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Abstract
This work is devoted to the derivation of an energy estimate to be satisfied by numerical
schemes when approximating the weak solutions of the shallow water model. More pre-
cisely, here we adopt the well-known hydrostatic reconstruction technique to enforce the
adopted Finite-Volume scheme to be well-balanced; namely to exactly preserve the lake at
rest stationary solution. Such a numerical approach is known to get a semi-discrete (con-
tinuous in time) entropy inequality. However, a semi-discrete energy estimation turns, in
general, to be insufficient to claim the required stability. In the present work, we adopt the
artificial numerical viscosity technique to increase the desired stability and then to recover a
fully discrete energy estimate. Several numerical experiments illustrate the relevance of the
designed viscous hydrostatic reconstruction scheme.
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Godunov-type schemes · Discrete entropy inequalities
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1 Introduction

The present work concerns the derivation of discrete entropy inequalities when adopting
the well-known hydrostatic reconstruction technique introduced by Audusse et al [1]. This
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numerical scheme was proposed to approximate the weak solutions of the shallow-water
system in the context of Finite-Volume schemes. The model under consideration is governed
by the following set of partial differential equations:

⎧
⎪⎨

⎪⎩

∂t h + ∂xhu = 0,

∂t hu + ∂x

(

hu2 + g
h2

2

)

= −gh∂x z,
(1)

where h ≥ 0 stands for the water height and u ∈ R denotes the water velocity. Here, g is the
gravitational constant while z is a given smooth function to represent the bottom topography.
For the sake of simplicity in the forthcoming notations, we set

w =
(

h
hu

)

, f (w) =
⎛

⎝
hu

hu2 + g
h2

2

⎞

⎠ , and S(w, z) =
(

0
−gh∂x z

)

.

In addition, we introduce Ω ⊂ R
2 the set of physical admissible states given by

Ω = {w ∈ R
2; h ≥ 0, hu ∈ R}.

Fromnowon,we underline that this admissible state space contains dry areas characterized by
h = 0. It is well-known that the system (1) is not correctly defined for dry solutions. However,
some numerical simulations may contain dry zones which have to be correctly approximated.
In order to deal with wet solutions, far away from dry areas, we also introduce

Ω0 = {w ∈ R
2; h ≥ h0, hu ∈ R},

with h0 > 0 a given constant.
The first-order extracted system from (1) is well-known to be hyperbolic. As a conse-

quence, the Cauchy problem associated with (1) may develop discontinuous solutions in
finite time. The discontinuities, the so-called shock waves, are governed by the Rankine-
Hugoniot conditions (see [14,20,21,36]) which do not ensure uniqueness of the solution. In
order to rule out unphysical solutions, the system is endowed with entropy inequalities (see
[14,35,50]). Considering the shallow-water model, the entropy inequalities read (see [7]):

∂tη(w) + ∂xG(w) ≤ −ghu∂x z, (2)

where we have set

η(w) = h
u2

2
+ g

h2

2
and G(w) =

(
u2

2
+ gh

)

hu. (3)

It is worth noticing that η : Ω0 → R is a convex function.
In fact, since z does not depend on time, the above inequality equivalently (see [7]) recasts

in an energy estimate as follows:

∂t η̃(w, z) + ∂x G̃(w, z) ≤ 0, (4)

with
η̃(w, z) = η(w) + ghz and G̃(w, z) = G(w) + ghuz. (5)

In addition, the system (1) admits solutions of particular interest; namely the steady state
solutions. Since such solutions do not depend on time, they are easily shown to be defined
by

hu = Q and B(w, z) = B, (6)
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Fig. 1 Failure in the lake at rest
in the case of an approximation
obtained by a HLL Godunov-type
scheme to discretize the
hyperbolic first-order terms and a
centered scheme to discretize the
topography source term

where B : Ω → R stands for a Bernouilli-like relation given by

B(w, z) = u2

2
+ g(h + z). (7)

In (6), Q and B are two real constants. Among all the possible steady state solutions, the lake
at rest, defined by

u = 0 and h + z = H , (8)

with H a given constant, turns out to be of prime importance when deriving numerical
schemes to approximate the weak solutions of (1). Indeed, after the work by Bermudez and
Vasquez [4] , Greenberg and LeRoux [26] (see also [10,23,27,34]) or Goutal and Maurel
[24,25], it is well-known that a numerical scheme may produce very large errors if it cannot
accurately approximate the lake at rest. According to these pioneer works, a scheme able to
exactly capture the lake at rest is called a well-balanced scheme.

