for spectra with
a high dynamic range.

In practice, IN(u, λ) is calculated on possibly overlapping
segments of Xt,T of length N = 2J: The shift from segment
to segment is denoted by S, with 1 à S à N, and the
resulting number of segments M controls smoothing in u-
direction. That is, we calculate IN(u, λ) at M timepoints

ui = ti/T, where ti = S · i +N/2, 0 à i à M− 1,

with

T = S · (M− 1) +N.

This principle of segmentation is illustrated in Fig. 1.
With respect to asymptotics, as will be found in the next

section, we have to impose some additional assumptions
which adapt the estimation to the asymptotically shrinking
inherent “length of stationarity,” as in Remark 3.4. For an
asymptotically unbiased estimate of the evolutionary spec-
trum we basically need that N2/T → 0, as T → ∞, but
still has N to grow sufficiently fast. The precise rates can
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FIG. 1. Scheme of transformation: Xt,T → IN(ui, λ), local periodogram
over segments of length N with shift S = N/2 − 1 (demonstration of
localization principle, for i = 0, . . . , 4); IN(ui, λn), 0 à i, n à N− 1, in the
time–frequency plane → two-dimensional wavelet coefficients.

be found along with Assumption (A3) in the next Sec-
tion 4.

Of course, as for classical periodograms of stationary
time series, now the question arises how to smooth this
wildly fluctuating estimate, moreover, how to do it adap-
tively over frequency and time. This is to be found in the
next section on wavelet thresholding the localized peri-
odograms.

4. WAVELET THRESHOLD ESTIMATES OF THE
EVOLUTIONARY SPECTRUM

In this section, we present our approach of how to use
wavelet thresholding to adaptively smooth localized peri-
odograms. We give asymptotic properties of the empirical
wavelet coefficients and use these to show the basic Theo-
rem 4.10 on the minimax L2-risk of our resulting estimator
of the evolutionary spectrum.

4.1. Denoising by Nonlinear Thresholding
Denoising of curve estimates in general, and the pe-

riodogram as a spectrum estimator in particular, can be
performed by applying nonlinear thresholding techniques
which were introduced by Donoho et al. (see [6, 7], e.g.).
First theoretical investigations in the context of spectral
density estimation for stationary time series can be found
in [9] for Gaussian time series and in [14] for more general
stationary processes.

Basically, these nonlinear techniques are important to
benefit also on the empirical side of estimation from a par-
ticular nice property of wavelets: They deliver sparse rep-
resentations for curves with inhomogeneously distributed
regularity. This can often be observed by spatially varying
local structure of the curve. For spectra, this would typi-
cally mean regions with sharp peaks followed by regimes
of widely spread mode-like structure. As an example we
like to refer to the simulations in Section 5.2.

The general idea of nonlinear thresholding is to set to
zero, by the now common rules of soft or hard threshold-
ers, those empirical wavelet coefficients which do not ex-
ceed a suitable chosen threshold λ = λT, where again T de-
notes the observed sample size. For hard thresholding, apply
δH
λ (x) = x · 1{|x|>λ} to the empirical wavelet coefficients, for

soft thresholding choose δS
λ (x) = sgn(x) · (|x| − λ)+. With

this, only those coefficients remain which are supposed to
carry significant signal information. The right level of sig-
nificance has to be delivered by an appropriate choice of
the threshold λT, which in general can also depend on the
resolution scale and location of the wavelet coefficients. In
many approaches, its choice is motivated by ending up with
a smooth estimator. The then called universal threshold λT
basically has to be proportional to the standard deviation
of the empirical coefficients, plus some extra factor which
protects against large deviations in their tail distribution.
Whereas for data with a Gaussian noise structure this ex-
tra factor is of the form

√
const. logT, for periodograms

of Gaussian stationary time series Gao [9] showed that a
choice of the form const. logT takes the heavier tails of
the χ2-distribution into account.

In the following we generalize the existing approaches to
the 2-d situation of the time-varying spectrum and derive
similar results.

