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Abstract

We present a numerical scheme to study the transient flow behaviour in complex geometries. The

Navier–Stokes equations are discretized with a high-resolution Fourier pseudo-spectral discretization with
adaptive time-stepping. Using a penalisation technique solid boundaries of arbitrary shape can be easily

taken into account. As application we present different simulations of unsteady flows, typically encountered

in chemical reactors. We study transitional flows in tube bundles (arrays of cylinders and squares) for dif-

ferent Reynolds numbers and angles of incidence and a channel flow with an obstacle.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical simulation of turbulent flows in complex geometries is one of the main chal-
lenges in computational fluid dynamics (CFD). A crucial point plays hereby the grid genera-
tion and the turbulence modelling near the wall, which is primordial importance for the
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prediction and the control of the flow. Many industrial CFD applications are dealing with
such complex problems, in particular for the design and optimization of chemical reactors,
e.g. to predict drag, lift, heat transfer coefficients in heat exchangers, especially in the unsteady
regime.
So far different approaches to deal with complex geometries in CFD have been developed. Body

fitted coordinates require the numerical scheme to be adapted to the geometry [7]. Coordinate
transform techniques allow to use solvers developed for simple geometries, but they are restricted
to relatively simple geometries. Fictitious domain approaches, see for example [11], surface
[15,12,22] and volume penalisation methods [2] modify the governing equations by adding supple-
mentary terms. These imbedding methods solve the resulting equations on a simple geometry for
which fast solvers are available.
In the present paper we review such a recent approach, the volume penalisation method, to

model flows in complex geometries and show different applications relevant for chemical engi-
neering. The volume penalisation method has been originally introduced by Arquis and Calt-
agirone [2] for flows in porous media, in [1] the approach was extended to model obstacles in
viscous flows. The physical idea is to model walls or solid obstacles as a porous medium
whose permeability g tends to zero. The Navier–Stokes equations are modified accordingly
by adding a Darcy term. Fluid regions are considered as completely permeable, while regions
where walls or obstacles are present as perfectly impermeable. The geometry of the flow can
therefore simply be taken into account using a spatially varying permeability coefficient,
which enables an easy practical implementation of the method and allows furthermore obsta-
cles and walls changing in time and interacting with the fluid. A mathematical theory proving
convergence of this physically based approach has been given by Angot et al. [1]. The
penalisation method has been applied in the context of low order methods (finite
difference/volume scheme, e.g. [14,1], with pseudo-spectral methods, e.g. [8,19,13] and recently
also with adaptive wavelet methods [10,20]. The latter scheme automatically adapts the spatial
grid not only to the evolution of the flow, but also to the geometry of walls or bluff bodies
[20].
The paper is organised as follows: First we present the governing equations together with the

penalisation method. Then we present a pseudo-spectral method with adaptive time stepping to
solve the penalised Navier–Stokes equations numerically. In the Results� section we study several
applications of unsteady transitional flows in arrays of cylinders, as encountered in heat exchang-
ers, in array of squares, typically used for static mixers. We discuss the drag and lift coefficients
the different geometries and the influence of the angles of attack of the flow. We also present a
simulation of a flow in a channel with an obstacle. Finally, we give some conclusions and perspec-
tives for turbulence modelling.
2. The penalisation method

In this section we present the governing equations together with the penalisation technique. We
consider a viscous incompressible fluid governed by the Navier–Stokes equations in the fluid re-
gion and imposing no-slip boundary conditions on the walls. In primitive variables we have the
following equations:



K. Schneider / Computers & Fluids 34 (2005) 1223–1238 1225
ot~uþ~u � r~uþ 1
q
rp � mr2~u ¼ ~f ð1Þ

r �~u ¼ 0 ð2Þ

where~uð~x; tÞ is the velocity, pð~x; tÞ the pressure,~f the external forces per mass and m the kinematic
viscosity. In the following the density q is assumed to be 1 and the external forces ~f to be 0.
The penalisation technique is based on the physical idea to model solid walls or obstacles

as porous media whose permeability g is tending to zero [2]. The geometry is described by a
mask function vð~xÞ which is 1 inside the solid regions and 0 elsewhere. Hence, the penalisation
method can also take into account obstacles with time-varying shape by simply introducing a
time-dependent mask function. The above Navier–Stokes equations (2) are modified by adding
a supplementary term containing the mask function. For g ! 0 the flow evolution is governed
by the Navier–Stokes equations in the fluid regions, and by Darcy�s law, i.e. the velocity is
proportional to the pressure gradient, in the solid regions where obstacles or walls are present.
For the �penalised� velocity ~ug we obtain
ot~ug þ~ug � r~ug þrpg � mr2~ug þ
1

