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a b s t r a c t 

The secret to the spectacular flight capabilities of flapping insects lies in their wings, which are often 

approximated as flat, rigid plates. Real wings are however delicate structures, composed of veins and 

membranes, and can undergo significant deformation. In the present work, we present detailed numerical 

simulations of such deformable wings. Our results are obtained with a fluid–structure interaction solver, 

coupling a mass–spring model for the flexible wing with a pseudo-spectral code solving the incompress- 

ible Navier–Stokes equations. We impose the no-slip boundary condition through the volume penalization 

method; the time-dependent complex geometry is then completely described by a mask function. This 

allows solving the governing equations of the fluid on a regular Cartesian grid. Our implementation for 

massively parallel computers allows us to perform high resolution computations with up to 500 million 

grid points. The mass–spring model uses a functional approach, thus modeling the different mechanical 

behaviors of the veins and the membranes of the wing. We perform a series of numerical simulations 

of a flexible revolving bumblebee wing at a Reynolds number Re = 1800 . In order to assess the influence 

of wing flexibility on the aerodynamics, we vary the elasticity parameters and study rigid, flexible and 

highly flexible wing models. Code validation is carried out by computing classical benchmarks. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

A fundamental characteristics of insect flight are flexible wings,

hich play an important role for their aerodynamics [1–3] , requir-

ng lower forces than their rigid counter parts and producing re-

uced sound. Numerical simulation of insect flight is itself a so-

histicated task, because it involves the solution of fluid-solid in-

eraction problems. Thus, we have to model simultaneously the

uid part and the solid part by using two coupled solvers. 

The fluid solver [4] we are using in the present work has been

eveloped previously and is called FLUSI, 1 a fully parallel software

edicated for modeling three-dimensional flapping flight in vis-

ous flows. The heart of this software is the Fourier pseudospectral

ethod with adaptive time stepping used for the discretization of

he 3D incompressible Navier–Stokes equations. Moreover, the vol-

me penalization method is used to take into account the no-slip
∗ Corresponding author. 

E-mail addresses: dinh-hung.truong@univ-amu.fr (H. Truong), 

homas.engels@ens.fr (T. Engels), dkolomenskiy@jamstec.go.jp (D. Kolomenskiy), 
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1 FLUSI: freely available for noncommercial use from GitHub ( https://github.com/ 

seudospectators/FLUSI ). 
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oundary conditions on the interfaces between the fluid and the

olid part. 

In [5] , we performed numerical simulations of rotating trian-

ular rigid wings at Reynolds number Re = 250 to investigate the

eading-Edge Vortices (LEVs) as a function of the wing aspect ratio

nd the angle of attack. High resolution direct numerical simula-

ions of rotating and flapping bumblebee wings were presented in

6] using likewise the FLUSI code with rigid wings focusing again 

n the role of LEVs and the associated helicity production. 

The interaction of flapping bumblebees with turbulent inflow in

ree and tethered flight was studied in [7] using once again mas-

ively parallel computations with FLUSI. We found that the fluctu-

tions of aerodynamic observables significantly grow with increas-

ng turbulence intensity, even if the mean values are almost un-

ffected. Changing the length scale of the turbulent inflow, while

eeping the turbulence intensity fixed, showed that the fluctua-

ion level of forces and moments can be significantly reduced. We

lso found that the scale-dependent energy distribution in the sur-

ounding turbulent flow is a relevant factor conditioning how fly-

ng insects control their body orientation. 

Nevertheless, a solver for solving the deformation of the struc-

ure was not fully developed in this software FLUSI. Hence, all
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previous simulations of insect flight have been performed with the

essential assumption that the insect is composed of linked rigid

parts including the wings. 

In the current work we aim at investigating the role of wing

elasticity on the flight performance. Consequently, a wing model

is required for simulating the deformation of the solid part under

the impact from the fluid. There are many models based on contin-

uum mechanics theory, which are used in many well-known solid

solvers. Among these, Finite Element Methods (FEM) are mostly

used in both research and industrial fields due to their reliabil-

ity and effectiveness. Despite this dominance, the requirement for

faster and more efficient methods motivates the development of

alternative models. One of these is the mass-spring system, which

is known for its computational efficiency and straightforward im-

plementation [8] . As part of this work, a solver using a network of

masses and springs is developed to model a flexible insect wing

and coupled with FLUSI. 

The story of mass-spring models started back at the end of

the 20 th century when people were dealing with observable de-

formations of flexible objects in computer graphics applications,

such as soft tissue, skin, hair, ball, cloth, textiles, etc. Being con-

sidered as one of the pioneers on this field, Terzopoulos et al.

[9] proposed using elasticity theory for modeling deformable ob-

jects instead of previously-used kinematic models, where the mo-

tion and the deformation of materials were prescribed. During this

period, most of simulations of flexible objects had been calculated

using finite element methods until the requirement of faster mod-

els was claimed by Eischen et al. [10] . Consequently, the develop-

ment of physically based deformable models started to grow, es-

pecially in the field of computer graphics [11] and biomedical en-

gineering [8] . While classic solvers, based on finite elements or fi-

nite difference methods, are generally employed in the static case

for computing stress and strain in a structure, new solvers for de-

formable objects must have the ability to deal with large deforma-

tions and large displacements, i.e. the nonlinear regime. Further-

more, these models need to be fast enough since they are usually

employed for real-time applications or coupled with other mod-

els which are already time-consuming. Among all the deformable

models proposed, mass-spring networks stand out as the most

intuitive and simplest due to their computational efficiency [12] .

Mass-spring systems have already been employed in many fields

such as medical applications [8] (muscle, red blood cells and vir-

tual surgery), computer graphics, fluid-structure interaction and in-

sect flight. Miller and Peskin [13] used mass-spring networks to

model insect wings in two-dimensional numerical simulations. A

mass-spring network was used by Yeh and Alexeev [14] to model

a flexible plate swimmer and performed fluid-structure interaction

simulation with Lattice-Boltzmann methods in 3D. The develop-

ment of our solid solver is motivated by their mass-spring net-

work approach, aiming to model the flexibility of insect wings in

the three-dimensional case. 

The goal of this paper is to move from rigid to flexible wings

and to present a fluid-structure interaction solver for flapping

flight, based on the open access software FLUSI, where we inte-

grated a solid model based on mass-spring systems. However, the

wing kinematics of insects is very difficult to obtain, since the

measurements usually require high tech equipment to capture all

the dynamic motion at small time scale and length scale. Instead,

a revolving wing model is usually employed to study the aero-

dynamics of flapping wings thanks to its simplicity. Accordingly,

the flow fields and force generation aspects of revolving wings

have been analyzed for a wide range of parameters, as reported

in the literature [15–17] . Di et al. [18] studied the role of forewings

in generating LEVs of three revolving insect wing models: hawk-

moth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly

(Drosophila melanogaster). Van de Meerendonk et al. [19] inves-
igated experimentally the flow field and fluid-dynamic loads of a

exible revolving wing to quantify the influence of flexibility on

he force generation performance of the wing. In our study, we

lso consider revolving flexible bumblebee wings and assess the

nfluence of the wing deformation. 