4.2. Wavelet Expansion of Evolutionary Spectrum and
Local Periodogram

First, we give the (theoretical) wavelet decomposition
of the projection fJ(u, λ) of the spectrum f(u, λ) onto the
space Vj (cf. Eq. (2.1)),

fJ(u, λ) = c00 +
J−1∑
j=0

2j−1∑
k=0

∑
µ=h,v,d

d
µ
jkΨ

µ
jk(u, λ), (4.1)
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with the coefficients

c00 =
∫ 1

0

∫ 1/2

−1/2
f(u, λ)du dλ (4.2)

d
µ
jk =

∫ 1

0

∫ 1/2

−1/2
f(u, λ)Ψ

µ
jk(u, λ)du dλ. (4.3)

Here, we will identify [0, 1] × [−1/2, 1/2] with T2, using
the notation of Section 2, to avoid notational inconvenience.
Note that in the simulation examples of Section 5 we con-
sider only spectra which are periodic in time, too. Hence,
there, we use the same periodic wavelet transform for both
dimensions. However, in general, one would use a trans-
form in time which is based on some wavelets adapted to
a compact interval; see, e.g., [3].

Now, we replace the unknown f(u, λ) by a nonparametric
estimate, the localized periodogram IN(ui, λ), ui = ti/T, i =
0, . . . ,M − 1, as introduced in the previous section. Note
that in practice we have to choose M to equal N to be able
to use a traditionally quadratic 2-d wavelet scheme.

The resulting empirical coefficients are

č00 =
1
M

M−1∑
i=0

∫ 1/2

−1/2
IN(ui, λ)dλ (4.4)

and

ď
µ
jk =

1
M

M−1∑
i=0

∫ 1/2

−1/2
IN(ui, λ)Ψ

µ
jk(ui, λ)dλ. (4.5)

Remark 4.1. Note, that in practice we do not calculate
the coefficients according to (4.4) and (4.5). We start from
a sample of N2 data points IN(ui, λn), sampled on an equally
spaced grid (ui, λn), 0 à i, n à N− 1, with Fourier frequen-
cies λn = n/N, and with N = 2J, which determines the
finest scale J. Then, we use the collocation projection de-
scribed in Section 2 by using the Lagrange function SJ(u, λ)
for both dimensions to calculate the empirical wavelet co-
efficients on the finest scale J:

c̃Jk =
∫ 1

0

∫ 1/2

−1/2
f̃J(u, λ)ϕJk1 (u)ϕJk2 (λ)du dλ

=
∫ 1

0

∫ 1/2

−1/2

N−1∑
i=0

N−1∑
n=0

IN(ui, λn)SJ

(
u− i

N

)

× SJ

(
λ − n

N

)
ϕJk1 (u)ϕJk2 (λ)du dλ

=
∑
i,n

In(ui, λn)LJ(k1 − i)LJ(k2 − n). (4.6)

As an analog to equation (2.3), f̃J(u, λ) can be considered as
an interpolated periodogram. The empirical coefficients ďjk

and č00 then are calculated from čJk by the corresponding
filters G and H (see Section 2). The form of the coefficients
is similar to the one of equation (4.5), and hence they share
the same statistical properties. However, the projection of
the empirical sample onto VJ by an interpolatory spline
quadrature is numerically more accurate than approxima-
tion of the inner product by simply a sum over equally
spaced grid points (sometimes also called “Fourier interpo-
lation”). This is important, in particular, for scales j close
to the finest scale J. Here using Fourier interpolation would
result into remainders which are of the same order as the
leading terms. On the other hand, equation (4.6) does pro-
vide, however, the same degrees of freedom as do (4.4) and
(4.5), because LJ is of order O(2−J) = O(N−1). Hence, in
particular, bias and variance are of the same order as in
equations (4.4) and (4.5). So, we use (4.4) and (4.5) merely
for reasons of notational convenience to demonstrate the
statistical principles in more clarity.

Figure 1 shows the following principle: The time-depen-
dent covariance of the nonstationary series {Xt,T} is trans-
formed into a two-dimensional sample IN(ui, λn) in the
time–frequency plane and, subsequently, into the corre-
sponding empirical wavelet coefficients. With this, the in-
formation in the time-dependent frequency content of Xt,T
is localized.

Remark 4.2. Obviously, the adaptation properties of this
estimate depend on the choice of the segment length N and
the shift S, respectively: Once S or N are chosen, the maxi-
mal resolution of the periodogram estimate w.r.t. both time
and frequency is fixed: The smaller N the better is the res-
olution in time, but the worse is the one in frequency, and
vice versa. So, it is of further interest to study how this
choice, too, can be done adaptively with wavelet-related
methods. One possibility, which avoids a preliminary choice
of a fixed N, has meanwhile been explored by the first au-
thor and can be found in [15]. Also, in the meantime, an
interesting work of Adak [1] came to our attention which
addresses the problem of adaptively finding the appropriate
segmentation by using a tree-structured search algorithm.