g
vXs~ug ¼ 0 ð3Þ
with the mask function
vXsð~xÞ ¼
1 for ~x 2 ~Xs
0 elsewhere

(
ð4Þ
and where Xs denotes the ensemble of solid obstacles. In [1] it has been shown rigorously that the
above equations converge towards the Navier–Stokes equations with no-slip boundary condi-
tions, with order g3/4 inside the obstacle and with order g1/4 elsewhere, in the limit when g tends
to zero. In numerical simulations an improved convergence of order g has been reported [1,13].
The resulting forces ~F on the obstacle can be computed by integrating the penalised velocity

over the obstacle�s volume [1]:
~F ¼ lim
g!0

Z
Xs

rpgdx ¼ � lim
g!0

1

g

Z
Xs

~ugdx ¼
Z
oXs

rð~u; pÞ �~nf dc ð5Þ
where Xs is the obstacle�s volume, oXs its boundary, ~n its outer normal and rð~u; pÞ ¼
1
2m ðr~uþ ðr~uÞtÞ � pI the stress tensor. Hence the lift and drag forces on the obstacle, i.e. forces
parallel and perpendicular to the free-stream velocity of the flow, are easy to compute as volume
integrals instead of contour integrals.
For the application of the penalisation method to two-dimensional flows we prefer the vor-

ticity–velocity formulation which results in a scalar valued equation. Therefore, we compute
the curl of Eq. (3), and we get
otxg þ ð~ug þ ~V 1Þ � rxg � mr2xg þr� 1

g
vXs~ug

� �
¼ 0 ð6Þ
where x ¼ r�~u is the vorticity and ~V 1 is the free-stream velocity, defined as limj~xj!1~uð~xÞ ¼ ~V 1.
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Using the vector identity $ · (f $?W) = $ Æ (f $W) it follows
otxg þ ð~ug þ ~V 1Þ � rxg � mr2xg þ
1

g
r � ðvXsrWÞ ¼ 0 ð7Þ
with the stream function W, satisfying $2W = x and r?W ¼ ð�oyW; oxWÞ ¼~u.
3. Pseudo-spectral implementation with adaptive time-stepping

For the numerical solution of the penalised Navier–Stokes equations in vorticiy–velocity for-
mulation (6) we discretize the equations in space and time. For the former we use a classical Fou-
rier-pseudo-spectral method on a rectangular periodic domain. For the latter we developed a
variable time-stepping semi-implicit scheme with exact time integration for the diffusion term,
$2x, and a second-order Adams–Bashforth scheme for the convective and the penalisation term.

3.1. Spatial discretization

Pseudo-spectral Fourier discretization is a classical method in CFD, for a more complete dis-
cussion we refer to [4]. It is a highly accurate method for flows with periodic boundary conditions.
In the pseudo-spectral method the vorticity field is transformed to Fourier space in order to com-
pute the spatial derivatives and evolve the vorticity field in time. Terms containing products, i.e.
the convection and penalisation terms, are calculated in physical space. The vorticity field and the
other variables are represented as truncated Fourier series,
xð~x; tÞ ¼
X
~k2Z2

x̂ð~k; tÞ expði~k �~xÞ ð8Þ
where the Fourier transform of x is defined as
x̂ð~k; tÞ ¼ 1

4p2

Z
xð~x; tÞ expð�i~k �~xÞd~x ð9Þ
with ~k ¼ ðkx; kyÞ. The Fourier discretization is uniform in space and is truncated at kx = �Nx/2
and kx = Nx/2 + 1, ky = �Ny/2 and ky = Ny/2 + 1, where Nx and Ny are the number of grid points
in x and y direction, respectively. The gradient of x is computed by multiplication of x̂ by i~k, the
Laplacian by multiplication with j~kj2. The velocity~u is computed in Fourier space using Biot–Sav-
art�s law,
~uð~x; tÞ ¼
X

~k2Z2;~k 6¼0

i~k
?

j~kj2
x̂ð~k; tÞ expði~k �~xÞ ð10Þ
where ~k
? ¼ ð�ky; kxÞ.

