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Abstract
Insect wings can undergo significant deformation during flapping motion owing to inertial, elastic
and aerodynamic forces. Changes in shape then alter aerodynamic forces, resulting in a fully
coupled fluid–structure interaction (FSI) problem. Here, we present detailed three-dimensional
FSI simulations of deformable blowfly (Calliphora vomitoria) wings in flapping flight. A wing
model is proposed using a multi-parameter mass-spring approach, chosen for its implementation
simplicity and computational efficiency. We train the model to reproduce static elasticity
measurements by optimizing its parameters using a genetic algorithm with covariance matrix
adaptation (CMA-ES). Wing models trained with experimental data are then coupled to a
high-performance flow solver run on massively parallel supercomputers. Different features of the
modeling approach and the intra-species variability of elastic properties are discussed. We found
that individuals with different wing stiffness exhibit similar aerodynamic properties characterized
by dimensionless forces and power at the same Reynolds number. We further study the influence of
wing flexibility by comparing between the flexible wings and their rigid counterparts. Under equal
prescribed kinematic conditions for rigid and flexible wings, wing flexibility improves lift-to-drag
ratio as well as lift-to-power ratio and reduces peak force observed during wing rotation.

1. Introduction

The wings of an insect are hundreds of times lighter
than its body, yet they sustain dynamic loads that
exceed the body weight. Consequently, they deform
significantly during flapping flight. To deal with these
large deformations, insects have evolved highly com-
pliant wings from which they benefit in many aspects:
enhanced aerodynamic efficiency [1, 2], flight stabil-
ity [3], enhanced flight control [4], damage resistance
[5], robustness to collisions [6], to name a few.

For understanding the aerodynamics of insect
locomotion, the fluid–structure interaction (FSI)
problem must be addressed by coupling fluid with
solid mechanics. Computational methods yield
insight into the instantaneous flow field surrounding
the studied insect and with access to all aerodynamic

quantities, which are difficult to obtain in experi-
ments. Thus fundamental mechanisms behind the
nonlinear dynamics of the flow can be revealed.
However, numerical studies of insect flight are not
trivial due to their high complexity. For simplifica-
tion, studies are usually employing either completely
rigid wings (e.g. [7–9]), or prescribed time-varying
deformation [2, 10]. Fully coupled FSI simulations
of flapping insect wings are still challenging and
give controversial results. While some studies found
advantages of wing flexibility on aerodynamic perfor-
mance of insects [1, 11–14], others reported negative
impact on lift production [15–17]. The anisotropy
and inhomogeneity of the elastic properties of wings
are clearly important factors in these studies.

During flight, the architecture and material prop-
erties of insect wings determine predominantly their
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deformations, which are mostly passive [18]. There-
fore, determining wing stiffness is critical to the
modeling of insect wing dynamics [19, 20]. In com-
bination with other functional requirements such as
wing folding, hemolymph transport, etc, evolution
has led to complex designs with individual shapes and
sizes of veins, different types of hinges, resilin patches
and varying thickness of the membrane. As a matter
of fact, Young’s modulus of insect wings may change
from tens to hundreds of MPa between species or even
different parts of the wing [21]. Measurement condi-
tions play also a crucial role in determining the wing
stiffness due to wing desiccation. Altogether, the dis-
tribution of flexural rigidity in insect wings and its
effects on wing dynamics are still poorly known.

In the past, only few numerical studies took
into consideration these complex structures of wings.
Combes and Daniel [22] measured the overall flexural
stiffness EI either in spanwise or chordwise directions
by assuming that wings were homogeneous beams.
The data were then used in a simplified finite ele-
ment model of a Manduca wing. Nakata and Liu
[1] and Tobing et al [14] also set the parameters for
their flexible wing models based on the measure-
ments of Combes and Daniel. Nakata and Liu pro-
posed an anisotropic hawkmoth wing model. On the
other hand, Tobing et al considered a 3D flexible wing
model of bumblebees with uniform and reduced-tip
stiffness. Ishihara et al [23] employed a model com-
posed of a rigid leading edge connected with a rigid
plate through a plate spring. The torsional stiffness
of the latter was defined based on dynamic similar-
ity. Nguyen et al [24] modeled a fruit fly wing where
sharp variations in material properties of stiff veins
and soft adjacent membrane were taken into account.
In our previous work [20, 25], numerical simulations
of bumblebees with flexible wings using the open
source framework FLUSI [26] have been carried out.
We studied the impact of wing flexibility on aerody-
namic forces by varying the Young’s modulus E of the
vein system in a chosen range. Even though these con-
tributions succeeded to include the venation structure
in their wing models, the identification of the flex-
ural rigidity for both the veins and the membranes
remains a daunting task.

In the present paper, we propose a numerical
method for estimating wing stiffness. It consists of
a relatively simple mass-spring model based on the
wing planform and venation pattern measured from
photographs of the blowfly (Calliphora vomitoria).
The stiffness parameters are now optimized consid-
ering acquired experimental data of real insect wings
using a genetic algorithm with covariance matrix
adaptation strategy. This approach ensures that the
model has the same behavior as the real wing speci-
mens in static bending tests. The wing model with the
optimized stiffness is then used for three-dimensional

unsteady FSI simulations of flapping wings at high
resolution on massively parallel computers.

The remainder of the manuscript is organized as
follows. In the material and methods section 2, we
describe the wing model, the experimental as well as
the mathematical methods that are used. The numer-
ical results are then discussed in section 3, starting
with the validation of the optimization. Finally, con-
clusions of the study are drawn in section 4 and some
perspectives on future work are given.