In practice, for our examples considered in Section 5, the
choice of an intermediate S seems appropriate.

4.3. Statistical Behavior of Two-Dimensional Empirical
Coefficients

It is now our goal to investigate the statistical behavior of
the empirical wavelet coefficients ď

µ
jk. First, give the precise

regularity assumptions on both the spectrum f(u, λ), i.e., on
A(u, λ), and on the wavelet basis functions used.

Assumptions.
(A1) Let A(u, λ) be differentiable in u and λ with uni-

formly bounded first partial derivatives.
(A2) Let Ψu

jk(u, λ) be differentiable in u and λ with uni-
formly bounded first partial derivatives.
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(A3) The parameters N, S and T fulfill the relations (with
the notation “�” meaning “asymptotically smaller”)

T1/4 � N � T1/2/ lnT

and S = N or S/N → 0, as T → ∞.

(A4) The data-taper h(x) is continuous on [0, 1] and twice
differentiable at all x /∈ P where P is a finite set and
supx /∈P |h"(x)| < ∞.

We give a discussion of these assumptions in Remark 4.5
further below.

Secondly, we state a central limit theorem which is one
of the two keypoints for deriving the statistical behavior
of the ďjk in general, i.e., non-Gaussian, situations whereas
for a Gaussian time series, it is sufficient to investigate the
asymptotics of the mean and the variance. The other key-
point will be the examination of the tail probability of the
empirical wavelet coefficients which is to be found in the
next subsection.

Theorem 4.3. Suppose {Xt,T}t=1,...,T is given by (3.1),
and let Assumptions (A1)–(A4) be fulfilled. Then, as T →
∞, uniformly over j,k with 2j = o(N), the empirical coef-
ficients ď

µ
jk are asymptotically normally distributed, i.e.,
√
T(ď

µ
jk − d

µ
jk) -→

L
N(0, A

µ
jk), µ = h, v, d,

where d
µ
jk and ď

µ
jk are given by (4.3) and (4.5), respectively,

and where

A
µ
jk = 2Ch ·

∫
T2

{f(u, λ)}2Ψ
µ
jk(u, λ)

× [Ψ
µ
jk(u, λ) + Ψ

µ
jk(u,−λ)]du dλ (4.7)

with Ch =
∫ 1

0 h
4(x)dx/

(∫ 1
0 h

2(x)dx
)2

for S = N and Ch = 1
if S/N → 0.

Proof. Theorem 4.3 is shown by straightforward appli-
cation of [4, Theorem A.2], which holds regardless to the
Gaussian assumption. For reasons of clarity (dealing with
weight functions which depend on j and k, with 2j = o(N)),
we give the detailed results, holding uniformly in k, for bias,
variance and the cumulants of higher order needed in the
proof to make use of the method of cumulants:

(i) Eď
µ
jk − d

µ
jk = O(2−jN−1) = o(T−1/2) ∀µ = h, v, d

(ii) var{ďµjk} =
A
µ
jk

T
+O

(
2jN
T2

)
+O(2−jT−1) ∀µ = h, v, d,

where the last term, which is the second part of the asymp-
totic variance as given in [4], Theorem A.2, is exactly zero
for Gaussian time series.

(iii) TL/2cumL{ďµjk} = o(1) ∀L á 3 if 2j = o(N).

Note that in the general, i.e., non-Gaussian, case we have,
in addition, to assume finiteness of all cumulants of the
underlying process, as given by Definition 3.1(i).

We like to mention that in [14, Proposition 3.1], results
analogous to the rates in (i) through (iii) are derived for the
situation of a stationary, not necessarily Gaussian process.

However, we also show a result which is slightly stronger
than (i) in the proof of Theorem 4.3:

Lemma 1. Let f(u, λ) ∈ Cσ(T2) with σ á 1. Then,

Eď
µ
jk − djk = O(2−jN−σ) ∀µ = h, v, d uniformly in k.

(4.8)

Proof. The proof runs analogously to the one of [4],
Lemma (A.8) (with M = N), for a sufficiently smooth taper
function (∈ Cσ). Using estimates like∫

T2
|Ψµ

jk(u, λ)|du dλ = O(2−j),

we conclude:

Eď
µ
jk − djk = O(2−j lnNN/Tσ) +O(2−jN−σ).