The outline of this paper is the following: In Section 2 we

resent a mass-spring model for describing the flexible insect

ings. The wing structure of the considered bumblebee wings and

ts mass distribution are detailed in Section 3 . The numerical ar-

illery of fluid-structure interaction is explained in Section 4 and

ome validation tests are given. The numerical results as well as

he discussion about the influence of the flexibility on the aerody-

amic performance are presented in Section 5 . Finally, conclusions

re drawn in Section 6 , including some perspectives for future in-

estigations. 

. Flexible wing 

.1. Mass-spring model 

The very basic idea of the mass-spring model is to discretize

n object using mass points m i (i = 1 , . . . , n ) connected by springs.

here exist many kinds of springs for different purposes but in the

imit of our work, we have used only linear extension and bending

prings to model insect wings. The dynamic behavior of the mass-

pring system, at a given time t , is defined by the position x i and

he velocity v i of the mass point i . For this, we need to solve the

ynamic equations of the system, which govern their motion in

ime under certain external forces. This is one of the elegant ad-

antages of the mass-spring network where these governing equa-

ions are simply the corresponding classical well-known Newton’s

econd law, given in Eq. (1) . 

F i = m i a i 

F i = F int 
i + F ext 

i for i = 1 . . . n 

v i (t = 0) = v 0 ,i 

 i (t = 0) = x 0 ,i (1)

here n is the number of mass points, F i is the total force (internal

orce F int 
i 

and external force F ext 
i 

) acting on the i th mass point, m i ,

 i are mass and acceleration of the i th mass point, respectively. 

Here, all terms are quite simple to derive except for the forces.

he external forces come from outside of the system and de-

end on the surrounding field and the problem we are dealing

ith. On the other hand, the internal forces represent the restoring

orces caused by the springs. The complicated properties of these

orces make the system (1) become nonlinear. Hence, we have a

onlinear system of 3 n second order ordinary differential equa-

ions (ODEs) corresponding to three dimensions x, y, z and n mass

oints. In the general case, this system (1) needs to be solved nu-

erically since its analytical solution cannot be derived. In prac-

ice, it is more convenient to convert a system of 3 n second order

quations into a system of 6 n first order equations by using the

elations a i = d v i /d t and v i = d x i /d t . Eq. (1) can then be rewritten

s below: 

dx i 

dt 
= v i 

m i 

dv i 
dt 

= F int 
i + F ext 

i for i = 1 . . . n 

v i (t = 0) = v 0 ,i 

 i (t = 0) = x 0 ,i (2)

et us call q = 

[
x i , v i 

]ᵀ 
the phase vector containing positions and

elocities of all mass points and f (q ) = 

[
v i , m 

−1 
i 

(F int 
i 

+ F ext 
i 

) 
]ᵀ 

the

ight hand side function, Eq. (2) can be rewritten again under the
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Fig. 1. Illustration of the restoring forces corresponding to the deformation of ex- 

tension and bending springs. 
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amiliar form of a system of first order ODEs as follows: 

dq 

dt 
= f (q , t ) 

 (t = 0) = q 0 (3) 

or time stepping, Eq. (3) need to be discretized using an appro-

riate numerical scheme. The choice for this scheme is not trivial

ince it depends on many factors. Due to the size of the wings, the

ass-spring network contains a lot of very small springs, which

ake the system very stiff and we need an implicit scheme for

ime marching. For this reason, either a centered scheme or a back-

ard scheme can be used. Although centered schemes are usually

n favor for their conservation property without numerical diffu-

ion, a centered scheme, for example the trapezoidal scheme, can

ead to numerical instability at some points because the eigenval-

es of the operator of the time discretization lie exactly on the

maginary axis, the boundary of the stability zone [20] . Further-

ore, the coupling between the fluid and the solid solver will re-

uire an adaptive time stepping scheme. For all these reasons, a

econd order backward differentiation scheme with variable time

teps [21] is used to discretize Eq. (3) in time. 

 

n +1 
i 

− (1 + ξ ) 2 

1 + 2 ξ
q 

n 
i + 

ξ 2 

1 + 2 ξ
q 

n −1 
i 

= 

1 + ξ

1 + 2 ξ
�t n f (q 

n +1 
i 

) (4)

here ξ = �t n / �t n −1 is the ratio between the current �t n and the

revious time step �t n −1 . Eq. (4) is a system of nonlinear equa-

ions with the variable q 

n +1 , the phase vector of the system at the

urrent time step, which needs to be solved. The Newton–Raphson

ethod, a powerful iterative method, is employed to solve this

onlinear system of equations. With an initial guess, which is rea-

onably close to the true root of the equations, Newton–Raphson

elps to find approximations of the root with the rate of conver-

ence estimated to be quadratic. For our mass-spring solver, the

nitial guess chosen is the phase vector q 

n solved at the previ-

us time step; this allows the Newton–Raphson method to con-

erge quickly since the structure is advanced slowly and smoothly

n time, which assures that q 

n +1 remains close to q 

n . In most cases,

he Newton–Raphson method in the solver needs three to four it-

rations to converge within a relative or absolute L 2 norm error of

0 −6 as the stopping criterion. 

.2. Extension springs and bending springs 

Extension springs ( Fig. 1 a) and bending springs ( Fig. 1 b) are

ommon mechanical devices, which resist against the external

orces to get back to their resting positions. The former is designed

o operate with axial forces, while the latter is used for torques.

he relations between the displacement and the restoring force are

iven by: 

• Linear extension spring 

F i = k e i j 

(|| x i j || − || x 0 ,i j || 
)
e i j 

F j = −F i (5) 

where k e 
i j 

is the extension stiffness, e i j = (x j − x i ) / || x j − x i || is

the unit position vector and F i and F j are the restoring forces of

the extension spring acting on two points i and j , respectively; 
• Linear bending spring 

M i jk = −k b i jk (θi jk − θ0 ,i jk ) (6) 

or in terms of forces 

F i = k b i jk (θi jk − θ0 ,i jk ) 
(
e i j × e jk 

)
× e i j 

F k = k b i jk (θi jk − θ0 ,i jk ) 
(
e i j × e jk 

)
× e jk 

F j = −F i − F k (7) 
where M ijk is the restoring moment, k b 
i jk 

is the bending stiff-

ness, θ0, ijk is the initial bending angle among three points i,

j and k, θ ijk the current bending angle and F i , F j , F k are the

restoring force vectors (as shown in Fig. 1 ) of the bending

spring acting on three points i, j and k , respectively. 

However, the calculation of θ ijk in Eq. (7) is not trivial since it

nvolves the geometrical definition of the angle in 3D space with

espect to a fixed coordinate system. Firstly, we consider a sim-

ler case when the three points are in the same plane, a 2D co-

rdinate system Oxy . This leads to x i = (x i , y i ) 
T , x j = (x j , y j ) 

T and

 k = (x k , y k ) 
T . The angle is now determined by: 

i jk = atan2 

[
(y k − y j )(x j − x i ) − (y j − y i )(x k − x j ) , 

(x k − x j )(x j − x i ) + (y k − y j )(y j − y i ) 
]

(8) 

Here, atan2 (usually known as two-argument arctangent) is a 

pecial function first introduced in computer programming lan-

uages to give a correct and unambiguous value for the angle by

aking into account the sign of both arguments. This function helps

s to calculate on the whole space when the angle can vary in the

ange of (−π, π ] , instead of the range of (−π/ 2 , π/ 2) when using

he standard arctangent function. 