2. Materials and methods

2.1. Morphology and wingbeat kinematics of
blowfly wings
An experimental setup for measuring the elasticity
of female blowfly wings (C. vomitoria) was designed
by Wehmann et al [21] and the measured data are
used in the present work. As details on the mea-
surements can be found in [21], we limit the pre-
sentation here to a minimum. Wing shape and
venation structure are extracted from high resolution
photographs of blowfly wings (figure 1(A)), taken
using a camera (EOS-750D, Canon) attached to a
stereomicroscope (Stemi 508, Zeiss) with a resolution
of 0.46 μm pixel−1. This high resolution allows us
to determine vein diameters, assuming circular cross
section. In reality, veins are hollow tubes filled with
hemolymph which supplies nutrients and other fac-
tors to the wing’s living tissues [28]. However, this
structure is too complex to be taken into account
by our model. Consequently, veins are considered as
solid rods of cuticle with density ρc = 1300 kg m−3

as given in [29]. This assumption has the tendency to
overestimate vein mass. Ganguli et al [30] weighed 10
wing pairs and found their individual mass between
200.3 μg and 272.3 μg with a standard deviation of
22.94 μg. For our model, total wing mass is set to
250 μg [30]. The numerical wing length R, averaged
over nine wing models used in our study, is 9.01(18)
mm. This accounts for a relative difference of 3%
compared to the measured wing length 9.29(20) mm
given in [21]. The discrepancy can be explained by the
fact that the wing model was built based on detached
wings and parts of the wing roots were omitted.

Wing beat kinematics vary between individual
flies of the species considered as well as between cycles
in the same individual. There is hence no ‘true’ wing
beat kinematics for a fly. It is therefore appropriate
(cf the discussion in [27], supplementary material
(https://stacks.iop.org/BB/17/026003/mmedia)) to
use the generic wing kinematic protocol proposed in
[27]. The wing beat is visualized in figure 1(B). In
tethered flight, mean stroke frequency f in blowflies
varies between 127 and 180 Hz with a mean value
158 Hz [31]. Hence, the stroke frequency f = 158 Hz

2
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Figure 1. Morphology and modeling of wings. (A) Photograph of a blowfly wing. (B) Wing beat kinematics, taken from [27]
during up- and down-stroke. (C) Experimental setup used in [21] for force/deformation measurements. A point force is applied
at one of the locations shown in (D) and the deformed wing surface is measured using an optical profilometer. (E) Sketch of the
setup for FSI simulations. We simulate two flapping wings exposed to a mean flow of u∞ = 1.35 m s−1. (F) Computational mesh
used in the mass-spring model. Veins are colored for segment distinction, membrane mesh (extension springs) shown in gray.
Vein diameters shown to scale. Black/white marker is the center of mass. (G) Zoom on the membrane mesh, showing
cross-springs. (H) A segment of a vein between two mass points is modeled as conical frustum with varying diameter. (I) Joints
on the wing considered in optimization problem.

and the stroke amplitude Φ = 135◦ are used in our
study.

2.2. Measurements of wing elasticity
The experimental setup used for measuring local
deformation of blowfly wings under external loads
is illustrated in figure 1(C). A living blowfly was
mounted on a holder and during the measure-
ments, wings were kept attached to the living body
to limit dry-out effects. Otherwise, insect wings
would quickly stiffen and become brittle [21, 28].
Point forces were applied at different locations
(figure 1(D)) and with different magnitudes. Force
magnitude was measured by a small, cantilever force
sensor. The surface of wings with and without force
application was measured using an optical profilome-
ter that projected a grid on the wing surface and
recorded local vertical height z(x, y) with a resolution

of 384 × 512 points in x and y direction. These data
are thus specified in an Eulerian reference frame. The
data from these experiments are used as reference data
for training of our numerical model (see below).

2.3. Mass-spring model for elastic wings
The complex compound structure of insect wings
poses significant challenges to mechanical model-
ing. Our model must reproduce experimental data
while being computationally efficient and straight-
forward in its implementation. We choose a mass-
spring approach and hence model the wing by a
system of discrete mass points connected by linear
extension and bending springs. The training proce-
dure for parameter identification could in principle
identify the underlying mechanical structure starting
from randomly distributed mass points and spring
coefficients [32, 33]. However, the training can be
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greatly accelerated by using an initial configuration
that takes the distinct properties of veins and mem-
brane into account. This functional approach [20]
is chosen here, resulting in the static computational
mesh (figure 1(F)). This distribution of mass points
as well as their connectivity via the springs is thus
predetermined. Veins are composed of bending and
extension springs, the latter being set to a large value
ke

v = 1000 N cm−1 to approximate an inextensi-
ble vein. Note that veins composed of perfectly
rigid segments result in a globally coupled numeri-
cal problem with increased computational cost. The
membrane is modeled using only extension springs,
where the spring constant is set to ke

m = 1000 N cm−1

(figure 1(F)). While an idealized membrane resists
only to stretching and not to bending, real mem-
brane tissue does have a slight bending resistance.
Hence, we add ‘cross-springs’ (figure 1(G)) to give the
membrane a slight bending stiffness [25]. This latter
suppresses artifacts at the trailing edge of the wing
where no discernible vein supports the membrane.
Both types of extension springs in the membrane are
set to the same stiffness value ke

m in order to preserve
isotropic behavior under stretching [20].

Besides the veins and the membrane, wings con-
tain multiple discrete joints where the vein is either
interrupted or abruptly changes in stiffness. These
joints were identified by manipulating wings under a
microscope. There are several joints in a blowfly wing
but only 10 joints (figure 1(I)) are included in the
training problem. A sensitivity analysis, determining
how much changes in the joint stiffness parameters
alter the deformation, had been performed prior to
the optimization runs. This helped us to decide which
joints should be included in the training problem.

2.4. Mass distribution
Since our model is trained using static bending tests
and because wings are lightweight (and consequently,
the effect of gravity is negligible), the mass distri-
bution does not enter the training problem and is
therefore determined a priori.