Note that it is not straightforward to generalize this
lemma on the decay of the bias for functions in Cσ(T2)
with σ < 1. However, adopting techniques used in [15]
would allow to derive sufficiently fast rates for bias, and
variance, also: We would get results for functions of lower
regularity, basically being continuous and of bounded vari-
ation over T2 (cf. Remark 3.3).

Remark 4.5. We give the following heuristics for the
motivation of (A3): With the periodogram over the first seg-
ment we estimate f at time N/2T. To conclude from this
to f at the ends of the first segment and end up with a

√
T-

consistent estimator, we need that N/
√
T → 0. On the other

hand the bias of the periodogram, with a data-taper, is of or-
der O(N−2) which leads to the condition

√
T/N2 → 0. Note

that without taper we have a bias of order O(N−1), such that
N/

√
T → 0 cannot be fulfilled. Note also that the variance

is not increased by the use of the taper if S/N → 0. This
seems to be heuristically clear since then, asymptotically,
there are no more observations which are downweighted or
totally excluded by tapering.

Corollary 4.6. As a consequence of Theorem 4.3

T · var ď
µ
jk → A

µ
jk. (4.9)

In particular, as f(u, λ) is bounded from below and above
by some positive constants K1 and K2,

K1

T
à varď

µ
jk à

K2

T
, uniformly in j and k. (4.10)
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Compare the similarity of the asymptotic variance of ď
µ
jk

with the one-dimensional situation as in [9, Lemma 5].
Though, in this section we were quite general in treating

also non-Gaussian processes, for the derivation of what fol-
lows for Gaussian processes, we only make use of equations
(4.8) and (4.10).

4.4. Estimating the Tail Probability of the Empirical
Wavelet Coefficients

The goal of this section is to estimate the tail probabil-
ity of ď

µ
jk in order to bound the maximum in probability of

supj,k(ď
µ
jk − Eď

µ
jk)/(var ď

µ
jk)1/2. This will be used for prov-

ing our main Theorem 4.10, i.e., for an appropriate choice
of the threshold λT in thresholding the empirical coeffi-
cients ď

µ
jk.

In the sequel, we consider ďjk = ď
µ
jk for a fixed µ ∈

{h, v, d}. For simplicity, let us first restrict to nonoverlap-
ping segments S = N, i.e., T = NM.

Let

ΓT = Cov{Xt,T;Xs,T}, t, s = 1, . . . , T

denote the T × T-covariance matrix of the Gaussian vec-
tor XT = (X1,T, . . . , XT,T). Let further VtT = Γ1/2

T and let
ξ
T

= V−1
T XT. With Eξt

T
ξ
T

= IT×T, as EXtTξT = VtTVT, the
elements of ξ

T
are i.i.d. standard Gaussian random vari-

ables.
We use Parseval’s relation for the inner product w.r.t.

to frequency λ and write the empirical coefficients as a
quadratic form in the observations XT:

ďjk =
1
M

M−1∑
i=0

∫ 1/2

−1/2
IN(ui, λ)Ψjk(ui, λ)dλ

=
1
M

M−1∑
i=0

ψ
(1)
jk1

(ui)
∫ 1/2

−1/2
IN(ui, λ)ψ(2)

jk2
(λ)dλ

= Xt
TBTXT,

where BT is a T× T-block-diagonal matrix with M blocks
each of size N:

BT =
[(

1
M
ψ

(1)
jk1

(ui)

(H2,N)−1ψ̂
(2)
jk2

(t− t′)
)
t,t′=0,...,N−1

]
i=0,...,M−1

.

Observe now, that the eigenvectors η
T

= PTξT of the Her-
mitian matrix VtTBTVT are again i.i.d., standard Gaussian.
Let κν denote the corresponding eigenvalues (cf. [9, proof
of Lemma 5]). Hence,

ďjk = XtTBTXT = ξt
T
VtTBTVTξT =

T∑
ν=1

κν|ην|2. (4.11)

Remark 4.7. For overlapping segments, i.e., S < N, hence
T < NM, the rank T of the weight matrix BT is smaller
than NM, as the blocks are overlapping. Hence, one has to
slightly modify this principle of orthogonal transformation.

As a consequence of (4.11), and by (4.10), the bounded-
ness of var ď

µ
jk, an assertion similar to that of [9, Lemma

6], on the tail probability of the empirical coefficients ďjk
holds. Its proof runs completely analogously to the one of
[9, Lemma 6].

Proposition 4.8.

sup
{κν:
∑T

ν=1
κ2
ν=1}

P

{
T∑
ν=1

κν · (|ην|2 − 1)| á x

}

à const. exp
{

−x

2

}
.