For a problem in 3D space, only one bending angle will not be

ufficient. This can be easily seen by considering a simple case of

ne bending spring. At an instant t , the spring is deformed and has

 bending angle θ ijk . Nevertheless, corresponding to this θ ijk , there

s an infinite number of solutions x i , x j and x k that can satisfy this

eformation and the set of all these solutions forms a cone, like
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Fig. 2. All possible shapes of a bending spring corresponding to one bending angle 

θ ijk . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Illustration of a vein modeled by mass points, extension springs and bending 

springs. White circles represent mass points, solid lines represent extension springs, 

black circles represent both mass points and bending springs. 
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shown in Fig. 2 . Consequently, one more angle is needed to obtain

a unique solution. To define these two bending angles, the same

bending spring as the 2D case above is considered but now in a

3D coordinate system Oxyz . The bending spring is projected on the

Oxy and the Oxz planes which gives us two 2D bending angles θ y 

i jk 

and θ z 
i jk 

on the Oxy and the Oxz planes, respectively. Then, like in

the 2D problem, these two bending angles are calculated as be-

low: 

θ y 

i jk 
= atan2 

[
(x j − x i )(y k − y j ) − (x k − x j )(y j − y i ) , 

(x j − x i )(x k − x j ) + (y j − y i )(y k − y j ) 
]

θ z 
i jk = atan2 

[
(x j − x i )(z k − z j ) − (x k − x j )(z j − z i ) , 

(x j − x i )(x k − x j ) + (z j − z i )(z k − z j ) 
]

(9)

2.3. Functional approach - vein and membrane models 

Modeling insect wings is challenging due to the fact that these

wings have complex structures composed of a network of veins,

partly connected through hinges, with thin membranes spanned

in between and their elasticity properties are still poorly under-

stood. Certain studies have shown that the vein arrangements in

insect wings have strong impact on their mechanical properties

[3,22] . Thus, it will be inaccurate to consider a wing as a homoge-

neous structure; the vein pattern as well as the difference in terms

of mechanical behaviors between vein and membrane need to be

taken into account. However this is not an easy task, since insects

are the most diverse group of animals living on Earth with more

than one million known species with varying wing sizes and wing

shapes. As a result, in this study, we want to limit ourself to a

specific case when we examine only bumblebee (Bombus ignitus).

Bumblebee wings are mainly composed of veins and membranes.

The longitudinal veins extending along the wing in the spanwise

direction are big, hollow and providing conduits for nerves while

the cross veins are smaller, solid and connecting the longitudinal

veins to form a kind of truss structure. In the space between these

veins, we find a thin layer called membrane. 

From a mechanical point of view, veins can be considered as

rods which resist mainly the torsion and bending deformation. On

the other hand, a membrane is fabric-like, it behaves like a piece of

cloth which resists again the extension deformation. Consequently,

instead of considering the wing as a homogeneous structure, a

functional approach is used to distinguish veins and membranes.

We then propose two models using mass-spring networks to imi-

tate the mechanical behavior of the vein and the membrane. 

A vein is considered as a rod whose length is much greater than

its height and width. The total effect of all the external loads ap-

plied on a mechanical structure results in deformation which can

usually be classified into three main types: bending, twisting and

stretching. Although the whole wing is observed to be twisted sig-

nificantly in many studies using high speed cameras or the digital

particle image velocimetry [23–27] , it is not entirely clear that tor-

sion happens locally at veins or the unsynchronized bending defor-
ations between veins cause the whole wing to twist. To simplify

he model, we study only the latter in which we ignore the local

orsion of veins and model solely the bending deformation of veins

y using extension and bending springs. Thus, we model a vein by

 curve line which is discretized by n mass points as shown in

ig. 3 . Two neighboring points are connected with each other by

n extension spring (e.g. the mass points i and i + 1 are connected

y the extension spring k e 
i 
) and three neighboring points are con-

ected with each other by a bending spring (e.g. the mass points

 − 1 , i and i + 1 are connected by the bending spring k b 
i −1 

). 

When flapping, most of external forces will act in the direction

erpendicular to the wing surface. As a result, the stretching defor-

ation is negligible comparing to the bending deformation. Thus,

he role of the extension springs in the model is solely to conserve

he length of the vein. The stiffness of these extension springs is

rtificial and they do not need to reflect the mechanical property

f the vein itself. They should be chosen stiff enough to make the

od unstretched but not too stiff to avoid problems with numerical

tability when integrating the dynamical system in time. 

Compared to veins, membranes are totally different in terms

f geometrical and mechanical properties. Geometrically, a mem-

rane is an object whose thickness is much smaller than its ex-

ent. Consequently, a membrane is usually considered as a planar

wo-dimensional sheet or a set of planar sheets in the case of non-

lanar three-dimensional membranes [28,29] . On the mechanical

ide, a membrane is a special kind of structure compared to other

tructural elements, i.e. a rod, a bar, a plate or a beam. It behaves

ike a piece of cloth which is much easier to be bent than to be

tretched or compressed. Keeping these in mind, the membrane

art of the wing is modeled by a 2D sheet which is discretized

y a system of mass points and extension springs. There are sev-

ral ways to discretize a 2D sheet (as shown in Fig. 4 ) but an

nstructured triangular mesh needs to be employed for our prob-

em due to the complicated geometry of insect wing. Moreover, an

nstructured mesh is preferred for modeling isotropic membranes

30] since the random orientations of the springs will average out

he forces. 

.3.1. Correlation between mass-spring network models and 

ontinuum constitutive laws 

Besides the mesh topology, the parameter setting is another

hallenge that one has to solve in order to correctly model the

aterial of which the object is made. There are two main param-

ters needed to be assigned for a mass-spring model: the masses

nd the spring stiffness. Although a Voronoi diagram can be used

o find the masses in a proper way [32] , selecting spring stiffness

s still an open question and there are two common solutions to

vercome this [33] . The first approach is based on optimization

ethods to minimize the difference between the results solved

y the mass-spring model and the reference data. These reference

ata can come from the measurements, the visual appearance of

eal objects [34] or numerical solutions using validated methods
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Fig. 4. Different mesh structures for 2D discretization [31] . 

Fig. 5. Relationship between the spring constant k , Young modulus E s , and Poisson ratio νs in the small deformation limit for a 2D membrane under uniaxial deformation. 

The membrane is discretized by three types of meshes and subjected to homogeneous deformation. Figure adapted from [31] . 
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uch as finite element methods [35,36] . In general, this approach

annot be applied if the system has too many degrees of freedom

ith many unknown spring constants or the mesh topology varies

n time since one set of parameters works for solely one mesh

tructure. Otherwise, tuning the spring stiffness by using opti-

ization can give satisfying results with reasonable computational

ost. 

The second way is about deriving a relation between spring

tiffness and other continuum mechanic properties, such as Young

odulus, the Poisson ratio and the flexural rigidity. In contrast to

he discrete models, the elasticity parameters have been obtained

or many materials and can be used to calculate the correspond-

ng spring stiffness. Omori et al. [31] succeeded in doing this for a

lanar membrane by considering a 2D sheet under small uniaxial

eformation. The relation between spring networks and continuum

odels for three types of meshes is shown in Fig. 5 . 