Cross sections of veins play an important role
in the identification of wing elastic properties. They
allow us to determine the vein volume and the vein
second moments of area I. However, realistic shapes
of vein sections are varying from wing root to wing tip
and these data are currently unavailable [34]. In our
model, the variation of vein diameter along wingspan
is taken into account by assuming each vein segment
as a conical frustum. The diameters at both ends of
each segment are determined from photographs (see
supplementary materials, section 2). The distribution
of the mass onto the limiting discrete mass points is
then calculated based on this assumption. We con-
sider a segment i of a vein as shown in figure 1(H).
The radii are ri and ri+1, where ri > ri+1. The mass of
the segment mv

i is distributed into the two mass points
mMSM

i and mMSM
i+1 such that the two systems have the

same center of mass. This condition is satisfied by the
relation:

him
v
i = mMSM

i+1 (hi + hi+1) = mMSM
i+1 lvi , (1)

where hi is the centroid of a conical frustum,

hi =
lvi
4

(r2
i + 2riri+1 + 3r2

i+1)

(r2
i + riri+1 + r2

i+1)
. (2)

Combining equations (1) and (2) yields mMSM
i+1 =

mv
i hi and mMSM

i = mv
i − mMSM

i+1 , which is applied to
all veins. The vein system accounts for 67.41% of the
total wing mass, the remainder is attributed to the
membrane. In bumblebee wings, we previously used
the measured center of gravity to fit a bi-linear mass
distribution [35]. This results in the membrane thick-
ness tapering off toward tip and trailing edge. Such
measurements are not available for blowflies, thus we
used the same bi-linear function, scaled using wing
mass and wing length of blowflies. This yields the
mass of the ith point on the membrane:

mi = (1.75 − 1.47xi + 1.01yi) · 10−7, (3)

where mi is the mass calculated in kg, xi and yi are the
distances in cm from the ith mass point to the wing
root and the rotation axis (cf figure 1(F)), respectively.

2.5. Training of wing model with experimental
data
Besides the mass distribution, the mass-spring model
for the flexible wing features the stiffness distribu-
tion to be determined. In reality, veins are hollow and
the shape of the vein cross section clearly plays an
important role in estimating the wing stiffness. How-
ever, the available published data on this subject are
still sparse [34]. For simplification, we approximate
all veins as having solid circular section of which the
second moment of area can be determined from the
diameter, I ∝ d4. Since the bending rigidity is a prod-
uct of the Young’s modulus E and the moment of
area I, a numerical optimization is used to adjust the
Young’s modulus such that the vein model deforms
by the same amount as the real hollow non-circular
veins in static bending tests. In addition, insect wings
contain a number of joints, the flexibility of which
depends on several factors [36]. Consequently, the
flexibility of these joints cannot be estimated based on
the flexural rigidity EI of veins and needs to be opti-
mized. However, taking into account all joints in the
training process is expensive. In order to reduce the
number of optimized parameters, numerical sensitiv-
ity tests on joints were performed and those having lit-
tle impact on the wing deformation were not included
in the optimization. This results in a total of 10 joints
(figure 1(I)) needed to be optimized. The membrane
is essentially an inextensible sheet with small bending
stiffness (modeled using ‘cross-springs’, figure 1(G)
and is not included in the training. Thus, a setκ ∈ R

n
+
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Figure 2. Definition of the cost function for training. Shown is a 2D illustration along the span while actual computations are
done in 3D. The difference between the deformation of the experimental wing dexp and the deformation of the numerical wing
dnum is used for the calculation of the cost function in equation (4). The penalized zone below the unloaded wing (the dashed
line) corresponds to non-physical solutions while the penalized zone above the dotted line corresponds to the too flexible case.

with n = 11 parameters are to be determined from
experimental data.

Measuring dynamic wing deformation at high
frequencies during flight is challenging. Thus, most
qualitative data on wing deformation are based on
photographs and not time-resolved [37]. Even though
some studies succeed in recording the wing surface
deformation during wing flapping motion [12, 38],
data on external inertial and aerodynamic forces act-
ing on the wing are inaccessible. As an alternative, we
use static measurements of wing deformation under
known loads. As long as local deformation is not large
enough to cause non-linear bending behavior, non-
linearity in the model stems only from large deflec-
tions (geometric nonlinearity, [39]) and interactions
with the fluid. This is usually the case in insect wings
and consequently enables using static measurements
for training.

In general, for each of the nine individual wings, a
number of Nexp measurements was performed with
different force magnitudes and application points
(figure 1(D)), scoring the complete wing surface in
the deformed state. Some data were too noisy and
omitted from the set, thus 8 � Nexp � 11. For train-
ing of the numerical model, each of these trials is
repeated numerically with the current set of param-
eters κ. Damping coefficients are added to the solid
model to achieve a steady state, because fluid is
excluded in these simulations. Then, the quality of κ
is assessed by evaluating a cost function to quantify
the error, which is subsequently used to update κ.

2.5.1. Definition of cost function
For training a numerical wing model, the Euclidean
distance (L2-norm) between the nodes of the refer-
ence model at the position xr

i and the learning data at
the position xo

i is usually defined as cost function [32].
However, this way of defining the cost function based
on the equilibrium vertical heights of these nodes can
cause some errors. Our numerical wing is flat when
unloaded but the real blowfly wing has corrugation
and camber which lead to nonzero error even at the
initial state when both wings are at rest. To exclude
this error, the cost function is instead calculated based
on the wing deformation, which measures the differ-
ence between the initial and the equilibrium height
(cf figure 2). Moreover, the displacements of each
wing were measured Nexp times, for each point force
(figure 1(D)). As a result, a single cost function h is
calculated for an individual wing including all Nexp

measurements,

h(κ) =

√√√√√
Nexp∑
j=1

∑Nj
i=1

(
dexp

i,j (κ) − dnum
i,j (κ)

)2

Nj
, (4)

where Nj is the number of data points on the jth

wing, dexp
i and dnum

i are the deformation of these
points belonging to the reference model xexp

i and the
learning model xnum

i , respectively.
Because the mass points are defined using a

triangular Lagrangian grid, the vertical heights at
grid nodes of the Eulerian grid, projected onto the
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modeled wing, need to be interpolated. We consider
an Eulerian grid node x and a triangular element
with three Lagrangian vertices Xi, Xj and Xk whose
heights are zi, zj and zk, respectively. When the Eule-
rian point is projected onto the triangle, there are two
possibilities:

• The projection of x is outside the triangle and
the interpolation cannot be done;

• The projection of x is inside the triangle or on
one of its three edges. Then, the height of the
projection of x is calculated by using barycentric
interpolation:

z =
Ai

A
zi +

Aj

A
zj +

Ak

A
zk,

where A = Area(Xi, Xj, Xk), Ai = Area
(x, Xj, Xk), Aj = Area(x, Xk, Xi) and Ak = Area
(x, Xi, Xj).