During the three last decades, numerous strategies have been introduced to correct the
failure coming from the non-well-balanced schemes as presented in Fig. 1. Among all these
(well-balanced) numerical techniques, one is of strong interest, the so called hydrostatic
reconstruction procedure introduced in[1]. Indeed, this numerical method can be understood
as a very easy way to obtain a well-balanced scheme as soon as a conservative scheme
is known to approximate the homogeneous first-order system, for flat topography with z a
constant, extracted from (1). To fix the ideas, let us briefly recall the main ingredients in the
derivation of the hydrostatic reconstruction.

First, we consider a suitable discretization of space and time. To make simple the pre-
sentation, the space discretization is assumed to be uniformly made of cells (xi− 1

2
, xi+ 1

2
)

with constant size Δx , so that xi+ 1
2

= xi− 1
2

+ Δx for all i in Z. Concerning the time dis-

cretization, we set tn+1 = tn + Δt , where Δt > 0 stands for the time increment which
has to be restricted according to a CFL-like condition [20,38,54]. Next, we assume known a
numerical flux function F(wL , wR) to approximate the flux function f (w) at each interface
xi+ 1

2
, which is assumed to be consistent as follows:

F(w,w) = f (w) ∀w ∈ Ω.

We here do not detail the technique to reach such a numerical flux function and the reader
is referred to [22,31,48,49] to get functions F of Godunov-type, Roe-type, relaxation-type,
kinetic-type, etc. In fact, let us emphasize that one of the main asset in the hydrostatic
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reconstruction approach stays in the opportunity to select any numerical flux function. On
each cell (xi− 1

2
, xi+ 1

2
), we introduce water height reconstructions as follows:

h+
i− 1

2
= hni + zi − z+

i− 1
2

and h−
i+ 1

2
= hni + zi − z−

i+ 1
2
, (9)

where zi − z+
i− 1

2
= O(Δx) and zi − z−

i+ 1
2

= O(Δx) are small perturbations. Here, z±
i+ 1

2
approximates the topography function on each side of the interface xi+ 1

2
. Precise definition

of these quantities will be given later on.
Equipped with water height reconstructions, we define the following reconstructed states:

w+
i− 1

2
=

(
h+
i− 1

2

h+
i− 1

2
uni

)

and w−
i+ 1

2
=

(
h−
i+ 1

2

h−
i+ 1

2
uni

)

∀i ∈ Z. (10)

Then, the hydrostatic reconstruction scheme reads

wn+1
i = wn

i − Δt

Δx

(

F(w−
i+ 1

2
, w+

i+ 1
2
) − F(w−

i− 1
2
, w+

i− 1
2
)

)

− gΔt

(
0

h∂x z
n
i

)

, (11)

where the source term discretization is in the following form:

h∂x z
n
i = h∂x z

+
i− 1

2
+ h∂x z

−
i+ 1

2
, (12)

for a suitable definition of h∂x z
±
i+ 1

2
given by

h∂x z
+
i− 1

2
= 1

2Δx

(

hni + h+
i− 1

2

)(

zi − z+
i− 1

2

)

,

h∂x z
−
i+ 1

2
= 1

2Δx

(

hni + h−
i+ 1

2

)(

z−
i+ 1

2
− zi

)

.

(13)

In fact, the main idea in [1] is enforcing

z−
i+ 1

2
= z+

i+ 1
2

as soon as hni + zi = hni+1 + zi+1, (14)

so that we get
h−
i+ 1

2
= h+

i+ 1
2

as soon as hni + zi = hni+1 + zi+1. (15)

Independently from the choice of the numerical flux function F , the above numerical
approach is easily seen to be well-balanced; namely if uni = 0 and hni + zi = H for all
i ∈ Z, then un+1

i = 0 and hn+1
i + zi = H for all i ∈ Z.

Now, let us suggest some definitions of the topography z±
i+ 1

2
at each interface. For instance,

in [1], the authors proposed

z−
i+ 1

2
= min

(
hni + zi ,max(zi , zi+1)

)
,

z+
i+ 1

2
= min

(
hni+1 + zi+1,max(zi , zi+1)

)
.