For the vein model, a relation between the flexural rigidity EI

nd the stiffness of the bending springs k b 
i 

is needed. To derive

his relation, we consider a classical problem of a cantilever beam

ength l b , under a point force F at the free end ( Fig. 6 ). In the limit

f small displacement, the principle of energy yields the value of

he bending spring stiffness k b as a function of the flexural rigid-

ty EI . The energy stored in this beam at the static state can be

alculated easily using the Euler-Bernoulli beam theory as shown
n Eq. (10) . 

 beam 

= 

F 2 l 3 
b 

6 EI 
(10) 

The mass-spring network is called an equivalent model of the

ontinuous beam if under the same external loads, its mechanical

ehavior (in this case, it is the energy stored in the system) is the

ame as the one of the beam. Let us now study a mass-spring net-

ork discretized into n + 2 mass points connected by bending and

xtension springs as shown in Fig. 6 . All the bending and exten-

ion springs are the same with a stiffness k b and k e , respectively

nd k e � k b . The first two points are totally fixed to represent the

oundary condition of the fixed end of the beam. Writing the equi-

ibrium equations for the remaining n points, we have: 

 

l b 
(n + 1) 

(n + 1 − i ) = k b (θi +1 − θi ) for i = 1 . . . n (11)

Considering the deformations of extension springs are very

mall, the total potential energy of all the bending springs of the

ystem is 

 mass −spring = 

1 

2 

k b 
n ∑ 

i =1 

(θi +1 − θi ) 
2 (12) 
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Fig. 6. Illustration of deformation corresponding to forces applied on extension and bending springs. 
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With Eqs. (11) and (12) we obtain: 

E mass −spring = 

F 2 l 2 
b 

2 k b (n + 1) 2 

n ∑ 

i =1 

i 2 

= 

F 2 l 2 
b 

2 k b (n + 1) 2 
n (n + 1)(2 n + 1) 

6 

= 

F 2 l 2 
b 

12 k b 
n (2 n + 1) 

n + 1 

(13)

By comparing Eqs. (10) and (13) , we can derive an analytical

relation between k b and EI as following: 

k b = 

EI 

l b 

n (2 n + 1) 

2(n + 1) 
(14)

Since Eq. (14) is derived based on the assumption of small dis-

placement, we still have here a linear problem thus the princi-

ple of superposition can be applied. During the flight, the aerody-

namic loads acting on insect wings can be considered to be equiv-

alent to distributed loads on the surface of the wings. These dis-

tributed loads can be discretized into many point forces using a

work-equivalent method [37] and then the superposition principle

can be applied. Thus, it is sufficient to analyze only one point force

case to find the relation between EI and k b , since it does not de-

pend on the point force F . 
However, as mentioned at the beginning of this section, insect

ings are deformed significantly to create lift for flying. Here, we

re dealing with a large displacement problem and the question is

f Eq. (14) still remains valid. The technique used to derive (14) is

o longer applicable since the solution for large deflection of a

antilever beam cannot be obtained analytically [38] . This problem

nvolves calculating elliptical integrals of the second kind [39] and

eeds to be solved numerically. Consequently, the relation between

I and k b is put into a large displacement, nonlinear test case to

heck if we still get the same mechanical behaviors between the

ontinuous beam and the mass-spring model. The results are pre-

ented in the next section. 

.4. Validations of the mass-spring model 

.4.1. Vein model - cantilever beam under gravitational force 

Static case Firstly, we consider a static case of a cantilever beam

ith length L = 0 . 3 , flexural rigidity EI = 0 . 24 and loaded by a

oint force F at the free end. The force F varies from 0.39 to 11.76

nd it must be strong enough to cause a large deflection. All the

arameters here are dimensionless. The vertical displacement δy

nd the horizontal displacement δx of the free end of the beam

t equilibrium state can be calculated by using the fundamen-

al Bernoulli–Euler theorem [40] and the mass-spring network as
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Table 1 

Comparison between the continuum theory and the discrete mass-spring network 

in the static large deflection case. 

Point force Nonlinear beam [39] Mass-spring network Relative error 

F δx re f [10 −2 ] δy re f [10 −2 ] δx [10 −2 ] δy [10 −2 ] err x [%] err y [%] 

0.39 29.96 −1.46 29.96 −1.46 0 0 

1.96 29.02 −6.93 29.01 −6.92 0.03 0.14 

3.92 26.87 −12.14 26.85 −12.1 0.07 0.33 

7.84 22.53 −17.93 22.53 −17.85 0 0.45 

11.76 19.37 −20.69 19.40 −20.57 0.15 0.58 

Fig. 7. Cantilever beam subjected to gravity field modeled by continuous nonlinear 

beam and mass-spring network. 
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iven in Table 1 . The static state of the vein model (discretized by

 = 64 mass points) is obtained by solving the dynamic equations

f the system with artificial damping forces to make the system go

uickly towards its balanced position. Despite the small displace-

ent assumption for deriving the relation between EI and k b , the

elation in Eq. (14) is still valid even in very large deflection prob-

em. For the case F = 3 . 92 , the vertical displacement of the free

nd is already more than 30% of the total length of the beam and

e still get very good agreements between both models with the

elative error being smaller than 1%. The mapping from EI to k b 

an then be generalized for nonlinear, large deflection cases with

ood agreement between the continuum theory and the discrete

ass-spring network. 

Dynamic case 

The vein model will now be compared with another solid solver

eveloped by Engels et al. [41] . It is based on the classical non-

inear beam equation, the Euler–Bernoulli theory. All details about

his solver can be found in [20] . We study the case when we have

 2D cantilever beam ( Fig. 7 ) of length l b = 1 , density ρ = 0 . 0571 ,

exural rigidity EI = 0 . 0259 . The beam is in vacuum, subjected

o a gravity field g = 0 . 7 strong enough to cause large deflection.

ll the parameters here are dimensionless. Both computations are

erformed for the same numerical parameters with the time step

t = 10 −2 and n = 64 grid points. Although both solvers require the

ame amount of CPU time for the same resolution, the mass-spring

etwork is still more efficient since it is designed to deal with 3D

roblems. For the computation, the mass-spring solver handles a
ystem of 3 n degrees of freedom, corresponding to 3 dimensions,

hile the nonlinear-beam solver only solves for 2 n variables. 

The deflection line of the two models at a given time t and

he oscillation of the trailing edge y te ( t ) are shown in Fig. 8 . The

ashed blue line calculated by the nonlinear beam theory and the

olid red line calculated by the mass-spring network are almost co-

ncident with each other. We have an excellent agreement between

hese two models with a relative error smaller than 1%. 

.4.2. Membrane model - uniaxial and isotropic deformations of a 

wo-dimensional sheet 

We consider here the same test case proposed by Omori

t al. [31] where a square 2D sheet with an initial side length

 0 = 1 is extended by a uniaxial tension T = 0 . 005 and has a fi-

al length l in the x -direction at the equilibrium state, as shown in

ig. 9 . This tension must be small enough to cause small deforma-

ion on the sheet. The Young modulus E s is defined by : 

 s = 

T 

ε
(15) 

here ε is the strain. 