Based on the nature of the problem, two penalized
zones are specified as shown in figure 2. A point force
is applied to the wing from below. Thus, any solution
giving an equilibrium position below the dashed line
will be judged non-physical. On the other hand, if the
horizontal distance from wing root to tip is smaller
than R/2, the wing is considered too flexible. In these
cases, the cost function will be assigned a large value
in order to exclude these sets of parameters.

2.5.2. Covariance matrix adaptation evolution
strategy
The algorithm used for optimizing the cost function
h(κ) in equation (4) has to be chosen carefully. A dif-
ficulty is the existence of local minima in which an
optimization algorithm can get trapped and classi-
cal methods seem to be ineffective. Amongst alter-
native methods, genetic algorithms have appeared
as good solutions due to their ability to deal with
complex optimization problems and parallelism. In
related work, Nogami et al [40] estimated stiffness and
damping coefficients of several mass-spring-damping
models using genetic algorithms. Bianchi et al
[33, 41] proposed using genetic algorithms to opti-
mize the stiffness values together with the mesh topol-
ogy. Louchet et al [42] used evolutionary algorithms
to identify the parameters of a physical model of
fabrics. Joukhadar et al [43] optimized the physical
parameters of a masses/springs based system such as
elasticity, viscosity, plasticity with a genetic algorithm
based approach. In this contribution, we propose an
approach to determine the spring constants of the
mass-spring model by using an evolution strategy.

The covariance matrix adaptation evolution strat-
egy (CMA-ES) is an optimization algorithm based on
the process of natural selection where the most well-
suited individuals are selected for reproduction of the
next generation. The method is developed for com-
plex non-linear non-convex black-box optimization
problems in continuous domain [44, 45], especially in

cases where an analytical formulation of the cost func-
tion cannot be easily derived. In other words, func-
tion values at search points are the only accessible
information on the cost function h.

A standard CMA-ES, as described in detail in
[44, 45], is used with weighted intermediate recom-
bination, step size adaptation, and a combination of
rank-μ update and rank-one update. The algorithm
addresses the following optimization problem: min-
imize a nonlinear multivariable cost function from
search space S ⊆ R

n
+ to R+. Let x(g)

k be the kth off-
spring (solution candidate) at the generation g (itera-
tion). The new offsprings at the next generation g + 1
are given by:

x(g+1)
k = m(g) + σ(g)N (0, C(g)) for k = 1 . . . λ,

(5)
whereσ(g) is the overall standard deviation (step size),
N denotes the normal distribution with zero mean
and C(g) is the covariance matrix. After each iteration,
the offspring are evaluated on the cost function h and
sorted in decreasing order as:

{xi:λ|i = 1 . . . λ} = {xi|i = 1 . . . λ}

and

h(x1:λ) � . . . � h(xμ:λ) � · · · � h(xλ:λ).

Only the best-suited μ candidates are chosen as the
parents for the reproduction of the next generation.
Here, m(g) is the mean of the sampling distribution
which is the weighted intermediate recombination of
the μ best candidates from the previous generation:

m(g) =

μ∑
i=1

wix
(g)
i . (6)

A super-linear relation is used for the recombina-
tion, given by:

wi =
ln(μ+ 1) − ln(i)∑μ

i=1 (ln(μ+ 1) − ln(i))
. (7)

The second term on the right-hand side of
equation (5) is a normally distributed random vec-
tor which represents the mutation of the evolution-
ary strategy. It is obvious to see that the parameters
of the normal distribution play an important role in
the performance of the optimization. At each iter-
ation, the step size σ(g) and the covariance matrix
C(g) are updated in a way that will increase the prob-
ability of producing the best offspring for the next
generation. In short, the CMA-ES algorithm imple-
ments a principal component analysis of the previ-
ously selected mutation steps to determine the new
mutation distribution. Due to long and complicated
formulae, we refer readers to [44, 45] for more details
as well as the mathematical derivation of the covari-
ance matrix C. The CMA-ES does not require man-
ual parameter tuning for its application. In fact, the
choice of strategy internal parameters is not left to

6
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Figure 3. Validation of the training algorithm. (A) Numerical experiments with known parameters κref are used to generate data
for training. Only four out of the ten force application points are shown. (B) Starting from a random set of parameters κ0, the
training is done using the numerical reference data, resulting in κopt . (C) Final deformation fields show good agreement with
input data. (D) and (E) Comparison of Young’s modulus and joint stiffness coefficients for reference and optimized data.

the user (arguably with the exception of population
size λ). Finding good strategy parameters is consid-
ered as part of the algorithm design, and not part of
its application.

2.5.3. Numerical setup of the training process
Since the evaluation of the cost function is expensive,
the code is run in parallel using the message pass-
ing interface (MPI) where each evaluation of the cost
function is a unique MPI process that is mapped onto
the available cores.

To validate our training approach, we first exclu-
sively use numerical data as a reference. Given a set
of parameters κ ∈ R

n
+, numerical simulations of the

static bending experiment in section 2.2 are per-
formed using the numerical model (figure 3(A)), with
the same forces and application points as in the subse-
quent training with experimental data. Starting from
a random κ0, we then perform training with this data
(figure 3(B)), thus verify if the training recovers κ

from this numerical data.
By default, the population size for CMA-ES

is npop = 3 ln(n) + 4 [46], which yields npop = 12.
However, taking into account the number of available
CPU, npop = 16 was chosen for training, which may

slightly improve convergence. Consequently, we ran
the validation on 16 CPUs for 2500 CPU hours.