(16)

Next, let us emphasize that several recent works propose extensions of the original hydro-
static reconstruction defined by (16). For instance, in the work by Chen and Noelle [11], the
authors suggest to consider

z−
i+ 1

2
= max

(
zi , z̄i+ 1

2

)
and z+

i+ 1
2

= max
(
zi+1, z̄i+ 1

2

)
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where we have set

z̄i+ 1
2

= min
(
max(zi , zi+1),min(hni + zi , h

n
i+1 + zi+1)

)
.

The hydrostatic reconstruction, defined by (9), (10), (11) and (13), turns out to be very
easy and fast to be implemented. This makes this procedure very attractive and numerous
works apply this technique (for instance, see [3,6,15,17,39,40]).

Equipped with well-balanced schemes, an other important property to be satisfied by the
scheme concerns the stability. In the presentwork,we focus on the entropy stability. Indeed, in
order to rule out unphysical approximate solutions, it is important that the numerical solution
satisfies, in addition, discrete entropy inequalities. We recall that the scheme is said entropy
stable if the following strong energy estimation is verified:

1

Δt

(
η̃(wn+1

i , zi ) − η̃(wn
i , zi )

)

+ 1

Δx

(

G̃(w−
i+ 1

2
, zi , w

+
i+ 1

2
, zi+1) − G̃(w−

i− 1
2
, zi−1, w

+
i− 1

2
, zi )

)

≤ 0.
(17)

where η̃ is the entropy function defined by (5), and G̃(wL , zL , wR, zR) is the associated
numerical entropy flux function consistent with the exact entropy flux, G̃, as follows:

G̃(w, z, w, z) = G̃(w, z).

In fact, the discrete entropy inequality (17), according to the famous Lax-Wendroff The-
orem [37], ensures a convergence to the entropy weak solutions of the system (1) (if the
scheme converges).

The derivation of discrete entropy inequality is usually a very difficult task. For instance,
in [7–9] for the shallow-water equations and in [12] for Euler equations in nozzles, relaxation
schemes are derived to get entropy stable well-balanced schemes. But, in general, the authors
do not address the delicate problem of the full discrete energy estimate (17).

To avoid these difficulties, some works suggest to consider weaker formulations of the
entropy stability. For instance, recently in [5,43,44], extensions of the HLL scheme [31]
produce entropy consistent schemes (in the sense where entropy inequlity is reached up to
O(Δx)) able to exactly capture all the steady states (at rest or moving). In [1], the authors
establish an entropy inequality satisfied by the semi-discrete (time continuous) scheme
associatedwith the hydrostatic reconstruction (11). Unfortunately, it is well-known that semi-
discrete entropy inequalities are not sufficient to obtain a suitable convergence to the entropy
weak solution or to get relevant energy estimates. As a consequence, the main question we
address here is:

Is it possible to exhibit the entropy inequality (17) for the hydrostatic reconstruction
scheme (11)?

In fact, recently in [2], the authors give a negative response. As a consequence, in order
to get the expected entropy inequality, the hydrostatic reconstruction scheme (11) must be
improved. To address such an issue, we here suggest to consider relevant artificial viscosity.
Indeed, tuning numerical viscosity of a conservative scheme is a well-known process to
enforce stability. After the pioneer work by Neumann and Richtmyer [46], numerous authors
have improved the numerical stability by designing suitable numerical viscosity (for instance,
see [37,41,47,51,52,56], but this bibliography is clearly not exhaustive). The present work
enters this general context.

The present paper is organized as follows. In the next section, we adopt an artificial
viscosity technique as proposed in [13] (see also [51–53]). In fact, by involving additional
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viscosity, we may expect to increase the stability of the scheme (see also [3,29,30] for similar
techniques). Moreover, in this work, the required entropy stability is obtained by adopting the
well-known entropy criterion introduced by Harten, Lax and van Leer (see Theorem 3.1 page
47 [31]). In order to apply this statement, we also present a Godunov-type reformulation of
the derived viscous hydrostatic reconstruction scheme. Section 3 concerns the establishment
of the discrete energy estimate (17). To address such an issue, we exhibit the optimal artificial
viscosity to minimize the associated entropy dissipation rate. Moreover, we show that the
interface topography reconstruction z±

i+ 1
2
must be given a specific definition. Next, Sect. 4,

we focus on the wet and dry transitions. Clearly, the energy estimate (4) is not well-defined
within such a transition. As a consequence, in this section, we introduce an improvement
of the derived hydrostatic reconstruction scheme able to deal with wet and dry transition,
and preserving the entropy stability requirement far away from vacuum. The last section
is devoted to some numerical experiments in order to illustrate the relevance of the herein
proposed improvement of the hydrostatic reconstruction method.