The convection term ð~uþ ~V 1Þ � rx and the penalisation term r� ð1g vXs~uÞ are evaluated by the
pseudo-spectral technique using collocation in physical space. To avoid aliasing errors, i.e. the
production of small scales due to the non-linear terms which are not resolved on the grid, we
de-aliase the vorticity at each time step, by truncating its Fourier coefficients using the 2/3 rule,
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x̂ð~kÞ ¼
x̂ð~kÞ for 3kx

2Nx

� �2
þ 3ky

2Ny

� �2
< 1

0 for 3kx
2Nx

� �2
þ 3ky

2Ny

� �2
P 1

8><>: ð11Þ
For the transformation between physical and Fourier space we use Temperton�s Fast Fourier
Transform with an order N log2N, (N = NxNy) complexity [4].

3.2. Adaptive time discretization

For the time discretization we developed a semi-implicit scheme with adaptive time-stepping.
The linear diffusion term is discretized implicitly using exact time integration which is cheap
for spectral methods, as the Laplace operator is diagonalized in Fourier space, and hence no linear
system has to be solved. This improves the stability limit of purely explicit schemes. The remain-
ing terms are discretized explicitly, which avoids the solution of non-linear equations, however it
implies a CFL condition on the maximum size of the time step.

3.2.1. Adams–Bashforth scheme

We briefly recall the Adams–Bashforth scheme (see e.g. [21,23] for its application to the Navier–
Stokes equations) for initial value problems of the form dy/dt = f(t,y), with y(t = 0) = y0, and
present its extension for non-equidistant, i.e. variable, time steps. The general idea of many mul-
ti-step methods is to approximate the integral form of the equation,
yðtpþkÞ � yðtp�jÞ ¼
Z tpþk

tp�j

f ðs; yðsÞÞds ð12Þ
using an interpolating quadrature rule of the type
pqðsÞ ¼
Xq

i¼0
f ðsp�i; yp�iÞLiðsÞ ð13Þ
where Li denotes the fundamental Lagrange polynomial. This leads to
yðtpþkÞ � yðtp�jÞ ¼ Dt
Xq

i¼0
bqif ðsp�i; yp�iÞ ð14Þ
with a fixed time-step Dt.
For schemes of Adams–Bashforth type we have k = 1, j = 0 and q = 0,1,2, . . . ,
ypþ1 ¼ yp þ Dtðbq0fp þ bq1fp�1 þ � � � þ bqqfp�qÞ ð15Þ
with fp = f(tp,yp). The coefficients are given by
bqi ¼
Z k

�j

Yq
l¼0;l 6¼i

sþ l
�iþ l

ds ð16Þ
For q = 0 we get the classical explicit Euler scheme,
ypþ1 ¼ yp þ Dtf p ð17Þ
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which is of first order only. For q = 1 we obtain the second-order Adams–Bashforth scheme.
ypþ1 ¼ yp þ
3

2
Dtf p �

1

2
Dtf p�1 ð18Þ
3.2.2. Extension to variable time steps
Starting with the general formula for the second-order Adams–Bashforth scheme
ypþ1 ¼ yp þ b11fp þ b10fp�1 ð19Þ

we develop its extension for variable time steps. In this case the coefficients are given by
b11 ¼
Z tpþ1

tp

x� xp�1
xp � xp�1

dx ¼ 1

tp � tp�1

1

2
t2pþ1 �

1

2
t2p � tp�1ðtpþ1 � tpÞ

� �
ð20Þ
and
b10 ¼
Z tpþ1

tp

x� xp�1
xp�1 � xp

dx ¼ �1
tp � tp�1

1

2
t2pþ1 �

1

2
t2p � tpðtpþ1 � tpÞ

� �
ð21Þ
where tp denotes the pth time instant.
Introducing the time step Dtp = tp � tp�1, it follows that
b10 ¼ � 1
2

Dtpþ1
Dtp

ðDtpþ1 þ 2DtpÞ ð22Þ
and
b11 ¼ � 1
2

Dt2pþ1
Dtp

ð23Þ
For start-up a first-order scheme is used.