That is,

sup
0àj<J,0àk<2j

P

{∣∣∣∣∣ ďjk − Eďjk

(var ďjk)1/2

∣∣∣∣∣ á x

}

à const. exp
{

− x√
2

}
,

where, by Theorem 4.3 and Eq. (4.9),

T · var ďjk → A
µ
jk.

Proposition 4.8 tells us that the tail probability of ďjk
can be estimated from above by a χ2

2-distribution (which
is proportional to the exponential). Hence, an appropriate
choice of the threshold λT should incorporate the fact that
the noise in the empirical wavelet coefficients of the peri-
odogram ordinates—for finite T—has a non-Gaussian char-
acter: it reaches high levels somewhat more frequently than
a (white) Gaussian noise. Consequently, a higher threshold
of order logT is needed which guarantees a sufficiently fast
decay of the tail probability as T → ∞:

P

{∣∣∣∣∣ ďjk − Eďjk

(var ďjk)1/2

∣∣∣∣∣ á logT

}
= o(T−1/2).

The result of Proposition 4.8 is, somewhat surprisingly, in-
dependent of the assumption of stationarity as it totally par-
allels the one of the stationary situation (as in [9]).

4.5. The Resulting Wavelet Threshold Estimator
Now we use the asymptotic properties of the empirical

wavelet coefficients, in particular those established by equa-
tions (4.8) and (4.10) and by Proposition 4.8, to derive the
asymptotic properties of the non-linear wavelet estimation
scheme.
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The results of Sections 4.3 and 4.4 motivate the following
threshold choice for the ď

µ
jk:

λT;j,k = λT = K · T−1/2 logT. (4.12)

As preliminary upper estimate K̂ for the constant K > 0
we propose

K̂ = 2Ch · |f|∞ = 2Ch · max
0<u<1

max
−1/2àλà1/2

|f(u, λ)|.

In practice, for a (slightly suboptimal) threshold, one needs
an additional estimate for |f|∞, which can be estimated by
replacing f(u, λ) by a consistent estimate, e.g., a smoothed
version of the periodogram, or even a robust version of that,
as developed in [17]. This parallels the suggested use of a
robust estimate of the noise level as in the classical situation
of Gaussian i.i.d. data.

We consider the resulting nonlinear estimate

f̃T(u, λ) = č00 +
J−1∑
j=0

2j−1∑
k=0

∑
µ=h,v,d

d̃
Sµ
jk Ψ

µ
jk(u, λ) (4.13)

with soft-thresholding d̃
Sµ
jk = δSλT (ď

µ
jk), i.e., we choose the

same threshold for all µ ∈ {h, v, d}. For this estimate
f̃T(u, λ) it is possible to show a result analogously to [9],
Theorem 1, which treats the one-dimensional stationary sit-
uation. We cite a slightly more general version of [9, The-
orem 1]:

Let F = Bσp,q(C) be some ball in the Besov space Bσp,q
with either p á 1 and σ > 1/p, or σ, p á 1 for f ∈ F
being of bounded variation. Let f̂ be the wavelet estimator
based on thresholds λT = 2 log(T)T−1/2. Then

sup
f∈F

{E‖f̂ − f‖2
L2([−π,π])} = O(T−2σ/(2σ+1)(log(T))2). (4.14)

Observe that r := 2σ/(2σ + d) is the power of the rate
of convergence T−r, which is optimal for d-dimensional
nonparametric estimation. If p < 2, that is in the case of
spatial variability (e.g., for functions of bounded variation),
r > r′, where r′ is the respective optimal rate for linear
procedures (cf. [6, 7]); i.e., for F being a class of functions
with inhomogeneous regularity, the nonlinear estimate f̃T
of local smoothing with threshold λT as in (4.12) is able to
outperform linear ones with global smoothing at the level
of the rate of convergence.

Here, we shall prove a result which, by some straightfor-
ward effort, can be generalized to more interesting function
classes (including the ones of spatial inhomogeniety). In the
following remark, we like to give a formulation of this more
general result, which completely parallels [9, Theorem 1],
now of course with d = 2 in r = 2σ/(2σ+ d).