2 Viscous Hydrostatic Reconstruction Scheme and Godunov-Type
Reformulation

This section is devoted to an improvement of the hydrostatic reconstruction scheme (11),
in order to obtain the required discrete entropy inequality (17). After the pioneer work by
Tadmor [51–53] (see also [13,28]), we suggest to introduce artificial viscosity. Indeed, the
artificial viscosity naturally increases the scheme stability and it turns out to be a suitable
ingredient to establish the required entropy inequality (17).As a consequence,we heremodify
the numerical flux function F(w+

L , w−
R ) by introducing

Fγ

LR = F(w+
L , w−

R ) + γ δLR, (18)

where δLR = (δh, δq)t ∈ R
2 stands for a nonlinear viscosity to be defined according to

a correct control of the numerical entropy dissipation rate. The parameter γ ≥ 0 governs
the numerical artificial viscosity according to the CFL condition. In addition, in the above
definition,w+

L andw−
R stand for the reconstructed states at the interface according to (10). Put

in other words, at an interface xi+ 1
2
, we set w+

L = w−
i+ 1

2
and w−

R = w+
i+ 1

2
. Let us underline

that this new numerical flux function definition depends on both reconstructed values and
cell values; namely Fγ

LR := Fγ

LR(wL , wR, w+
L , w−

R ).
Now, instead of the numerical method (11), we consider the following scheme:

wn+1
i = wn

i − Δt

Δx

(

Fγ

i+ 1
2

− Fγ

i− 1
2

)

− gΔt

(
0

h∂x z
n
i

)

, (19)

which reads

wn+1
i = wn

i − Δt

Δx

(

F(w−
i+ 1

2
, w+

i+ 1
2
) − F(w−

i− 1
2
, w+

i− 1
2
)

)

+γ
Δt

Δx

(
δi− 1

2
− δi+ 1

2

)
− gΔt

(
0

h∂x z
n
i

)

. (20)

For the sake of simplicity in the notations, adopting (13), we set

S±
i+ 1

2
=

(
0

−gh∂x z
±
i+ 1

2

)

, (21)
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to write, after (12),

−g

(
0

h∂x z
n
i

)

= S+
i− 1

2
+ S−

i+ 1
2
.

From now on, it is worth noticing that the adopted scheme (20) needs a specific definition
of δLR to recover the expected well-balanced property. Indeed, as soon as the sequence
(wn

i )i∈Z defines a lake at rest at time tn , because of the hydrostatic reconstruction conditions
(15), we immediately obtain

wn+1
i = wn

i + γ
Δt

Δx

(
δi− 1

2
− δi+ 1

2

)
.

As a consequence, we have to impose δLR = 0 as soon as wL and wR define a lake at rest.
Moreover, in order to preserve the consistency property of (20), we must have δi+ 1

2
−δi− 1

2
=

O(Δx2).
Now, in order to prove the energy estimation (17), we suggest to reformulate the viscous

hydrostatic reconstruction scheme (20) as a Godunov-type method. To address such an issue,
we introduce the following approximate Riemann solver:

wR
( x

t
;wL , wR, w+

L , w−
R

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wL if
x

t
< −(λ + γ ),

w̄L if − (λ + γ ) <
x

t
< −λ,

w	
L if − λ <

x

t
< 0,

w	
R if 0 <

x

t
< λ,

w̄R if λ <
x

t
< λ + γ,

wR if
x

t
> λ + γ,

(22)

where we have set
w̄L = wL − δLR and w̄R = wR + δLR (23)

and

w	
L = wL − 1

λ

(F(w+
L , w−

R ) − f (wL)
) + Δx

λ
S+
L ,

w	
R = wR + 1

λ

(F(w+
L , w−

R ) − f (wR)
) + Δx

λ
S−
R .