3.3. Fully discretized penalised Navier–Stokes equation

To simplify the notation we rewrite the penalised Navier–Stokes equations (6) in the form of a
non-linear evolution equation
otx � mr2x ¼ gðxÞ ð24Þ

with gðxÞ ¼ �ð~uþ ~V 1Þ � rx �r� ð1g vXs~uÞ and where we dropped the index g.
For the exact time integration of the diffusion term we first consider the homogeneous equation,

i.e. for g = 0. The exact solution is given by
xð~x; tÞ ¼ xð~x; t0Þ expðmtr2Þ ð25Þ

where exp(mt$2) is the semi-group of the heat-kernel. As the Laplace operator $2 is diagonal in the
Fourier basis, the solution at time step tn+1 can be explicitly computed in Fourier space be mul-
tiplying the solution at time step tn with the Fourier transformed heat-kernel
x̂ð~k; tnþ1Þ ¼ x̂ð~k; tnÞ expð�mDtnþ1j~kj2Þ ð26Þ

where Dtn+1 = tn+1 � tn.
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The solution of the inhomogeneous equation, i.e. g 5 0, is given by
xð~x; tÞ ¼ xð~x; t0Þ expðmtr2Þ þ
Z t

t0

expðmsr2Þgðxð~x; t � sÞÞds ð27Þ
where the Duhamel integral on the right-hand side contains memory effects of the non-linear term.
Transforming the above equation into Fourier space, we obtain the following equation to advance
the solution in time
x̂ð~k; tnþ1Þ ¼ x̂ð~k; tnÞ expð�mDtnþ1j~kj2Þ þ
Z tnþ1

tn

expð�msjkj2Þgðxð~x;dtnþ1 � sÞÞds ð28Þ
Discretizing the integral with the second-order Adams–Bashforth scheme for adaptive time steps
we get the fully discretized equation,
x̂ð~k; tnþ1Þ ¼ x̂ð~k; tnÞ expð�mDtnþ1j~kj2Þþ ð29Þ

ðb10gð dxðtnÞÞ þ b11gð dxðtn�1ÞÞ expð�mDtnj~kj2ÞÞ expð�mDtnþ1j~kj2Þ ð30Þ
with b10 and b11 given in Eqs. (22) and (23), respectively.

3.4. Step size control

The step size control of the time step is based on the CFL stability limit of the explicit discret-
ization of the non-linear term. Therefore, in each time step tn, pointwise the maximal rms velocity
is computed:
Umax ¼ max
~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuð~xÞÞ2 þ ðvð~xÞÞ2

q
ð31Þ
and the new time step is given by
Dtnþ1 ¼ CDx=umax
with the minimal spatial grid size Dx ¼ min Lx
Nx
;
Ly
Ny

� �
, where Lx, Ly denote the length of the domain

in x and y direction, respectively, and C < 1 the CFL constant.
4. Numerical results

In this section we apply the presented numerical scheme to study different flow configurations,
typically encountered in chemical reactors. We compute the transient flow behaviour in tube bun-
dles, with circular cross sections at Re = 200 and 1000 and quadratic cross sections at Re = 200,
for different angles of attack, i.e. a = 0�, corresponding to inline and a = 30�, 45� corresponding to
staggered bundles. These configurations are frequently used for cross-flow heat exchangers, be-
cause of their ease of construction together with their thermal and mechanical efficiency. We re-
mark that the flow remains largely two-dimensional because of the close packing of the tubes,
hence the two-dimensional approximation can be justified [3]. We also compute the transient flow
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in a channel with an enclosed cylinder at Re = 100 as prototype for a static mixer in a tube reactor.
For the different cases we show flow visualizations of instantaneous vorticity fields x and we plot
the time evolution of lift and drag coefficients.

4.1. Tube bundles with circular cross section

In Fig. 1 we sketch the flow configuration for tube bundles with a circular cross section where a
is the angle of attack of the free-stream velocity ~V 1. The geometry is characterized by the pitch to
diameter ratio P/D, where D denotes the tube�s diameter and P the tube�s pitch. In practical appli-
cations the ratio is typically in the range between 1.3 and 2. We define a Reynolds number based
on the tube�s diameter and the free-stream velocity, i.e. Re = V1D/m. Prandtl�s classical wall law
yields for the boundary layer a thickness d / 1=

ffiffiffiffiffiffi
Re

p
, which thus requires a sufficiently fine grid

near the wall.
In the present simulations we are using D = 1 and P = 2 and a = 0�, 30� and 45�. Note that an

angle of attack a = 0� corresponds to an in-line geometry while a = 45� corresponds to a staggered
arrangement. In the following we study the transient flow behaviour at two Reynolds-numbers,
i.e. Re = 200 and 1000 at resolution Nx = Ny = 256 and 512, respectively. This choice guarantees
to have at least 4 grid points within the thin boundary layer which ensures that the error in the
root mean square drag is less than 2.5%, following [13].
In Fig. 3 we show snapshots of the vorticity field at t = 10 for Re = 200. For the three different