The sheet is then discretized by using three types of meshes, il-

ustrated in Fig. 4 . The grid size �l is the side length of one trian-

le element of the mesh and inversely proportional to the number

f grid points n . The grid size is varied to refine the mesh res-

lution. Since we are only interested in the equilibrium state of

he model, the masses will not have any effect on the result and

hey are chosen properly for the numerical convergence. Instead

f solving the static equation of the system, we still solve here

he dynamic equations of the system with artificial damping forces

o make the system go quickly towards its balanced position. Last

ut not least, all the spring stiffnesses are set to the same value

 = 1 . Fig. 10 shows the results we get for all three mesh struc-

ures. First, for the cross-center structure, we are able to reproduce

he result of Omori et al. [31] . When the mesh is refined, the ratio

 / E s converges to the analytical value 3/4 with the relative error

eing smaller than 1%. For the regular triangle, due to the shape of

he square, we have some minor flaws of the mesh at the border.

ut these can be neglected when the mesh is fine enough and we

an consider it as a regular triangular mesh. Indeed, for high res-

lution, we find again an excellent agreement with the analytical

atio k/E s = 

√ 

3 / 2 derived by Omori et al. The relative error is also

maller than 1%. However, for the unstructured mesh, the conver-

ent value of k / E s is larger than the one of Omori et al., but iden-

ical to the analytical solution for the regular triangle. This find-

ng is in fact expected by Omori et al. since these two meshes are

oth constructed with triangles, each node being connected to six

prings. Yet, the random structure of the unstructured mesh makes

t difficult to explain the difference. 

Using our mass-spring model, we are capable of reproducing

he results from the references, which indicates the reliability of

he solver. These results for both small and large deformation cases

llow us to have the same conclusions as in the literature about

he mass-spring system. Even though the mechanical properties of

pring networks are strongly dependent on the mesh topology, a

orrelation between the discrete model and the continuum model

an still be obtained if the mesh is fine enough. However, this

eeds to be compromised with the computational efficiency which

s the main reason that we choose mass-spring network in the first

lace. 

. Wing structure 

The simulation of insects with flexible wings is extremely com-

licated not only because it involves solving for both fluid and

olid dynamics, but also due to the fact that insect wings are so-

histicated structures. In our work, we want to take into account
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Fig. 8. The oscillation of the trailing edge y te ( t ) (a) and the deflection lines at t = 2 (b) calculated by the nonlinear beam theory [20] (dashed blue line) and the mass-spring 

network (solid red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Deformation of a 2D sheet along the x -axis under the uniaxial tension T . 

Fig. 10. Effect of mesh topology on the relation between the spring stiffness k and 

the corresponding Young modulus E s . 
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s much as possible all the mechanical properties of the bumble-

ee wing, in order to correctly model its dynamic behaviors. In our

ing model there are three main factors introduced, which are

onsidered to have the most impact on wing deformation during

ight: venation pattern, mass distribution and vein stiffness. 

.1. Venation pattern 

The venation architecture is claimed to affect the anisotropy

f the wing. Throughout measurements from different insects,

ombes et al. [3,22] suggest that wing flexural stiffness declines

xponentially towards the tip and trailing edge. This is explained

y the common venation patterns of insect wings: most insect

ings have thick, stiff veins at the leading edge and cross veins

re thinner as they expand toward the wing tip. This structure al-

ows insect wings to resist against strong bending deformation in

he spanwise direction, while creating camber for lift generation

n the chordwise direction [22] . Nakata and Liu [2] modeled the

nisotropy caused by wing veins. To this end they took into ac-

ount the variation of wing thickness and introduced a “rule of

ixture” of composite materials. 

In our model, the functional approach is used to take into con-

ideration the venation pattern. The vein structure, as well as the

ing contour, are adapted from the data from [42] and encoded

nto the mass-spring network, as shown in Fig. 11 . Comparing to

he reference data, two more veins are added (vein 21 in the

orewing and vein 7 in the hindwing) and two forewing veins 19

nd 20 are extended toward the tip of the wing. These modifica-

ions are made to add bending stiffness to the tip of the wing and

hus to obtain a more realistic behavior during the simulation. The

eshing is done by identifying firstly the contour of the wing and

ll the veins (green, red and blue curves in Fig. 11 ). The mem-

rane is then discretized by a triangular mesh using SALOME, 2 

n open-source integration platform for numerical simulation and

esh generation. 

.2. Mass distribution 

Another property which plays an essential role on the aero-

ynamics of the wing, is the mass distribution. It represents the

nertia of the system and the position of the mass center has

 strong connection with the stability of the wing during flight.
2 https://www.salome-platform.org/ 

https://www.salome-platform.org/
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Fig. 11. Illustration of the mass-spring model which is meshed based on measured data of real bumblebee wings [42] . The black and white markers represent mass centers. 

Color codes (red, green and blue) are used for identifying veins and the membranes are represented by cyan circles. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Dimensionless vein diameter d v (adapted from [42] ) and their corresponding dimensionless 

mass m v . 

Forewing Hindwing 

# Nominal diameter Nominal mass # Nominal diameter Nominal mass 

1 0.0070 0.0209 1 0.0065 0.0180 

2 0.0074 0.0237 2 0.0043 0.0071 

3 0.0055 0.0076 3 0.0046 0.0024 

4 0.0070 0.0063 4 0.0011 0.0001 

5 0.0040 0.0031 5 0.0038 0.0043 

6 0.0048 0.0094 6 0.0037 0.0005 

7 0.0040 0.0019 7 0.0020 0.0012 

8 0.0038 0.0009 

9 0.0041 0.0023 

10 0.0048 0.0064 

11 0.0045 0.0017 

12 0.0038 0.0018 

13 0.0042 0.0010 

14 0.0038 0.0020 

15 0.0034 0.0008 

16 0.0032 0.0005 

17 0.0032 0.0004 

18 0.0044 0.0009 

19 0.0015 0.0001 

20 0.0018 0.0001 

21 0.0020 0.0009 

T  
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he mass distribution is calculated based on the measured wing

ass data from [42] . For our numerical simulations, the total wing

ass is chosen as the same used by Kolomenskiy et al. [42] , m w 

=
 . 791 mg. The mass is then distributed into vein and membrane

arts based on their geometry and material. Each vein is consid-

red as a rod composed of cuticle, ρc = 1300 kg/m 

3 [42] , with a

ircular cross section of constant diameter d v [42] and length l v ,

alculated directly from the model. The mass of each vein is then

alculated and shown in Table 2 . Both diameter and mass are di-

ensionless quantities, normalized by wing length L and air den-

ity ρair L 
3 , respectively. 

The mass distribution for the membrane is more tricky since

e do not have the material properties of bumblebee membranes.

 bi-linear regression is employed due to the fact that the mem-

rane is heavier near the wing root and the leading edge [42] . An

ptimization is employed to find the parameters for the regres-

ion using the mass center from the measured data as an objective

unction. For a mass point m i belonging to the membrane at posi-

ion [ x i , y i ] (the z coordinate is neglected here because we assume

i

hat the membrane is a planar sheet), we get: 

 i = 1 . 75 × 10 

−4 − 2 . 83 × 10 

−4 x i + 4 . 91 × 10 

−4 y i (16)

his yields a difference, between two mass centers, of 0.0013 in

he x -direction and 0.0085 in the y -direction which are really small

ompared to the reference wing length R w 

= 1 . 