(24)

In the above definition, S+
L and S−

R denote the source term discretization at the interface
according to (21); namely S+

L = S−
i+ 1

2
and S−

R = S+
i+ 1

2
at each side of the interface xi+ 1

2
.

Concerning the wave speeds involved in (22), λ > 0 and γ ≥ 0 will be fixed later on
according to stability conditions to be prescribed. For the sake of simplicity in the forthcoming
developments, γ is fixed to a constant value over the whole mesh while λ is defined locally
interface per interface.

Next, arguing direct computations, the updated state wn+1
i , given by (20), equivalently

reformulates as follows:
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wn+1
i = 1

Δx

∫ Δx
2

0
wR

(
x

Δt
;wn

i−1, w
n
i , w

−
i− 1

2
, w+

i− 1
2

)

dx

+ 1

Δx

∫ 0

− Δx
2

wR
(

x

Δt
;wn

i , w
n
i+1, w

−
i+ 1

2
, w+

i+ 1
2

)

dx, (25)

under a CFL-like condition given by

Δt

Δx
max
i∈Z

(
λi+ 1

2
+ γ

)
≤ 1

2
. (26)

We recall that this CFL restriction imposes non-interaction of successive approximate Rie-
mann solvers

wR
(
x − xi− 1

2

Δt
;wn

i−1, w
n
i , w

−
i− 1

2
, w+

i− 1
2

)

and wR
(
x − xi+ 1

2

Δt
;wn

i , w
n
i+1, w

−
i+ 1

2
, w+

i+ 1
2

)

.

After (26), let us emphasize that the proposed viscous correction has a negative impact on the
time step, which may be a threat for practical use. However, as confirmed by the numerical
investigations, presented Sect. 5, even when large values of γ are locally needed, the global
impact on the CFL condition is negligible, entailing a very slight increase of time iterations.

To conclude this section, we underline that the initial hydrostatic reconstruction scheme
(11) is recovered as soon as γ = 0.

3 Discrete Entropy Inequality

Equipped with the improved hydrostatic reconstruction scheme (20) and the associated
Godunov-type reformulation (25), we are now able to get the expected discrete energy esti-
mate (17). Indeed, involving the work by Harten, Lax and van Leer [31], the Godunov-type
scheme (25) is entropy preserving as soon as the approximate Riemann solver (22) satisfies
the following interface entropy condition:

1

Δx

∫ Δx
2

− Δx
2

η̃
(
wR

( x

Δt
;wL , wR, w+

L , w−
R

)
, z

)
dx

≤ 1

2
(η̃(wL , zL) + η̃(wR, zR)) − Δt

Δx

(
G̃(wR, zR) − G̃(wL , zL)

)
,

(27)

with the entropy pair (η̃, G̃) defined by (5) and where we have set

z =
{
zL if x < 0,

zR if x > 0.

Indeed, since η, defined by (3), is a convex function, involving the well-known Jensen’s
inequality, we immediately obtain

η(wn+1
i ) ≤ 1

Δx

∫ Δx
2

0
η

(

wR
(

x

Δt
;wn

i−1, w
n
i , w

−
i− 1

2
, w+

i− 1
2

))

dx

+ 1

Δx

∫ 0

− Δx
2

η

(

wR
(

x

Δt
;wn

i , w
n
i+1, w

−
i+ 1

2
, w+

i+ 1
2

))

dx .
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Moreover, we have

hn+1
i zi = 1

Δx

∫ Δx
2

0
hR

(
x

Δt
;wn

i−1, w
n
i , w

−
i− 1

2
, w+

i− 1
2

)

zi dx

+ 1

Δx

∫ 0

− Δx
2

hR
(

x

Δt
;wn

i , w
n
i+1, w

−
i+ 1

2
, w+

i+ 1
2

)

zi dx,

so that, adding the above identities, by definition of η̃ given by (5), we get

η̃(wn+1
i , zi ) ≤ 1

Δx

∫ Δx
2

0
η̃

(

wR
(

x

Δt
;wn

i−1, w
n
i , w

−
i− 1

2
, w+

i− 1
2

)

, zi

)

dx

+ 1

Δx

∫ 0

− Δx
2

η̃

(

wR
(

x

Δt
;wn

i , w
n
i+1, w

−
i+ 1

2
, w+

i+ 1
2

)

, zi

)

dx .