angles on attack we observe a completely different flow behaviour. The inline configuration, i.e.
a = 0� (Fig. 3, top, left), exhibits four horizontal shear layers which are stable. The time evolution
of the drag and lift coefficient show that the flow becomes after a short transition phase stationary
reflected by a constant drag coefficient (Fig. 4, left). The symmetry of the flow is proven by the
vanishing lift coefficient. For a = 30� we see much stronger formation of vorticity at the tube�s
wall. The formed shear layer becomes unstable, is rolling up into vortices which are then shed
periodically. This is confirmed by the time evolution of lift and drag coefficients. The staggered
geometry with a = 45� also shows a much stronger generation of vorticity compared to the inline
case. The shear layer instability leads to the formation of vortices which are subsequently shed
P

V D8

α

Fig. 1. Sketch of the flow configuration: tube bundles with tube pitch P, tube diameter D and pitch to diameter ratio

P/D (which is typically between 1.3 and 2). The angle of incidence is denoted by a.
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periodically reflected by the oscillations in the lift and drag coefficients (Fig. 4). Note that the ob-
served Strouhal vortex shedding frequencies between 1.1 and 1.3 agree reasonably well with the
reported experimental values of Price et al. [16].
Fig. 5 shows the transient flow regime for the staggered tube bank for a = 45� at Re = 200,

focussing on one tube only. At early times (t = 2,4,6) the sequence of vorticity fields shows the
formation of two shear layers and the flow exhibits a recirculation region behind the tubes. We
can note that the flow regime at t = 4 corresponds qualitatively with the flow behaviour observed
in experiments, cf. Fig. 2. At later times (t = 8) the shear layer becomes unstable and vortices are
generated, however, the flow is still symmetric. This is confirmed by the fact that the lift coefficient
is still very small (Fig. 4). At t = 10 the vortices shed from the tubes, are advected downstream and
the flow becomes asymmetric, leading to an increase of the lift coefficient (Fig. 4, right). At t = 14,
16 isolated vortices, like in two-dimensional turbulence, are being advected in the inter-tube space
with the free-stream and encounter tubes leading to a periodic vortex shedding mechanism.
Increasing the Reynolds number from Re = 200 to 1000 the vorticity formation becomes more

important, i.e. its magnitude increases. Note that the range of the color table increases from
jxj 6 20 in Fig. 3 to jxj 6 100 in Fig. 6. Furthermore the vorticity is much more localized in
space. For the inline geometry (a = 0�) we observe now spatial oscillations of the four shear layers
without vortex shedding and a pronounced recirculation zone behind the tubes, cf. Fig. 6, top,
left. Nevertheless the flow remains symmetric, and therefore the lift coefficient (Fig. 7, left) is van-
ishing. However, in contrast to the Re = 200 case the flow is unsteady.
Changing the angle of incidence to a = 30� (Fig. 6, top, right) we observe the formation of thin

boundary layers which are detaching and leading to a vortex shedding. The flow is no more sym-
metric and well localized vortices are formed, advected and non-linearly interacting in the inter
Fig. 2. Flow visualisation of staggered tube bundles for Re = 200 and a = 45� (copyright H. Werlé, ONERA, France).



Fig. 3. Flow past tube bundles with circular cross section. Instantaneous vorticity fields at t = 10 for three angles of

incidence, a = 0�, 30�, 45� at Re = 200 with Nx = Ny = 256 and g = 10�3.
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and lift (right) coefficients.
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tube region. The corresponding lift and drag coefficients (Fig. 7) oscillate in time, however without
a clearly pronounced frequency. For the staggered geometry with a = 45� (Fig. 6, bottom, right)
the presented snap-shot of the flow is symmetric and well localized co and counter-rotating vor-



Fig. 5. Flow past staggered tube bundles with circular cross section at Re = 200 for a = 45�. Time evolution of the
vorticity field at t = 2, 4, 6, 8, 10, 12, 14, 16.

