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Abstract. We compare different models to simulate two-dimensional vortex wakes
behind oscillating plates. In particular, we compare solutions using a vortex sheet model
and the simpler Brown–Michael model to solutions of the full Navier–Stokes equations
obtained using a penalization method. The goal is to determine whether simpler models
can be used to obtain good approximations to the form of the wake and the induced
forces on the body.
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1. Introduction. A key component to better understand the loco-
motion and efficiency of swimming fish is the study of vortex separation,
its subsequent evolution and its interaction with the moving body. Several
studies have focused on the problem of flow past flapping plates. Of inter-
est is, for example, the shape of the vortex wake as a function of the plate’s
oscillation profile, as well as the resulting forces on the plate.

Recent experimental work includes soap film experiments by Schnipper
et al. [22], who found a variety of wake types as a function of the generating
parameters, and particle image velocimetry measurements by Godoy-Diana
et al. [9]. They observed the transition between drag and thrust producing
motions. The associated wake signatures, often referred to as von Karman
vs. reversed von Karman wakes, have been widely studied (see e.g. [25]).
Numerical simulations have followed several approaches. Examples of full
Navier-Stokes simulations of flow past flapping bodies, using either compact
finite difference, mixed Fourier/finite difference, or viscous vortex particle
methods, are given in [2, 7, 12, 27]. Inviscid vortex sheet separation models
[1, 15, 16, 18, 23, 24] are less costly since the problem is reduced to a lower-
dimensional one. They are meant to be a good approximation of the outer
flow away from viscous boundary layers and have been used extensively to
study, for example, flapping flags in a crossflow, the motion of falling cards,
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Fig. 1. Sketch illustrating the plate of length c hinged at one point, and flapping
with maximal amplitude A in a background flow of magnitude U

and wakes of plates and flexible membranes. The most computationally
efficient wake models are point vortex models [4, 6, 8, 17, 28].

In this paper we compare full Navier-Stokes simulations to the com-
putationally simpler vortex sheet and point vortex approximations. The
goal is to determine to what extent the wakes and resulting body forces
are recovered by the simpler models. Similar comparisons of viscous and
inviscid point vortex or vortex sheet approximations are also presented in
[8, 19]. Such studies are needed to determine whether the simpler models
can be used to improve understanding of how fish swim and steer them-
selves by manipulating the surrounding fluid [10, 11].

2. Problem Description. Figure 1 illustrates the problem consid-
ered here. An idealized rigid plate of zero thickness immersed in a fluid of
kinematic viscosity ν is hinged at one point in an oncoming parallel flow
with speed U . The plate has length c and oscillates with angle θ about a line
parallel to the oncoming flow, with maximal tip displacement A. The plate
motion is described by θ(t) = θm sin(2πt/τ), where θm = sin−1(A/(2c)).
The governing dimensionless parameters are

Re =
cU

ν
, St =

fA

U
, Ac =

A

c
. (1)

Throughout this paper we consider, as an illustration, the values St = 0.4
with Ac = 0.8. Biologists have found that larger swimming fish, namely
cetaceans such as dolphins and wales, swim in the range 0.25 ≤ St ≤
0.35, even though associated Reynolds numbers vary by a factor of 10
[20, 26]. The value chosen here is slightly above the observed range. We
note that, for fixed f and A, the larger the Strouhal number is, the slower
is the background velocity U . This causes the vorticity shed from the
plate to remain near and interact longer with the plate, which increases
the computational difficulty in resolving the flow. The results below are
thus in the more computationally difficult regime of the observed values.