Next, arguing the inequality (27), a straightforward computation gives the expected
entropy inequality (17) where the entropy numerical flux function is defined as follows:

G̃(wL , wR, w+
L , w−

R , zL , zR)

= G̃(wR, zR) − Δx

2Δt
η̃(wR, zR) + 1

Δt

∫ Δx
2

0
η̃

(
wR

( x

Δt
;wL , wR, w+

L , w−
R

)
, zR

)
dx .

As a consequence, we have now to establish the interface entropy inequality (27). To obtain
this estimation, we first introduce the following entropy dissipation rate:

E = 1

Δt

∫ Δx
2

− Δx
2

η̃
(
wR

( x

Δt
;wL , wR, w+

L , w−
R

)
, z

)
dx

− Δx

2Δt
(η̃(wL , zL) + η̃(wR, zR)) +

(
G̃(wR, zR) − G̃(wL , zL)

)
,

(28)

so that the estimation (27) immediately reformulates as E ≤ 0. Next, from (22) to define the
approximate Riemann solver, a straightforward computation gives:

E = E0 + γD,

where we have set

E0 =λ
(
η̃(w	

L , zL) + η̃(w	
R, zR) − η̃(wL , zL)

− η̃(wR, zR)
)

+
(
G̃(wR, zR) − G̃(wL , zL)

)
,

(29)

D = η̃(w̄L , zL) + η̃(w̄R, zR) − η̃(wL , zL) − η̃(wR, zR). (30)

We notice that E0 is nothing but the entropy dissipation rate of the initial hydrostatic recon-
struction scheme (11), obtained by imposing γ = 0 in (20). The quantity D coincides with
a viscous entropy dissipation rate associated with the artificial viscosity.

In fact, since the initial hydrostatic reconstruction scheme is not necessarily entropy pre-
serving, the associated entropy dissipation rate E0 may be positive. As a consequence, we
may have E0 ≥ 0. Then, in order to recover E ≤ 0, necessarily we must have D < 0 so that,
with large enough value of γ ≥ 0, we may expect a negative entropy dissipation E . In fact,
choosing the artificial viscosity as follows (for instance, see [13]):

δh = 1

2
(hL − hR) and δq = 1

2
(hLuL − hRuR),
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we obtain

w̄L = w̄R = 1

2
(wL + wR).

With a flat topography, zL = zR , arguing the convexity of η, we immediately obtain D ≤ 0.
Now, we have to extend such a viscosity definition in order to deal with non-flat topography.

Lemma 1 Let wL and wR be two constant states in Ω0. Assume the artificial viscosity δLR
be given as follows:

δh = 1

2
(hL − hR) + 1

2
(zL − zR), (31)

δq = 1

2
(hLuL − hRuR) − 1

2

hLuL + hRuR

hL + hR
(zR − zL). (32)

Then the viscous entropy dissipation rate D reads

D = −g(δh)2 − 1

2

hLhR

hL + hR
(uL − uR)2. (33)

Assume the interface topography reconstruction z−LR = z+LR = zLR be defined such that

zLR = 1

2
(zL + zR) + λu(zR − zL)KLR, (34)

as soon as uL = uR = u and hL + zL = hR + zR = H for given constants u and H.
Moreover, in (34), λ is the wave speed involved in (22) and KLR is a parameter, stated at
each interface, such that

0 < u2KLR < 1. (35)

In addition, assume hL and hR be large enough such that

1

2
(hL + hR) ± 1

2
(zR − zL) > 0, (36)

hL + zL − zLR > 0 and hR + zR − zLR > 0. (37)

Then there exists λ > 0 and γ ≥ 0 large enough such that the interface entropy inequality
(27) is satisfied.

From now on, we underline that the condition (36) enforces the intermediate water heights
h̄L and h̄ R to be positive. Indeed, by definition of δh , now given by (31), we easily get

h̄L = 1

2
(hL + hR) − 1

2
(zL − zR) and h̄ R = 1

2
(hL + hR) + 1

2
(zL − zR).

As a consequence, as long as the solution stays far away from dry areas, with hL ≥ h0 > 0
and hR ≥ h0 > 0, andwith a smooth topography function, both h̄L and h̄ R remain positive for
small enough Δx . Moreover, the condition (37) imposes that the reconstructed water heights
h−
L and h+

R remain positive. As a consequence, at the level of the scheme presentation,
we assume to be far away from dry areas. In the next section, extensions of the interface
topography zLR are proposed in order to deal with wet and dry transitions.