Remark 4.9. Let F be an appropriate smoothness class
for functions in L2(T2) with smoothness σ. Let f̂ be the
wavelet estimator based on thresholds λT = K log(T)T−1/2,

with some appropriate positive constant K. Then

sup
f∈F

{E‖f̂ − f‖2
L2(T2)} = O(T−2σ/(2σ+2)(log(T))2). (4.15)

Appropriate function classes can be 2-d Besov classes with
some additional smoothness assumptions like continuity
and being of bounded variation over T2, or simply Sobolev
or Hölder classes.

Note that this result fits into what might be expected for
generalizing the one-dimensional situation to dimension d.
For a proof of (4.15), the precise assumptions, generalizing
our (A1) and (A2), and also the techniques of proving, can
be found in [15]. Basically, we have to derive new bias and
variance expansions, parallelizing the ones of Lemma 3.1
in [15]. However, in order not to obscure the basic ideas
with lengthy technical proofs, for the reader’s convenience
we restrict to derive the following version of our result.

Let Λσ(C), σ > 0 being no integer, be the set of σ-Hölder
functions on T2, with uniform Hölder bound C (if σ is an
integer, we use instead Zygmund’s definition; see [12].). For
σ = 1 our following main theorem holds by Assumptions
(A1), (A2), and (A4). For σ > 1 we assume in addition that

(A5) Ψu
jk(u, λ) are in Cσ(T2) and have vanishing moments

up to order σ− 1.

Theorem 4.10. Assume (A1)–(A5) and let in addition
f(u, λ) ∈ Λσ(C) with σ á 1. Let λT = K · T−1/2 log(T)
as in (4.12), and let f̃T(u, λ) be based on soft thresholding
with this threshold λT. Then

sup
f∈Λσ(C)

E‖f̃T − f‖2
L2(T2) à C̃ · T−r(logT)2

with r = 2σ/(2σ + 2) and a constant C̃ = C̃(C, σ) which
depends on C and σ only.

Proof. Following the lines of the proof of [9, Theorem
1] with

E‖f̃T − f‖2 = E(č00 − c00)2

+
∑
µ

J−1∑
j=0

2j−1∑
k=0

E(d̃
Sµ
jk − d

µ
jk)2 +

∞∑
jáJ

2j−1∑
k=0

(d
µ
jk)2,

we have to bound the three terms of this sum, making use
of Eq. (4.8) and (4.10),

(a) E(č00 − c00)2

= Var č00 + (Eč00 − c00)2 à
C1

T
+

C2

N2σ à C̃ · T−r,

where C1 and C2 depend on C and σ only. (Note that the
results of Theorem 4.3 and Lemma 4.4 do hold for č00,
also).

(b) d
µ
jk à C · 2−j/22−(σ+1/2)j

à C · 2−(σ+1)j ∀µ, uniformly in k,
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FIG. 2. Scheme of signal transmission between mobile vehicle and
fixed base station in the radio propagation example of Section 5.1.

by standard estimation of the decay of the wavelet coeffi-
cients (note that the “second dimension” only contributes
by a factor of order O(2−j/2) if one of the basis functions
is a scaling function ϕ).

Hence,

∑
jáJ

2j−1∑
k=0

(d
µ
jk)2 = O(2−2Jσ) = O(N−2σ) = O(T−r).

(c)
J−1∑
j=0

2j−1∑
k=0

E(d̃
Sµ
jk − d

µ
jk)2 à 2

∑
j

∑
k
E(δλT (ď

µ
jk) − Eď

µ
jk)2

+ 2
∑
j

∑
k

(Eď
µ
jk − d

µ
jk)2.

With Lemma 4.4, for σ á 1,

Eď
µ
jk − d

µ
jk = O(2−jN−σ) ∀µ, uniformly in k.

Hence, by this explicit bound on each of its terms, the sec-
ond sum is bounded by some O(N−2σ logN) = o(T−r).

As the bias Eď
µ
jk − d

µ
jk, j < J = log(N), tends faster to

zero than the coefficient d
µ
jk we can proceed quite analo-

gously to the proof of [9, Theorem 1]. In particular, we
use the same scheme of upper estimates leading to [9, Eq.
(2.41)]:∑
j

∑
k
E(δsλT (ď

µ
jk) − Eď

µ
jk)2

à C̃ · (logT)2
∑
j

∑
k

(
(Eď

µ
jk)2̂C′

T

)
(1 + o(1))

à C̃ · (logT)2
∑
j

∑
k

(
(d
µ
jk)

2̂C′

T

)
(1 + o(1))

à C̃ · T−r(logT)2(1 + o(1)).