3. Numerical Methods. We simulate the fluid flow using three nu-
merical models of increasing simplicity. In the first model, the plate is
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replaced by one of finite thickness, and the flow approximated by the
penalized Navier–Stokes equations [3, 21],

∂tu+ u · ∇u+∇p− νΔu+
1

η
χΩ(u− up) = 0 , (2)

where ∇ · u = 0 and the density has been normalized to 1. Here, χΩ is a
mask function which is 1 inside the region Ω occupied by the plate, and
0 elsewhere, and up is the plate velocity. As η → 0, the solution of (2)
converges to the solution of the Navier–Stokes equations in the comple-
ment of Ω [5]. Following [14], (2) is solved on a periodic domain using a
classical Fourier pseudo-spectral method for the spatial discretization, and
an adaptive second order Adams–Bashforth method for the time discretiza-
tion. The results presented below were obtained for fixed Re = 1,000, plate
thickness 1/(16c), and η = 0.001, usingNx×Ny = 8, 192×4, 096 grid points
on the computational domain [0, 24]× [−8, 4], where the plate is placed at
y = 0.

In the vortex sheet model the fluid is treated as a purely inviscid one.
The plate is modeled as a bound vortex sheet that satisfies zero normal flow
through the plate. A point vortex is released at each time step from the
trailing edge, and the shed vorticity is modeled as a regularized free sheet
[13]. No separation is allowed at the leading edge. A key component is the
algorithm used to determine the shed circulation Γ(t). Here, we follow [18]
and impose the Kutta condition

dΓ

dt
= −1

2
(u2

+ − u2
−) , (3)

where u± are the tangential velocities above and below the plate, at the
trailing edge. An alternative method introduced by Jones [15] is based on
representing the flow in the complex plane (see also [1, 16, 23, 24]). We
confirmed that the two methods give identical results for an example pre-
sented in [15], even though the implementation details differ significantly.
The vortex sheet model depends on the regularization parameter for the
free sheet, which in the results below is set to δ = 0.04c.

The simplest model we consider is the Brown–Michael point vortex
model [6, 8, 17, 28]. Here, a single point vortex is shed from the edge of the
plate at the beginning of the motion. Its circulation and position changes
in time so as to satisfy the Kutta condition, that is, flow tangency at the
edge. At the instant the rate of change of the vortex circulation vanishes
it is released: it moves with the fluid velocity and its circulation remains
constant. At the same time another vortex is shed from the edge and the
process repeats. The advantage of this method is that it is extremely fast.

4. Numerical Results. Figures 2–4 present the numerical results
computed with the three methods, using St = 0.4, Ac = 0.8, normalized
by c, at t/τ = 1, 2, 5. Figure 2 plots vorticity contours computed with the
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Fig. 2. Vorticity contours of the solution to the penalized Navier-Stokes equations,
for Re = 1,000, at t/τ = 1, 2, 5
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Fig. 3. Vortex sheet position at t/τ = 1, 2, 5

Navier–Stokes penalization method, for Re = 1,000. Darkly colored vortex
regions denote vortices of negative vorticity, regions colored in light grey
with a white ring and dark interior denote vortices of positive vorticity.
The vorticity values range from −50 to 50.
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Fig. 4. Point vortex positions computed using Brown-Michael model, at t/τ = 1, 2, 5
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The plate is impulsively started from the horizontal position θ = 0 with
positive velocity. In the first 1/4 period upward sweep, negative vorticity
separates from the upper side of the plate, forming a vortex of negative
circulation. This is the leading vortex in the first frame in Fig. 2, centered
around x = 3. As can be seen from the second and third frame, this lead
vortex travels downstream in time but remains centered above y = 0, by
itself. With each consecutive down- and upward sweeps of the plate, two
vortices of opposite sign are shed. Unlike the first, these two vortices pair
up and travel diagonally downwards. For example, at t/τ = 2, one well-
developed pair is observed, with a second nascent one near the edge of the
plate. At t/τ = 5, four vortex pairs are observed, with a fifth nascent one
near the edge. The leading pair at t/τ = 5 is beginning to move backwards.