Fig. 6. Flow past tube bundles with circular cross section. Instantaneous vorticity fields at t = 6 for three angles of

incidence, a = 0�, 30�, 45� at Re = 1000 with Nx = Ny = 512.
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tices are shedding from the tubes. The vanishing lift coefficient is reflecting this symmetry. At later
times, around t = 7, however, the symmetry is broken and we observe a developing lift force. At
the beginning of the simulations the drag forces are continuously increasing up to t = 5 and then
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additionally oscillating around a still increasing mean value which becomes stationary around
t = 7.
4.2. Tube bundles with quadratic cross section

In the following we consider flows past tube bundles with quadratic cross section at Re = 200 for
three angles of incidence a = 0�, 30�, 45� to compare with the previous case with tubes having a
circular cross section. The main difference between both flow configurations is that for quadratic
cross sections the detachment point of the boundary layer is well defined at the corner of the tubes
while in the circular case it is depending on the Reynolds number and the angle of incidence. We
also see that the formation of vorticity is increased by a factor of 4 with respect to the circular case.
For the inline geometry (a = 0�) we find in both cases a similar behaviour, again four parallel

shear layers are being formed (Fig. 8, top, left), and the flow becomes stationary after a transition
phase lasting until t = 5. Hence the drag forces are constant and the lift coefficient is vanishing
(Fig. 9). The flows in the staggered geometries (a = 30�, 45�) exhibit, like for the circular tubes,
the formation of vortices which are however less well pronounced (Fig. 8, top, right and bottom,
left). For a = 45� we also see the striking symmetry of the flow, which is broken at later times,
around t = 6 (cf. Fig. 9). In both cases we furthermore observe time oscillations of the drag coef-
ficients, with period Dt = 1. For a = 30� we also see a superposition of secondary oscillations with
period Dt = 0.5. With respect to the circular tubes we also notice an increase of drag and lift forces
by a factor 3.
4.3. Channel flow with cylinder

Finally, we consider a channel flow with obstacle at Re = 100, where Re is based on the dia-
meter of the cylinder. This configuration can be seen as a prototype for a static mixer in a tube
reactor. Four time instances of vorticity fields at t = 2.5, 5, 10, 30 are depicted in Fig. 10. The
formed shear layers at the boundary of the cylinder and the channel walls are becoming unstable
and vortices are formed which are shed with a clear frequency. The time evolution of the drag and



Fig. 8. Flow past tube bundles with quadratic cross section. Instantaneous vorticity fields at t = 6 for three angles of

incidence, a = 0�, 30�, 45� at Re = 200 with Nx = Ny = 256 and g = 10�3.
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lift forces (Fig. 11) confirm the oscillation with a clear frequency. The wavelength of the drag
oscillations is Dt = 1.4 corresponding to a frequency of f = 1/1.4 = 0.7.



Fig. 10. Channel flow with cylinder at Re = 100 with Lx = 8, Ly = 2 and Nx = 512, Ny = 128. Vorticity fields at t = 2.5,

5, 10, 30.
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5. Conclusion

We presented a numerical scheme for computing the time evolution of two-dimensional flows in
complex geometries. The utilisation of a penalisation method enables us to take into account com-
plex geometries by a simple mask function without modifying the numerical scheme. The space
discretization is based on a high-resolution Fourier pseudo-spectral method which is characterized
by its high accuracy, i.e. negligible numerical diffusion and dispersion errors. For the time discret-
ization we presented an adaptive time-stepping scheme based on the exact integration of the linear
terms and an Adams–Bashforth discretization of the non-linear terms.
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We applied the numerical method to different industrially relevant problems, typically encoun-
tered in chemical engineering. We studied the transient flow behaviour in tube bundles with cir-
cular and quadratic cross sections at different Reynolds numbers and for different angles of
attack. The numerical scheme is able to resolve the thin shear layers on the boundary which sub-
sequently become unstable and lead to the formation of co and counter-rotating vortices. Depend-
ing on the control parameters we observed strong oscillations of the lift and drag forces which the
flow exerts onto the tubes. These may cause damages on the tubes of heat exchanger, especially
when their frequency is close to the tubes� resonance frequency.
The two-dimensional approximation of the simulations can be justified due to the dense pack-

ing of the tubes. Nevertheless for higher Reynolds numbers, i.e. Re > 500 [13] three-dimensional
effects become more important and the necessity of detailed three-dimensional studies of the tran-
sient behaviour becomes apparent, which is however beyond the scope of this paper.
In [20] we coupled the developed an adaptive wavelet method [9,10,17,18] with the current pen-

alisation approach. This method allows automatic grid generation and refinement around the
obstacle and furthermore automatically adapts to the flow evolution. Therewith the number of
required grid-points in the simulations can be significantly reduced which permits the computa-
tion of high Reynolds number flows.
In future work we will extend the penalisation scheme to three-dimensional flows and perform

computations at high Reynolds numbers using the Coherent Vortex Simulation approach, pro-
posed in [5,6].
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