In this final step Proposition 4.8 is used: The first inequal-
ity, analogously to equation (2.30) in Theorem 3 of [9], is
based on an exponential inequality for the tail probability
of the standardized empirical wavelet coefficients, as given
by Proposition 4.8. We like to refer to Section 5.5 of [9]
(Lemmas 1–3 and Theorem 3) for details of this technique,
which transfers results of Donoho and Johnstone [6, 7] to
the periodogram situation.

Remark 4.11. An alternative approach to nonlinear
smoothing of a (localized) periodogram estimate would be

FIG. 3. Frequency spectrogram of RF signal of Fig. 2 at λc = 910 MHz.
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to apply the very same techniques to the log-periodogram
instead. It is well known that the logarithmic transforma-
tion stabilizes the variance. Moreover, it can be shown by
transferring results of von Sachs [18] for the tapered log-
periodogram, that, for the one-dimensional stationary situ-
ation, the resulting empirical wavelet coefficients asymptot-
ically follow a normal law, for 2j = o(N),

√
N

∫ 1/2

−1/2
{log IN(λ) + γ

− logf(λ)}ψjk(λ)dλ -→
L
N

(
0,
π2

6

)
,

where γ = 0.57721 . . . (i.e., Euler’s constant).
That is, the asymptotic variance does no longer depend

on the unknown f(λ), and it is proportional to O(N−1), with
a constant not depending on j and k.

One could use this result for our two-dimensional prob-
lem, too, as we observe that, using the (one-dimensional)
collocation wavelet transform introduced in Section 2, all
resulting coefficients have a variance proportional to N−1

for all scales, and the ones with 2j = o(N) are asymp-
totically normal. Hence, for our simulation example in the
following Section 5 we use the log-periodograms, and it
seems that the results confirm our conjectures.

5. APPLICATIONS AND SIMULATIONS

First, we describe a typical situation in practice for a
time-dependent power spectrum (motivated by [10, Sect.
1]).

5.1. An Example from Mobile Radio Propagation
A microwave radio signal transmitted between a fixed

base station and a moving vehicle in a typical urban en-
vironment (see Fig. 2) exhibits extreme variations in both
amplitude and apparent frequency. From the viewpoint of
an observer on the mobile unit, the received signal, a plane
wave of the form

C · cos(2πλ(α)t+ φ)

(a superposition of many of those plane waves, to be spe-
cific), may be represented as a carrier with randomly vary-
ing phase φ, amplitude C and frequency λ(α) (with ran-
domly varying α). Due to the Doppler shift, caused by the
movement of the mobile unit with velocity V into direction
α w.r.t. the sender station, the frequency

λ(α) = λc + λm cosα,

is to be found in a narrow band around the carrier fre-
quency λc. This band is (for α = 0) of maximum width
2λm = 2V/ν, with ν being the wavelength of the transmit-
ted carrier frequency (see Fig. 3).

A suitable model for the three field components of the
signal (electric field Ez, magnetic fieldHx andHy) is a Gaus-
sian random process, stationary as long as V (and ν) do not
depend on time t. Instead of determining the statistical prop-
erties of this Gaussian random process from its moments,
they are most easily obtained from the power spectrum (as
the Fourier transform of the autocorrelation of the signal
components).

As simplest model, the probability distribution p(α) of the
power over the angle α is assumed to be constant. Hence,
for studying the Hx-field component of the signal as typical
example only, we end up with a spectrum of the following
form, by [10],

fHx (λ) ∼
[

1 −
(
λ − λc

λm

)2
]1/2

,

where we used that |dλ| = λm| − sinα‖dα| = (λ2
m − (λ −

λc)2)1/2|dα| (for details, see [10, Sect. 1.2.1]).
As long as V is constant in time, fHx (λ) is also. But, in

practice, of course, the mobile unit changes its velocity:
hence, a more realistic model would be to allow for a time-
dependent power spectrum

f(t, λ) = fHx (λ(t)) =

[
1 −

(
λ − λc

λm(t)

)2
]1/2

,

where λm(t) = V(t)/ν.
Consequently, the model for the underlying Gaussian ran-

dom process becomes instationary.
An additional modification arises if we allow for a chang-

ing environment of the transmitting channel, i.e., an explicit
variation of f(t, λ) in t, too.