.3. Vein stiffness estimation 

To study the influence of wing flexibility on the aerodynamics

erformance, the flexural rigidity of veins will be changed to alter

he bending stiffness of the wing. Consequently, only Young mod-

lus E will be varied. Insect cuticles are reported to have a Young

odulus about 1 kPa to 50 MPa [43] . For our study, we are choos-

ng two values of E (corresponding to flexible and highly flexible

ings): 3.5 kPa and 35 kPa, which are in this range and give realis-

ic deformations comparing to those observed in real life. Then, the

exural rigidity EI of each vein will be calculated using the second

oment of inertia I of circular-section veins with diameters given

n Table 2 . 
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4. Fluid-structure interaction 

4.1. Numerical method 

The ultimate goal of this work is the fluid-structure interaction

simulation of insects with flexible wings. To study the airflow as

well as the effect of flexibility on the aerodynamic performance of

the wing, the developed mass-spring model needs to be coupled

with a fluid solver. This is done by combining the volume penal-

ization method [44] with a Fourier pseudospectral discretization

[45] , for which we developed the parallel open-source solver FLUSI,

freely available on Github 3 [4] . The code solves the incompressible,

penalized Navier-Stokes equations 

∂ t u + ω × u = −∇� + ν∇ 

2 u − χ

C η
(u − u s ) 

︸ ︷︷ ︸ 
penalization term 

− 1 

C sp 
∇ × (χsp ω) 

∇ 

2 ︸ ︷︷ ︸ 
sponge term 

(17)

∇ · u = 0 (18)

u (x , t = 0) = u 0 (x ) x ∈ �, t > 0 (19)

where u is the fluid velocity, ω is the vorticity, � = p + 

1 
2 u · u is

the total pressure, ν is the kinematic viscosity. We find here again

all the familiar terms of the classical Navier–Stokes equations ex-

cept for the sponge and penalization terms. The former is a vortic-

ity damping term used to gradually damp vortices and alleviate the

periodicity inherent to the Fourier discretization. The last term is

used to impose the no-slip boundary conditions on the fluid-solid

interface as explained in [4] . All the geometry information of the

solid is encoded in the mask function χ , which is usually taken as

one inside the solid and zero otherwise. However, we are dealing

with a moving flexible obstacle and the discontinuous mask func-

tion χ need to be replaced by a smooth one, Eq. (20) , to avoid

oscillations in the hydrodynamic forces [20] . Thus, we employ a

mask function χ as shown below: 

χ(δ) = 

⎧ ⎨ 

⎩ 

1 δ ≤ t w 

− h 

1 
2 

(
1 + cos π (δ−t w + h ) 

2 h 

)
t w 

− h < δ < t w 

+ h 

0 δ ≥ t w 

+ h 

(20)

where h is the semi-thickness of the smoothing layer, t w 

is the

semi-thickness of the wing and δ is the distance function which

gives us the distance from Eulerian fluid nodes to the center sur-

face of the wing. As presented in Section 3 , an unstructured trian-

gular mesh is employed for our wing model. Thus, the discretized

wing surface is composed of triangles constructed by three ver-

tices (e.g. x s,i , x s,j and x s,k ). The distance function δ is computed by

cycling over all these triangles. Since we are only interested in the

fluid nodes near the fluid-solid interface, a bounding box is used to

save computing time. For each triangle, the distance from it to all

the fluid nodes belonging to its bounding box will be computed by

using the algorithm from [46] . The distance function at one fluid

node is finally the minimum distance from this fluid node to all

the triangles nearby. 

δ(x , t) = min (|| x − triangle (x s,i , x s, j , x s,k ) || 2 ) (21)

The solid velocity field u s is calculated in the same way as the dis-

tance function δ. If the triangle ( x s,i , x s,j , x s,k ) is the one closest

to the fluid node x, x will be projected onto the plane of the tri-

angle and the solid velocity of the projected point is interpolated
3 https://github.com/pseudospectators/FLUSI 

i  

t  

a

rom the velocities of the three vertices by using barycentric inter-

olation. Because we do not consider the flexibility of the wing in

he direction perpendicular to the wing surface, the velocity of the

rojected point should be the same as the one of the fluid node.

evertheless, the solid velocity field is defined in the global ref-

rence frame for the fluid solver while the velocity solved by the

olid solver is in the local wing reference frame. These velocities

re needed to be transformed back to the global reference frame

sing Eq. (22) where V O (w ) and � are the translating and rotating

elocity of the wing reference frame, v ( w ) and x ( w ) are the velocity

nd the position computed by the solid solver in the wing refer-

nce frame, respectively. 

 s = V O (w ) + v (w ) + � × x 

(w ) (22)

Moreover, the fluid also interacts with the wing via the pres-

ure and viscous force. However, at Re = O(10 3 ) in our study, the

iscous force is considered to be very small and only the pres-

ure force is transferred into the mass-spring system as external

orce. Contrary to the previous calculation of the solid velocity

eld u s , the pressure force is interpolated from the Eulerian fluid

rid onto the Lagrangian mass points. The pressure interpolation

s quite straightforward because the pressure field solved by the

enalized Navier–Stokes equations is following the Darcy law and

ontinuous even inside the wing [44] . Consequently, the pressure

t any mass point can always be determined, using delta interpo-

ation proposed by Yang et al. [47] , from pressure values at neigh-

oring Eulerian grid points [20] . Then for each triangle element of

he wing, the pressure forces at the three vertices are perpendic-

lar to the triangle and have magnitudes equaling to the pressure

ultiplied by one third of the triangle area. This is done for all

he triangles and then accumulated to obtain the overall external

ressure forces acting on the mass-spring system. 

For time-stepping, the coupled fluid-solid system is advanced

y employing a semi-implicit staggered scheme as proposed in

20] . At time step t n , the fluid velocity field is advanced to new

ime level u 

n → u 

n +1 from the old mask function χn and the old

olid velocity field u 

n 
s by using the Adams–Bashforth scheme. Then,

he pressure field at the new time step p n +1 is calculated from the

uid velocity field u 

n +1 . Finally, the solid is advanced to the new

ime step χn +1 and u 

n +1 
s and the whole process is repeated until

he final time. 

.2. Validation 

For the validation of the fluid-solid coupling, we consider two

est cases: the Turek benchmark test case FSI3 [4 8,4 9] and the

igid revolving bumblebee wing test case [6] . 

.2.1. Turek benchmark FSI3 

The Turek benchmark FSI3 involves a flexible appendage of

ength l = 0 . 35 and thickness h = 0 . 02 placed right behind a cir-

le cylinder of radius R = 0 . 05 ; the whole obstacle is immersed

n a channel of size H × L = 0 . 41 × 2 . 5 with a Poiseuille inflow of

eanflow Ū = 2 , as shown in Fig. 12 . The center of the cylinder

s placed a bit lower to the centerline at (0.2, 0.2) to trigger the

nstability and to make the appendage oscillate. 

The fluid solver, as well as the fluid-solid coupling, are han-

led by the software FLUSI [4] and the setup remains the same as

he test case FSI3 with a resolution of 5200 × 1152 whose details

an be found in [20] . Only the solid solver based on the nonlinear

eam equation, which is used for validation in Section 2 , is now

eplaced by the new solver using the mass-spring network for val-

dation. The results of this simulation are presented in Table 3 for

he comparison with the reference solutions presented in the liter-

ture [20,4 8,4 9] . 

https://github.com/pseudospectators/FLUSI
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Table 3 

Results of the FSI3 benchmark. 