In addition, the search space for our problem
was restricted using the two penalized zones shown
in figure 2. Some tests had been performed quickly,
before the CMA-ES algorithm was employed, to
determine which value of the Young’s modulus E
would give us an equilibrium position in these two
zones. The upper bound for the Young’s modulus was
100 GPa because when E was greater than this value,
the wing was too stiff and remained almost unde-
formed under the applied forces. On the other hand,
the lower bound for the Young’s modulus was set at
0.1 GPa since smaller value of E resulted in an equi-
librium in the too-flexible zone. Then based on the
relation between the Young’s modulus and the bend-
ing spring stiffness, the bounds for the joint stiffness
were estimated at 0.1 N cm rad−1 for the lower bound
and 1000 N cm rad−1 for the upper bound. These
constraints then allow us to speed up the searching
process.

Two stopping criteria were set to determine when
to end the searching process. The first one was when
the cost function h is smaller than a fixed value.

7
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Ideally, it would be zero if we had exactly the same
deformation of both wings. This was however not
probable in practice and we determined the stopping
criterion for the cost function based on the validation
test. When the cost function given by equation (4)
was smaller than 10−4, the difference between two
wings is considered negligible. The second criterion
was the maximum number of iterations performed
by the algorithm. Since the maximum wall time for
running the optimization was limited by the super-
computer, the maximum number of iterations was set
to 100 to prevent the computing time exceeding this
restriction. This corresponds to more than 4250 CPU
hours for each run.

The wing stiffness of nine individuals were then
optimized by this algorithm. To speed up the conver-
gence, each optimization was run with a larger pop-
ulation size of 64. Based on a sensitivity analysis, we
found the Young’s modulus E to be the most impor-
tant parameter. Consequently, we first optimized 11
parameters, corresponding to the Young’s modulus E
and the stiffness of 10 joints, then E was fixed and only
the stiffness values of the 10 joints were optimized for
the second run. This procedure led to 2 optimization
runs for each individual where each run took more
than 4250 CPU hours.

2.6. Coupling between the wing model and the
fluid solver for fluid–structure interaction
simulations
In order to investigate the aerodynamic performance
of the optimized wings, we developed a solver for
simulation of fluid–solid interaction problems. We
integrate the mass-spring model with the incom-
pressible Navier–Stokes solver FLUSI5, details can be
found in [26]. FLUSI is a parallel solver based on the
Fourier pseudo-spectral method, which resolves all
spatial scales of the vortical flow about the flapping
wings. The no-slip boundary condition is imposed
on the wing surfaces using the volume penalization
method [47]. To construct the volume penalization
mask function for the fluid forcing, the distance func-
tion is computed by cycling over all the triangles of
the Lagrangian grid. The mask function is assigned
the value of the regularized two-sided step function
of the minimum distance. To transmit forces from
the fluid to the solid, we delta-interpolate the pres-
sure near the external boundary of the mask func-
tion and calculate the pressure differential across the
wing. In the relevant range of the Reynolds numbers
(75–4000), wing deformation is caused mainly by the
static pressure and the viscous fluid tension is consid-
ered negligible [48–50]. For time-stepping, the cou-
pled fluid-solid system is advanced by employing a
semi-implicit staggered scheme, as explained in [25].
On the one hand, we advance the fluid by using the

5 https://github.com/pseudospectators/FLUSI.

second order Adams–Bashforth (AB2) scheme. On
the other hand, the second-order backward differen-
tiation formula (BDF2) is used in the solid solver.
The two modules are weakly coupled such that the
solid solver, at a given time step, uses the pressure dif-
ferential computed at the previous state of the solid
model. The net fluid-dynamic forces and torques act-
ing on the wings are evaluated by volume integration
of the penalization term [51]. For further details on
the numerical methods including validation we refer
to [20, 25, 26].

Fully coupled simulations are then carried out
using the setup shown in figure 1(E). From an aero-
dynamic point of view, the insect body acts as a
source of drag in a tethered flight context, which
explains why we neglect it in this study and simulate
the two wings alone. The computational domain is
36 × 36 × 18 mm large and discretized equidis-
tantly using 1024 × 1024 × 512 grid points, yielding
a total of 537 million grid points (spacing, Δx =

35.19μm). Due to the constraint of the volume penal-
ization method, the wing thickness must be at least
4 grid points. Hence, wing thickness in our numer-
ical study is constant and equals 4Δx correspond-
ing to 140.76 μm. Although it is thicker than the
ones found in nature (1 μm to 10 μm [52]), the
convergence study in [53] showed that our numer-
ical scheme preserved its accuracy in the limit of
thin wings. We consider a tethered problem, i.e. the
wing hinges, located at xpivot,l = (18, 22.5, 9)T mm
and xpivot,r = (18, 13.5, 9)T mm,6 are not moving. The
wings are kept far apart to avoid any collision between
them. They are exposed to a head wind with the
mean flow accounting for the insect’s forward veloc-
ity (u∞, 0, 0)T m s−1, which corresponds to a typical
cruising speed of freely flying blowflies [27, 54].

First, we study the influence of intra-species
variability of wing stiffness by comparing the aerody-
namic performance of all nine wing models. For bet-
ter comparison, these models must share geometric,
kinematic and dynamic similarity. The first two con-
ditions are clearly satisfied since they have the same
wing shape and wing kinematics. The third condi-
tion is satisfied if all the simulations have the same
Reynolds number Re. As the models were tested at
forward speed, the Reynolds number Re is calculated
based on both cruising speed u∞ and mean wing tip
velocity utip as:

Re =

(
utip + u∞

)
cm

νair
, (8)

where cm is the mean chord length and νair is the kine-
matic viscosity of surrounding flow. Among all the
studied individuals, individual number 8 is chosen as
the reference whose cruising speed is u∞ = 1.35 m s−1

and the kinematic viscosity of air is νair = 1.568 ×

6 T indicates the transposed.
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Table 1. The wing length and the mean chord length of nine individuals and the corresponding numerical
parameters used for the comparison. Individual number 8 is chosen as the reference. The kinematic viscosity
νair = 1.568 × 10−5 m2 s−1 and the cruising speed u∞ = 1.5 m s−1 of this individual are real values observed
nature. For other individuals, these parameters are scaled based on their wing lengths in order to have the
same Reynolds number Re = 1542.