5.2. A Simulation Study
Motivated by Section 5.1, as example for our simulation

we choose a modification of fHx , an evolutionary spectrum
of the form

f(u, λ) =

[
1 −

(
λ

λm

)2
]1/2

· 1[0,λm](λ)

+

[
1 −

(
λ − λ0

λm

)2
]1/2

· 1[λ0−λm ,λ0+λm](λ)

+ P1 · exp

{
− (λ − λ1)2

2σ2
1

}
+ R0, (5.1)

where w.l.o.g. we assume λ á 0 due to symmetry, and
where λm = λm(u) = σ0(2 + cos 2πν0u) with σ0 = 0.03,
ν0 = 4, λ0 = 0.3, P1 = 0.2, λ1 = 0.45, σ1 = 0.001 and a
constant R0 = 0.001 (resulting as the spectral component
of a background white noise component in the underlying
process). Note that in addition to a time-dependent σ =
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FIG. 4. Gray-scaled image plot for example as in Eq. (5.1): (1) logf(u, λ). (2) log IN(u, λ), N = 128, S = 15. (3) Globally smoothed log-periodogram
(J0 = 5). (4) Locally smoothed log-periodogram (hard thresholding, λT = 1 × 10−2). In the time–frequency plane.

σ(u), which is motivated by a changing velocity V of the
mobile unit in Section 5.1, f(u, λ) has isolated singularities
in its first partial derivative w.r.t. λ and a high dynamic
frequency range of smoother and sharper components.

The evolutionary spectrum in equation (5.1) defines a
locally stationary process Xt,T according to (3.1), with
f(u, λ) = |A(u, λ)|2. For its simulation we generate T =
2048 data, using the following discretization (in λ) of the
integral in (3.1),

Xt,T = 21/2T
−1/2
s

Ts−1∑
k=0

A

(
t

T
,
k

Ts

)
exp

(
2πit

k

Ts

)
ξk,

1 à t à T,

where Ts = 8192 and where ξk, 0 à k à Ts − 1, is a
simulated Gaussian white noise (∼ N(0, 1)), generated by
a standard pseudo random generator.

Further, we calculate the short-time periodogram over
M = 128 segments of length N = 128, with shift S = 15,
using a data-taper as given by (3.8). Note that, in order
to use a quadratic two-dimensional MRA, here we have to
choose M = N. Finally, we take logarithms, in order to ben-
efit from the variance stabilizing effects of the logarithmic
transformation.

For the wavelet basis used we choose the orthogonal (pe-
riodized) splines of the Battle–Lemarié-family (as indicated
in Section 2) with order m = 6, i.e., the functions are ele-
ments of C4(T2) and, hence, fulfill assumption (A2).
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FIG. 5. Cuts of Fig. 4 in frequency direction at u = 0.54 and in time direction at λ = 0.24.
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FIG. 6. Gray-scaled image plot of second example as in Eq. (5.2).

Figure 4 shows the true log-spectrum, the raw and
the smoothed log-periodogram for example (5.1), as gray-
scaled image plots, in the time–frequency plane. The lo-
cal smoothing was performed by hard-thresholding with
λT = KT−1/2 logT = 1 × 10−2, i.e., K = 4 × 10−2 as
T = 2048. For comparison we add an example of global
smoothing, where we consider a linear wavelet estimator
which incorporates all coefficients below a cut-off scale
J0 = 5.

It can be clearly observed that the noise in the periodo-
gram-estimator is suppressed by non-linear thresholding
without losing local structure of f(u, λ) (e.g., the bump at
λ1), whereas with global smoothing this is not possible si-

multaneously. Cuts in λ- and in u-direction (Fig. 5) confirm
this behavior.

A second time-dependent spectrum arises by simply re-
placing the cosine function σ(u) in f(u, λ) by some period-
ically piecewise linear one,

λm(u) = σ0(2 + 10/3 · (r(ν0u) − 0.7)1[0.4,1)(r(ν0u))

− 1[0,0.4](r(ν0u))),

where r(x) := x− [x].
This function describes perhaps a slightly more realistic

dependence of the velocity V of the mobile unit of Section
5.1 on time. It introduces an example which is less regu-
lar in time, and so it might be interesting to compare the
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performance of the same estimators as before (with same
parameters), which, together with the true spectrum, are
shown in Fig. 6.

Further examples can be found in a more comprehensive
version of this work [19], which is accessible via anony-
mous ftp at ftp://www. mathematik.uni-kl.de/pub/Math/
Papers/AGTM-reports/ or at the web-site htpp://www.
mathematik.uni-kl.de/.
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iques, un outil pour l’analyse de champs inhomogènes. Théorie et
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