References y te [10 −3 ] Drag Lift f 0 

max min max min max min 

Mass-spring network 36.22 −32.93 503.02 442.12 189.94 −186.23 5.56 

(1) T. Engels [20] 35.63 −32.71 481.20 432.50 188.52 −181.30 5.44 

(2) S. Turek [48] 36.37 −33.45 487.81 432.79 156.13 −151.31 5.47 

(3) S. Turek [49] 36.46 −33.52 488.24 432.76 156.40 −151.40 5.47 

Fig. 12. Computational domain of the FSI3 Turek benchmark and dimensions of the 

solid part [49] . 
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F

n

ig. 13. The oscillation of the trailing edge y te ( t ) (a), the drag (b) and the lift (c) from the r

etwork (red continuous line). (For interpretation of the references to color in this figure 
For the oscillation of the trailing edge y te , the result is in excel-

ent agreement with all three references when the maximum rel-

tive error, for both maximum and minimum values of y te , is only

.76% and the relative error for the frequency of oscillation is 1.65%.

he vertical displacement of the trailing edge with respect to time

n the periodic state is also plotted in Fig. 13 to compare with the

eference [49] . The two lines are almost superposed on each other.

evertheless, the computed drag is less accurate with a relative er-
eferences [49] (blue dashed line), [20] (black dash-dotted line) and the mass-spring 

legend, the reader is referred to the web version of this article.) 
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Fig. 14. Schematic diagram of the revolving wing simulation (a) and the wing mass-spring model (b) adapted from [6] . The wing is rotated around the hinge point with an 

angle of attack α = 45 ◦ . 
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Fig. 15. Comparison of lift and drag coefficients for a rigid wing, calculated using 

the coupling between FLUSI and the developed mass-spring solver, with the refer- 

ence data from [6] . 

Fig. 16. Drag coefficient generated by a flexible wing, calculated at different reso- 

lutions: 128 2 × 64, 256 2 × 128, 512 2 × 256, 768 2 × 384 and 1024 2 × 512. 
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Fig. 17. The error of the mean drag versus mesh size. The dashed lines represent 

first and second order convergence. 

Fig. 18. Lift and drag coefficients generated by a revolving flexible wing discretized 

by 465 and 1065 mass points at Re = 1800 . 
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or which can go up to 4.57% comparing the maximum value with

he reference [20] , but only 1% comparing with [48] . From Fig. 13 ,

he curves of the two solutions appear to have the same shape but

ave some offset. This offset is explained in [20] to be due to the

moothing layer in the mask function, which plays a role as sur-

ace roughness. This leads to the over-prediction of the drag force.

oncerning the lift force, the mass-spring model yields results very

lose to the one calculated by Engels with the error of 2.76%, and

he difference is around 20% with respect to [4 8,4 9] for both max

nd min values. Like in Engels [20] , the amplitude of the lift force

s over-predicted by coupling FLUSI and the mass-spring solver. In

onclusion we find satisfying agreement with the results from the

iterature, for the solid solver alone, as well as for the FSI algorithm

oupling the solid solver with the fluid solver in 2D. 

.2.2. Rigid revolving wing 

Prior to studying the flexibility of the wing, a common test case

f a rigid revolving wing is considered to validate the coupling be-

ween the fluid and the solid solver in 3D, i.e. the mask function

eneration and the velocity field of the solid. The setup is taken

he same as the one used by Engels et al. [6] as shown in Fig. 14 .
he angle of attack is fixed at α = 45 ◦ while the rotation angle φ( t )

s given by 

(t) = τ e −t /τ + t − τ (23)

The wing is rotated around the center of the computational do-

ain of size 4 × 4 × 2, which is discretized using a mesh of

024 × 1024 × 512 grid points. To be consistent with the refer-

nce simulation [6] , the wing shape is not the one presented in

ection 3 but adapted from the wing planform taken from the ref-

rence. The wing shape is then discretized by a triangular mesh

s shown in Fig. 14 b. However, the vein structure will not be

aken into account in this model because we are considering a

igid wing. The triangular mesh is solely exploited for the cre-

tion of the mask function and the solid velocity field by using

he algorithm presented at the beginning of this section. Here, all

he quantities are normalized. The wing length is chosen as the

ength scale L = 13 . 2 mm ; the mass scale is based on the air den-

ity M = ρ × L 3 = 2 . 817 mg and the time scale is chosen in the
air 
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Fig. 19. Influence of wing flexibility on lift and drag coefficients of a revolving wing 

at Re = 1800 . 

Fig. 20. Lift-to-drag ratio for the three wings during the steady state, rotation angle 

120 ◦ ≤ φ ≤ 320 ◦ . 

t  

t  

p

5

 

d  

o  

r  

p  

d  

h  

d  

1  

s  

t  

s  
way that wing tip velocity is unity, thus T = 1 s . The Reynolds

number is then defined as in [6] Re = ū tip c m 

/ν where the mean

wingtip velocity ū tip = 1 [ LT −1 ] by definition from Eq. (23) , the

fluid viscosity ν = 1 . 477 × 10 −4 [ L 2 T −1 ] and the mean chord, the

ratio between the wing surface area A and the wing length R w 

,

c m 

= A/R w 

= 0 . 304 [ L ] . This yields Re = 2060 . Additionally, the lift

and drag coefficient are defined as below 

 L = 

F L 
MLT −2 

; C D = 

F D 
MLT −2 

(24)

where the lift F L is the force in the vertical direction Oz and the

drag F D is the force perpendicular to the plane formed by the ver-

tical and the wing spanwise axes, as shown in Fig. 14 a. 

The computed lift and drag coefficients are shown in

Fig. 15 along with the reference values from [6] . To evaluate quan-

titatively the error, the average lift and drag during the steady state

(for rotation angles φ varying from 160 ◦ to 320 ◦) are computed

and compared with the reference. A very good agreement is ob-

tained with the relative error of 1.3% for the drag and 1.6% for the

lift. 

From the results obtained from these two test cases, the sat-

isfactory agreements can give us the confidence about the solid

solver, based on mass-spring system, as well as the coupling with

the flow solver FLUSI. Any difference between all the numerical

studies carried out can be explained by the difference between the

continuum model and the discrete model together with the way of

generating the mask function. 

5. Results and discussion 

In the following we present results of high resolution compu-

tations of revolving bumblebee wings which are either rigid, flex-

ible or highly flexible. First we perform computations for different

resolutions to check the mesh convergence for both fluid and solid

solvers. Then a comparison of the flexible wings with the rigid case

allows to assess the influence of the wing deformation on the aero-

dynamic forces. The setup is exactly the same as described in the

revolving wing test case of the previous section. The only differ-

ence is the wing shape which is now changed back to the one pre-

sented in Section 3 . As a result, the length scale and the mass scale

are changed as follows: L = 15 mm and M = ρair × L 3 = 4 . 13 mg

while the time scale remains the same T = 1 s . The corresponding

Reynolds number is 1800 where the fluid viscosity is assumed to

be ν = 1 . 477 × 10 −4 [ L 2 T −1 ] , the wing tip velocity u tip = 1 [ LT −1 ]

and the mean chord calculated from the new wing surface area is

c m 

= A/R w 

= 0 . 266 [ L ] . 

5.1. Study of mesh convergence 

5.1.1. Fluid mesh 

The following mesh convergence study for the fluid solver is

performed considering five different resolutions: 128 × 128 × 64,

256 × 256 × 128, 512 × 512 × 256, 768 × 768 × 384 and

1024 × 1024 × 512. 