Individual
Wing length,

R (mm)
Mean chord,
cm (mm)

utip

(m s−1)
u∞

(m s−1)
Kinematic viscosity

(m2 s−1)
Reynolds
number, Re

1 9.1 3.037 6.775 1.365 1.603 × 10−5 1542
2 9.1 3.037 6.775 1.365 1.603 × 10−5

3 8.7 2.903 6.478 1.305 1.465 × 10−5

4 9.1 3.037 6.775 1.365 1.603 × 10−5

5 8.7 2.903 6.478 1.305 1.465 × 10−5

6 9.2 3.070 6.850 1.380 1.638 × 10−5

7 9.1 3.037 6.775 1.365 1.603 × 10−5

8 9 3.004 6.701 1.350 1.568 × 10−5

9 9.1 3.037 6.775 1.365 1.603 × 10−5

10−5 m2 s−1. Because each individual has different
wing length, the fluid viscosity as well as the cruis-
ing speed of other individuals must be adjusted to
match the common Reynolds number. These values
are presented in table 1. Therefore, any difference in
aerodynamic properties between individuals can be
explained by the differences in their wings’ flexibility.

In the following, in order to investigate the impact
of wing flexibility, individual number 8 with the cor-
responding numerical parameters (cf table 1) is com-
pared with rigid wings.

For the aforementioned setup, a thin vorticity
sponge outlet, covering the last 20 grid points in x-
direction, is used to minimize the upstream influence
of the computational domain due to the periodicity
inherent to the spectral method. The sponge penaliza-
tion parameter is Csp = 0.05 [26], larger than the per-
meability Cη = 2.476 × 10−4. By construction, the
sponge term is divergence-free and hence does not
influence the pressure field [26].

3. Results and discussion

3.1. Validation of wing model training algorithm
First, we validate our training algorithm. After train-
ing, the cost function is h = 4.45 × 10−5, and the
Young’s modulus E (figure 3(D)) is very close to the
reference value with a relative error smaller than 10−6.
This parameter governs the overall deformation of
the entire wing and is the most sensitive to the cost
function. Thus, it is easier for the algorithm to find
the optimal value of E. On the other hand, the joints’
stiffness values (figure 3(E)) are more difficult to find
since each joint solely has effects on the local deforma-
tion. By definition, the cost function does not reflect
the local deformation of the wing because it averages
the Euclidean distance between all the nodes of the
reference and the optimized wings.

Figure 3(C) shows the deformation of the
reference- and trained wing in the equilibrium state.
Although the difference in joint stiffness coefficients
(figure 3(E)) is noticeable, the deformations of the

optimizing wing and the reference wing are almost
identical. By this criterion, the algorithm is reliable
to be used for the optimization.

3.2. Model training with experimental data
Results of the optimized stiffness parameters are pre-
sented in figure 4(A) in the form of boxplots. There
is no optimization run succeeding at finding a set
of parameters which gives a cost function smaller
than 10−4. All runs were stopped by exceeding the
maximum number of iterations at 100.

The average value over individuals of Young’s
modulus is 12.58 GPa with a standard deviation
3.03 GPa. This value is somewhat larger than the
value known from previous direct measurements of
the Young’s modulus of wing cuticle samples, 5 GPa
[29, 55]. On the other hand, the joints’ stiffness varies
significantly among individuals because it depends
on various factors such as the distribution of resilin,
the shape of veins or the existence of vein spikes
[36]. Nevertheless, the large spread in parameters can
also be explained by non-biological reasons. Firstly,
the training process included also the uncertainty
of the measurements which cannot be distinguished
from the inter-individual differences. Secondly, by
definition, the cost function does not reflect the
local deformation of the wing because it averages the
Euclidean distance between all the nodes of the ref-
erence and the optimized wings. Yet, the vein joints
solely have effects on the local deformation.

The deformations of individual number 8, one of
the best solutions with the second smallest cost func-
tion, are shown in figure 4(B). The left figures rep-
resent the deformation measured from experiment
while the right figures show the deformation calcu-
lated by the wing model. All data are presented in cen-
timeters. In total, 10 measurements corresponding to
10 force locations are plotted.

3.3. Variance of wing stiffness amongst blowfly
individuals
In this section, the aerodynamic performance of dif-
ferent individuals with wings of individually tuned

9
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Figure 4. Optimized stiffness and aerodynamic performance of nine studied blowflies. (A) The Young’s modulus and the joints’
stiffness values of nine individuals optimized by the CMA-ES algorithm. Boxplots are shown with medians and upper and lower
quartiles. (B) Training of wing model for individual 8. Shown is the vertical deformation of the numerical (optimized) and
experimental (reference) wing with the corresponding force location. (C) Cycle-averaged values over the last two cycles of forces
and power calculated for nine individuals. All nine individuals exhibit almost the same aerodynamic behavior, characterized by
the small quartiles of the boxplots. (D) Normalized vertical force, horizontal force and aerodynamic power generated by nine
individuals with distinct wing flexibility. The time is normalized by the wingbeat period T = 1/f. Circles represent the
cycle-averaged value of forces and power.

stiffness is investigated. We have in total nine
sets of stiffness parameters that were optimized in
section 3.2. In the following, all quantities are normal-
ized using the wing length R, the wing beat frequency
f and the density of air �air = 1.225 kg m−3, unless SI
units are explicitly given.