In addition, it is worth noticing that the proposed improved hydrostatic scheme is now
defined up to the parameter KLR , involved in (34). The behavior of the approximated solution
according to this parameter KLR will be numerically studied.

Moreover, at this level, we are not able to establish that λ and γ are bounded. However, in
Sect. 4, devoted to the numerical experiments, we will illustrate the good behavior of these
two parameters.
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Proof Arguing the definition of δh and δq , given by (31) and (32), after a laborious but
straightforward computation,D is now given by (33). As a consequence,D ≤ 0 with equality
to zero if and only if (wL , zL) and (wR, zR) belong to

Γ(H ,u) = {hL + zL = hR + zR = H and uL = uR = u} .

Moreover, we notice that D and E0 do not depend on γ . Then, as long as D < 0, there exists
γ ≥ 0 such that E0 + γD ≤ 0.

Next, let us assume that (wL , zL) and (wR, zR) stay in Γ(H ,u) so that D = 0. In order to
obtain the required inequality (27), we have now to establish that E0 ≤ 0. By definition of the
hydrostatic reconstruction (15), since hL + zL = hR + zR and uL = uR , we have w+

L = w−
R

where

h+
L = H − zLR = h−

R .

Now, we are able to evaluate both intermediate states w	
L and w	

R given by (24). Concerning
the intermediate water heights, we have the following sequence of equalities:

h	
L = hL − 1

λ

(
h+
L u − hLu

) = hL − u

λ
(zL − zLR)) ,

h	
R = hR + 1

λ

(
h−
Ru − hRu

) = hR + u

λ
(zR − zLR)) .

Next, concerning the intermediate discharge, we have

h	
Lu

	
L = hLuL − 1

λ

(
f hu(w+

L ) − f hu(wL)
)

+ g

2λ

(
(h+

L )2 − h2L
)
,

h	
Ru

	
R = hRuR + 1

λ

(
f hu(w−

R ) − f hu(wR)
)

+ g

2λ

(
h2R − (h−

R )2
)
,

to get

h	
Lu

	
L = hLu − u2

λ
(zL − zLR),

h	
Ru

	
R = hRu + u2

λ
(zR − zLR).

Plugging these intermediate states within E0 and adopting an interface topography zLR given
by (34), after a huge but direct computation, we obtain

E0 = u2gKLR(zR − zL)2(u2KLR − 1)λ2 + α1λ + α0,

where α1 and α0 do not depend on λ. As a consequence, as long as u �= 0 and zL �= zR ,
under the condition (35), E0 stands for a second-order polynomial function with respect to λ

with a negative head coefficient. Hence, there exists λ > 0 large enough such that E0 < 0.
Finally, to conclude the proof, we underline that Γ(H ,0) coincides with the lake at rest.

Then, by definition of the hydrostatic reconstruction (15), we immediately obtain w	
L = wL

and w	
R = wR so that E0 = 0 to get E = 0. Moreover, if we restrict Γ(H ,u) to zL = zR , then

we enforce wL = wR . By definition of the entropy dissipation rate, once again we obtain
E = 0. The proof is thus completed.

We now conclude this section by stating our main result.

Theorem 1 Let F(wL , wR) be a consistent numerical flux function with the homogeneous
shallow-water equations. Assume the topography function z be given by a smooth function.
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Let (wn
i )i∈Z be a sequence in Ω0 to approximate the solution of (1) at time tn. Consider

the updated state wn+1
i given by the viscous hydrostatic reconstruction scheme (20) and

(13) where the reconstructed water heights are given by (9) but for an interface topography
defined by

z−
i+ 1

2
= z+

i+ 1
2

= zi+ 1
2
, (38)

zi+ 1
2

= 1

2
(zi + zi+1) + λ

2

(
uni + uni+1

)
(zi+1 − zi )Ki+ 1

2
, (39)

with Ki+ 1
2
a positive parameter such that

0 <
Ki+ 1

2

4

(
(uni )

2 + (uni+1)
2) < 1.