The mean drag generated during the second half cycle of the

rotation is chosen for the evaluation of the mesh convergence

(160 ◦ ≤ φ ≤ 320 ◦). Because it is impossible to obtain the exact

values for the mean drag in this case, we use here the result ob-

tained with the finest mesh as a reference value. The relative error

of the mean drag with respect to the reference drag for all the

mesh size is shown in Fig. 17 . In all the simulations, the penaliza-

tion parameter C η is chosen to satisfy that the number of points

per thickness of the penalization boundary layer K η = 

√ 

νC η/ �x is

always constant (as recommended in [20] ) and equal to 0.052. The

drag obtained for each simulation ( Fig. 16 ) shows the convergence
o the finest resolution solution when we refine the mesh. The spa-

ial convergence exhibits a first to second order behavior when we

lot the error versus the mesh size. 

.1.2. Solid mesh 

As mentioned above, the dynamics of the mass-spring system

epends strongly on the mesh size. Thus another convergence test

n the number of mass points is performed. Two simulations of a

evolving flexible wing at resolution 768 2 × 384 are run to com-

are between a medium-mesh and a fine-mesh wing which are

iscretized by 465 and 1065 mass points, respectively. As shown

ere in Fig. 18 , although the number of mass points is more than

oubled, the forces remain almost unchanged with an increase of

.1% and 0.8% in average lift and drag coefficients during the steady

tate, respectively. Since the fluid solver is itself already costly in

erm of CPU time, the medium-mesh wing with 465 mass points is

ufficient and can be chosen for the following study in Section 5.2 .



H. Truong, T. Engels and D. Kolomenskiy et al. / Computers and Fluids 200 (2020) 104426 15 

Fig. 21. Wing deformation corresponding to rigid (dark blue), flexible (blue) and highly flexible (light blue) wings at three time instants, t = 2 , t = 4 and t = 6 . (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 22. Flows generated by a flexible revolving wing, visualized by their vorticity magnitude | ω| at four time instants t = 1 , 2 , 4 and 6. The simulation is performed with 

resolution 1024 2 × 512. 
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5.2. Influence of wing flexibility 

To examine the influence of vein stiffness on the aerodynamic

performance of the wing, the flexural rigidity of veins will be

varied by changing the Young modulus E . Two values of the

Young modulus are used: E = 1 . 25 × 10 8 [ ML −1 T −2 ] and E = 1 . 25 ×
10 7 [ ML −1 T −2 ] , corresponding to the flexible and highly flexible

cases, respectively. 

Lift and drag coefficients at resolution 1024 2 × 512 for the rigid,

flexible and highly flexible cases are presented in Fig. 19 . 

During the transition phase (rotation angle φ ≤ 40 ◦), the lift

generated by the rigid wing increases instantly and then decreases

before going up again. The drag follows the same trend as the

lift, but is larger in magnitude. When the flexibility of the wing

is taken into account, the rapid rise at the beginning of the forces

for both flexible and highly flexible wings disappear. Instead, the

forces increase gradually and the more flexible the wing is, the

lower the lift and the higher the drag are. 

At steady state, similar behaviors between the rigid and the

flexible wings can be observed. When the rotation angle reaches
60 ◦, the forces generated by these two wings are stabilized. This

an be explained by the fact that no dynamic deformation of the

ings takes place and just the shape plays a role. 

We also find that the lift-to-drag ratio at the steady state of the

exible wing is 1.2, 14.5% higher than the one of the rigid case,

hich is only 1.05 ( Fig. 20 ). This finding is consistent with conclu-

ions found in literature [19,50] . A flexible wing generates less lift

nd drag than a rigid one. However, due to the flexibility of the

ing, the bending in the chordwise direction makes the effective

eometric angle of attack decrease and alters the direction of the

otal resultant force upward [19] . This makes the lift-to-drag ratio

aise and allows better flight performance. 

On the contrary, the highly flexible wing acts differently. Both

he lift and the drag increase gradually to attain their maximum

alues at the rotation angle φ = 120 ◦ and then decline instead of

eing stabilized as in the other simulations. The lift-to-drag ratio

s surprisingly much less than the one of the rigid case at the be-

inning of the steady state but then increases and keeps up with

he rigid wing. This can be explained by the fact that the bending

f the wing in the spanwise direction ( Fig. 21 ) prevents the devel-
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pment of the LEV growing further toward the wing tip and makes

he LEV burst sooner at mid-span of the wing. 

The change of aerodynamic forces compared to the rigid case

s linked to the deformation of the wing, which is modeled by

he mass-spring solver. The wing deformation for all three cases

s shown in the same Fig. 21 for comparison at three time instants

 = 2 , t = 4 and t = 6 . By applying the functional approach, the dif-

erence between the vein and the membrane is visible in the visu-

lization. 

At the finest resolution of the mesh (1024 2 × 512), the flows

enerated by the flexible wing are shown ( Fig. 22 ) by plotting their

orticity magnitude at four time instants of the simulation. The

ormations of the leading edge vortex as well as the tip vortex can

e observed clearly at the beginning of the rotation ( t = 1 . 0 and

 = 2 . 0 ). Then, the vortex burst happens and a region of inhomo-

eneous vorticity forms at the wing tip. However, the LEV remains

ttached to the wing surface and this results in constant lift and

rag. 

. Conclusions 

We presented a numerical approach for fluid-structure inter-

ction in the open source framework FLUSI, which is based on a

ass-spring model describing the structure of the insect wings and

 pseudospectral method for solving the incompressible Navier–

tokes equations. For imposing no-slip boundary conditions in the

omplex time-changing geometry we used the volume penalization

echnique. The solver has been implemented on massively paral-

el supercomputers using MPI and allows high resolution compu-

ations, here with more than half a billion grid points. Code val-

dation for two classical benchmarks, a flow past a cylinder with

 flexible appendage and the flow generated by a rigid revolving

ing, is likewise presented. 

Considering the flexible wing, the flexibility reduces the buildup

f the aerodynamic force during the beginning of motion. Nev-

rtheless, after the start-up phase, the wing yields a steady state

onfiguration, and no significant oscillation nor unsteady deforma-

ion of the wing are observed. A better aerodynamic performance

f the flexible wing, characterized by the increase of the lift-to-

rag ratio during the steady state, is explained by the decrease of

he effective angle of attack caused by the deformation of the flex-

ble wing. On the other hand, the highly flexible wing appears to

e less efficient than the rigid wing. This can be interpreted that

here is an optimized zone of wing flexibility, which is ideal for

ying. 

For flapping wings we anticipate that flexibility will become

mportant because of the dynamic wing deformation. In the near

uture we are planing high resolution numerical simulations of

apping insect flight with flexible wings where the dynamical de-

ormation plays an important role. 

The limitations of the current approach are the resolution

nd CPU time requirements imposed by the use of an uniform

rid. Hence large scale simulations become prohibitively expensive.

oreover, the thickness of bumblebee wing is much smaller than

he spatial mesh size in our present simulations. Consequently, the

irtual thickness of wings studied here is set to 4 times the mesh

ize, necessary for the usage of the volume penalization method. 

An adaptive version of the FLUSI code, likewise fully parallel,

sing wavelet-based grid refinement is currently being developed

o be able to reduce memory and CPU time requirements. High

esolution numerical simulation of flapping flight for larger species

nd large Reynolds numbers will thus become possible. 

Implementing the solid solver presented in the current paper

nto the adaptive Navier–Stokes solver will allow to perform fluid-

tructure interaction on adaptive grids at reduced computational

ost. 
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