The normalized aerodynamic forces (F∗
vertical,

F∗
horizontal) and the normalized aerodynamic power

(P∗
aerodynamic) generated by nine individuals in time are

presented in figure 4(A). Since the wings started at
rest and they need some time to stabilize, the data
are shown for the 4th flapping cycle. In general, the
aerodynamic performance of all individuals is almost
identical. For each individual, most of the lift (cf
figure 4(A)) is generated during the downstroke, fol-
lowed by a peak and a valley caused by the wing
reversal from a downstroke to an upstroke, i.e. the
supination. Almost no lift is produced during the
upstroke and the wing reversal from an upstroke to a
downstroke, or the pronation, produces another peak
and valley. The same pattern is observed for the drag
and the aerodynamic power. The difference between
these individuals is noticeable at the mid-downstroke
where the maximum lift generated by individuals 5
and 6 reach 8.8 while the other peaks are around 8.0.
This amounts to a difference of 10%. The correspond-
ing gap between the aerodynamic power at this instant
goes up to 22%.

Another way to compare among the individuals is
to look at the cycle-averaged values of these quanti-
ties. Figure 4(C) shows the boxplots of the averaged
values calculated for the last two cycles. The ratios
between the overall spread, shown by the extreme
values at the end of two whiskers, and the median
for the three quantities (normalized lift, drag and
aerodynamic power) are 5.12%, 45.16% and 5.14%,
respectively. The lengths of the boxes representing the
dispersion of the data are small. This indicates the
aerodynamic similarity among these individuals even
though their wing stiffness vary significantly.

3.4. Influence of wing flexibility on aerodynamic
performance of blowflies
As shown in the previous section, since the aerody-
namic performance varies little among individuals,
only individual number 8 is chosen for the next part
of our study. The flexible wings will be compared with
the rigid wings for studying the influence of wing
flexibility on aerodynamic performance of blowflies.

3.4.1. Aerodynamic performance
The time history of the vertical and horizontal forces
generated by the rigid and the flexible wings, as well
as the required aerodynamic power, are shown in
figure 5(A). Compared to the rigid wings, the stroke
reversal, characterized by a peak and a valley of forces,
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Figure 5. Comparison between the aerodynamic performance of the flexible and rigid blowfly wing models. (A) Time evolution
of vertical force and horizontal force generated by the rigid wings (blue) and the flexible wings (red) along with the corresponding
aerodynamic power requirement. The time is normalized by the wingbeat period T = 1/f. Ellipses represent the cycle-averaged
value of forces and power. (B) and (C) Spanwise vorticity, normalized to wing stroke frequency f, and wing deformation at the
middle of the downstroke (0.25 stroke cycle) and the upstroke (0.75 stroke cycle), respectively. The visualizations show the
cross-section of the left rigid wing (blue) superimposed on the left flexible wing (gray) at 0.25 ((a), (d) and (g)), 0.5 ((b), (e) and
(h)) and 0.75 ((c), (f) and (i)) wing length.

is delayed in the case of flexible wings due to their
inertia. Nevertheless, both rigid and flexible wings
produce most of the lift during the downward move-
ment and the maximum lift occurs at the middle of
the downstroke.

The flexible blowfly wings generate less aerody-
namic forces than their rigid counterparts, similar to
the result obtained for bumblebee wings studied in
[25]. While the two rigid wings produce a maximum
lift of 2.49 mN, the one generated by the flexible wings
only reaches a maximum value of 1.58 mN. This
reduction of 36.55% is due to the wing deformation at
the mid-downstroke (0.25 stroke cycle). Figures 5(B)
(a)–(c) shows the cross-section of the right rigid wing
(blue) superimposed on the right flexible wing (gray)
at 0.25, 0.5 and 0.75 wing length. At this instant, the
wings move almost in parallel with the oncoming flow

and the angle of attack can be approximated as the
angle between the mean flow velocity u∞ and the
wing. As can be seen from the figure, at the proxi-
mal (a) and the middle part (b), the leading edge of
the flexible wing remains undeformed compared to
the one of the rigid wing. The trailing edge is however
much more flexible because there are fewer veins to
support the membrane. As a result, the trailing edge
is pushed upward and adapts its shape to align with
the mean flow. This mechanism is caused by the flex-
ibility of the membrane part. It lowers the effective
angle of attack, but at the same time reduces the pro-
jected area of the wing with respect to the oncoming
airflow. The relationship between the effective angle
of attack α and the lift-to-drag ratio during transla-
tion was derived by Usherwood and Ellington [56] as
follows:
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Table 2. Cycle-averaged forces and power calculated with the rigid wing model and the
flexible wing model. Overall, the rigid wings generate larger forces than their flexible
counterparts. The flexible wings have however better performance with higher lift-to-drag
and lift-to-power ratios.

Wing model
Lift

(mN)
Drag
(mN)

Aerodynamic
power (mW)

Lift-to-drag
ratio

Lift-to-power
ratio

Rigid 0.754 0.167 5.228 4.513 0.144
Flexible 0.513 0.062 3.128 8.294 0.164

Figure 6. Dimensionless pressure distribution on the ventral and dorsal wing side during one flapping cycle. During the
downstroke, the difference between the two surfaces is high and generates most of the lift. During the upstroke, the pressure
difference is weakened.

1

tan(α)
=

Lift

Drag
. (9)

It is then understandable that a lower effective angle
of attack results in higher lift-to-drag ratio. Likewise,

the required aerodynamic power is smaller because
the drag relatively decreases. Characterized by higher
lift-to-power ratio (8.294 > 4.513) and higher lift-to-
drag ratio (0.164 > 0.144), flexible wings outperform
their rigid counterparts, as presented in table 2.
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Figure 7. Wing deformation during one flapping cycle viewed from the side and the top. The visualizations are shown in the
wing system. The wing is deformed significantly in the chordwise direction during the stroke reversals and in the spanwise
direction at the middle of the downstroke. The maximum spanwise deflection occurs at the tip of the wing going up to 10◦.

Figure 5(B) (d)–(f) shows the spanwise vortic-
ity around the flexible wing while figure 5(B) (g)–(i)
shows the same kind of data for the rigid wing. From
the vorticity distribution in these figures, the devel-
opment of the leading-edge vortex (LEV) along the
spanwise direction of the wing can be seen. For both
wing models, the LEV gradually expands toward the
wing tip and appears to burst at 75% of the wing
length. The size and strength of the LEV generated
by the rigid wing are, however, larger than the one
created by the flexible wing.