Note also that vorticity is generated along the walls of the plate which,
at the times shown, separates from the bottom wall. Furthermore, the shear
layer connecting consecutive vortex pairs begins to roll up, forming smaller
secondary vortices lined up above the vortex pairs. We have performed
further computations which indicate that the strength of these secondary
vortices depends on the plate thickness. This is consistent with experimen-
tal results by Schnipper et al. [22]. Their Fig. 3d, e, f, all with the same
value of the Strouhal number as defined in (1), indicate that by increasing
the width of the leading edge in their case, the number and strength of
secondary vortices per flapping cycle increases.

Figure 3 plots the position of the sheet computed with the inviscid
vortex sheet model. The wall vorticity is absent, as well as the secondary
vortices, but the location of the primary vortices is in good agreement with
the viscous simulations. Some differences are noticeable at later times. For
example, at t/τ = 5 the vortex pairs travel at an angle that is less inclined,
and do not travel as far downward as in the viscous case. This may be
attributed to the fact that, as the viscous vortices evolve, their strength
decays by diffusion changing the relative circulation between them. As
a result, the leading viscous vortices are relatively weaker and may be
convected more strongly by vortices behind them.

Figure 4 plots the position of the point vortices computed with the
Brown–Michael model. This simple model captures the pairing of shed
vortices and approximate travel direction very well. The position of the first
vortex, denoted by “1/4”, is in good agreement with the other methods.
Differences can be observed at t/τ = 5. For example, the first vortex pair,
denoted by “1”, has travelled down and backwards further than in Figs. 2 or
3. Also the second and third pairs, denoted by “2” and “3”, have travelled
down further than in Fig. 2. This contrasts the vortex sheet results, in
which these vortices have travelled down less than in Fig. 2.

Figures 5a, b compare the normalized shed circulation Γ(t)/(Uc) and
drag force Fx/(U

2c) for the three methods. In the vortex sheet case, the
force is computed following [1, 15, 24]; for the Brown–Michael model, the
formulation for the force is derived following the outline given in [17].
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Fig. 5. (a) Normalized shed circulation Γ(t)/(Uc), and (b) normalized drag force
Cd = Fx/(U2c). Each plot shows results of the viscous simulation (thick), the vortex
sheet simulation (thin) and the Brown-Michael model (dashed)

Both circulation and drag synchronize closely with the oscillation of
the plate. In all models, the circulation oscillates about approximately
zero mean value. The oscillation amplitudes are about 1.4–1.7 times larger
in both inviscid models than in the viscous one. It is interesting that
even though the circulation in the two inviscid models is quite similar, the
corresponding vortex positions differ in comparison with the viscous ones.
Whether this depends on the distribution of vorticity between vortices or
the initial vortex placement remains to be understood. It is also curious
that the viscous values in Fig. 5 lag a small time behind the other two.

In the case of the drag force in Fig. 5b, the oscillation amplitude is
about 1.8 times larger in the inviscid models than in the viscous one. More
significantly, however, is that the mean values of the oscillation disagree. In
the inviscid models it is negative, predicting a net thrust of −0.72 (vortex
sheet) to −0.95 (Brown–Michael). In the viscous model the mean drag is
positive, predicting a net drag of about 0.45. Further investigation of the
pressure component and the viscous component of the force, and of simpler
cases for which theoretical results are available, may help elucidate which
one is responsible for this discrepancy.

5. Summary. We compared simulations of the vortex wake behind
a flapping plate using three models: the viscous penalized Navier–Stokes
equations, a vortex sheet model, and a point vortex model. We find that



SIMULATING VORTEX WAKES OF FLAPPING PLATES 261

the wake structure is qualitatively similar in all three models, and the shed
circulation and drag coefficient are of the same order of magnitude. There
are differences in the vortex position that become more apparent at larger
times. Also, in the inviscid models, the shed circulation values are larger,
as is the drag oscillation amplitude. Most interestingly, the skin drag seems
to dominate the horizontal force in the viscous case and not in the inviscid
one. However, we have presented results for only one value of Re, plate
thickness, and δ, and further study is necessary to determine the effect of
these parameters on the observed differences.
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