On the other hand, during the upstroke, the
dynamic behaviors of both flexible and rigid wings are

very similar as little forces are generated. Figure 5(C)
shows the wing deformation as well as the spanwise
vorticity of the left flexible wing and the correspond-
ing rigid wing at the mid-upstroke. The flexible wing
almost aligns with the rigid one and the intensities of
spanwise vorticity generated by the two models are
quite small.

3.4.2. Pressure distribution and wing deformation

Figure 6 presents the dimensionless pressure distribu-
tion on the ventral and dorsal wing side. The data are
shown for the third cycle.
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Figure 8. Flow structure generated by blowfly wings during flapping. Shown are the iso-surfaces of vorticity magnitude |ω| of
100 (light blue), 150 (dark blue) and 200 (red). The view point is from the top: the downstroke corresponds to a movement of the
wings away from the observer, while the upstroke describes the wings moving toward the observer.

During the mid-downstroke (t = 2.2–2.3), a large

part of the dorsal side becomes a suction zone with

low pressure (p � −10). This low-pressure area is

located at the leading edge and expands from the

root to the tip. The suction footprint is consistent

with the development of the conical LEV observed

on the wing surface in figure 8. This finding is antic-

ipated since the existence of LEV on insect wings is
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associated with the improvement in overall lift pro-
duction. Figure 7 shows the wing deformation in both
chordwise and spanwise directions under the iner-
tial and aerodynamic loading. The deformation in the
chordwise direction is understandable since there is
no vein to support the membrane belonging to the
trailing edge of the wing. The spanwise deformation
is, on the other hand, thought-provoking. Combes
and Daniels [22] reported that spanwise flexural stiff-
ness is 1–2 orders of magnitude larger than chordwise
flexural stiffness when measuring the forewings of 16
insect species. However, the external forces acting on
the wing are strong enough to make the wing deform
in both chordwise and spanwise directions. The max-
imum deflection of the wing leading edge occurs at
the wing tip during the mid-downstroke and corre-
sponds to 10% of the wing length. For comparison,
Lehmann et al [57] observed a maximum wing tip
deflection approximately 27◦ at the beginning of the
stroke reversal in freely flying blowflies. On the other
hand, during the reversals, the wing is deformed only
in chordwise direction due to strong inertial force
caused by the wing rotation. The dominant contri-
bution of inertial effect to wing torsion at the stroke
reversals was earlier pointed out by Ennos [58, 59] for
Diptera and agrees with what we observe in our study.
Finally, during the upstroke, the pressure difference is
weakened since the wings move in the same direction
as the mean flow, resulting a low relative oncoming
airspeed.

From a 3D point of view, the flow generated by
the flexible wings is presented in figure 8 for one
cycle. The flow structure is visualized by the iso-
surfaces of vorticity magnitude |ω|. The development
of LEV during the downstroke is considered as the
basic aerodynamic mechanism behind the lift pro-
duction of flapping wings. This spiral structure of the
LEV starts to form at the beginning of the downstroke
and remains stable until the reversal. The centrifugal
force creates a spanwise flow going from the root to
the tip which has been explained as the main mecha-
nism helping to stabilize the LEV. However, at approx-
imately three-quarters of the wing length, the LEV
starts to detach from the wing surface and forms a
wing-tip vortex. During the upstroke, these vortices
are weakened and can hardly be seen.

4. Conclusion

A flexible blowfly wing model has been developed
based on the experimental data. The sophisticated
structures of the wings were taken into account by
distinguishing the vein and the membrane during the
meshing procedure. The membrane was modeled as
a 2D planar sheet whose tensile strength was much
larger than its bending stiffness and the veins were
modeled as rods whose bending stiffness values were
calculated based on their flexural rigidity EI. While
the second moment of area I can be estimated using

the vein diameters, the Young’s modulus E remains
somewhat uncertain due to the vast range of known
cuticle’s property [29].

As mechanical properties of insect wings are
essential for insect flight aerodynamics, we here pre-
sented a numerical method to evaluate the Young’s
modulus of veins and the joint stiffness of blowfly
wings. The mathematical optimization tool CMA-ES
[46] was employed for determining the right elastic
properties by comparing the wing model with static
experimental measurements. The method allowed us
to find appropriate stiffness values for approximating
the static deformation behavior of real insect wings
under external point forces. We obtained here nine
sets of stiffness parameters for the Calliphora wing
model.

The high-resolution numerical simulations of a
Calliphora wing model with the optimized stiffness,
flapping in a moving airflow, allowed us to gain
insight into the dynamic behavior of insect wings, as
well as the influence of wing flexibility on the aerody-
namic performance of insects. Firstly, we performed
numerical experiments with the full set of stiffness
parameters optimized based on the measurements
conducted on nine different individuals. We found
that even though wing stiffness can vary among indi-
viduals, their aerodynamic properties are very similar
by comparing dimensionless parameters at the same
Reynolds number. With this conclusion, it is neces-
sary to point out that our findings are restricted to a
simple selected wing kinematics pattern. A fly might
adapt the wing kinematics according to its wing stiff-
ness. This hypothesis can be tested out by optimizing
the wing kinematics based on wing stiffness. However,
such studies are computationally expensive or even
prohibitive and are left for future work.

We further studied the influence of wing flexibil-
ity by comparing between the flexible wings and their
rigid counterparts. Under equal prescribed kinematic
conditions for rigid and flexible wings, wing flexibil-
ity does not enhance lift production but allows bet-
ter lift-to-drag ratio and lift-to-power ratio. This can
simply be explained by changing the effective angle of
attack due to wing flexibility. Moreover, from a bio-
logical point of view, another benefit can come from
the way how forces are distributed throughout the
stroke cycle. The decrease of peak force observed dur-
ing wing rotation helps to reduce stress on muscles
and the skeletomuscular system of insects.

In forthcoming work, we will consider detailed
numerical investigations of houseflies (Musca
domestica) for which experimental wing data have
been acquired including micro-CT scans of the body.
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