Concerning the artificial viscosity δi+ 1
2

= (δh
i+ 1

2
, δ

q
i+ 1

2
)t , we adopt

δh
i+ 1

2
= 1

2

(
hni − hni+1

) + 1

2
(zi − zi+1), (40)

δ
q
i+ 1

2
= 1

2

(
hni u

n
i − hni+1u

n
i+1

) − 1

2

hni u
n
i + hni+1u

n
i+1

hni + hni+1
(zi+1 − zi ). (41)

Under the CFL-like restriction (26), there exists λi+ 1
2

> 0 and γ ≥ 0 large enough such

that the scheme is

(i) Consistent,
(ii) Well-balanced for the lake at rest,
(iii) Entropy preserving according to the discrete energy estimate (17).

It is worth noticing that the numerical flux functionF is not enforced to be associated with
an entropy preserving scheme. Put in other words, the scheme (11), with a flat topography
function, can be entropy violating. In fact, all the required entropy inequalities are contained
within the numerical artificial viscosity.

Proof First, let us show that the scheme is consistent. Since the topography function is
smooth, we immediately have the consistency of the interface topography zi+ 1

2
up to

O(Δx). As a consequence, the reconstruction statesw±
i+ 1

2
are consistent up toO(Δx). Then,

(F(w−
i+ 1

2
, w+

i+ 1
2
) −F(w+

i− 1
2
, w+

i− 1
2
))/Δx is naturally consistent with ∂x f (w) up toO(Δx).

Next, concerning the artificial viscosity, we have

δh
i− 1

2
− δh

i+ 1
2

= 1

2

(
hni+1 − 2hni + hni−1

) + 1

2
(zi+1 − 2zi + zi−1),

δ
q
i− 1

2
− δ

q
i+ 1

2
= 1

2

(
(hu)ni+1 − 2(hu)ni + (hu)ni−1

)

− 1

2

(
(hu)ni + (hu)ni+1

hni + hni+1
(zi+1 − zi ) − (hu)ni−1 + (hu)ni

hni−1 + hni
(zi − zi−1)

)

,

to immediately obtain δh
i+ 1

2
− δh

i− 1
2

= O(Δx2) and δ
q
i+ 1

2
− δ

q
i− 1

2
= O(Δx2). As a con-

sequence, the artificial viscosity is consistent with zero. Concerning the source term, the
consistency is immediately recovered because of the consistency of the interface topography
zi+ 1

2
.
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Next, concerning the well-balanced property, since z−
i+ 1

2
= z+

i+ 1
2

= zi+ 1
2
, we have just to

show that the artificial viscosity vanishes as soon as a lake at rest is considered. But, as soon
as hni + zi = hni+1 + zi+1, we get δh

i+ 1
2

= 0. Moreover, with δh
i+ 1

2
= 0, we have δ

q
i+ 1

2
= 0

with uni = uni+1 = 0. Then, the considered scheme is well-balanced.
Finally, the discrete entropy inequality (17) is a direct consequence of Lemma 1. The

proof is thus achieved. 	


4 Wet and Dry Transitions

We underline that, in the work by Audusse et al [1] (see also [11,45]), the hydrostatic recon-
struction scheme remains relevant when considering wet and dry transitions. More precisely,
the hydrostatic reconstruction technique preserves thewater height nonnegative. Such a prop-
erty is essential to perform numerical simulations of physical interest. Here, we propose to
modify the water height reconstructions and the artificial viscosity in order to make relevant
the derived numerical scheme within dry areas.

Concerning the water height reconstructions, we adopt the approach introduced by
Audusse et al [1], by imposing on the cell (xi− 1

2
, xi+ 1

2
), h+

i− 1
2

≥ 0 and h−
i+ 1

2
≥ 0 but

also h+
i− 1

2
= h−

i+ 1
2

= 0 if hni = 0. To address such an issue, we suggest

h+
i− 1

2
= max

(

0, hni + α+
i− 1

2

(
zi − zi− 1

2

))

,

h−
i+ 1

2
= max

(

0, hni + α−
i+ 1

2

(
zi − zi+ 1

2

))

,

with zi+ 1
2
given by (39) and where we have set

α+
i− 1

2
= hni

hni + (|hni + zi − hni−1 − zi−1| + |uni − uni−1|L0/V0
)
Δxk/Lk

0

,

α−
i+ 1

2
= hni

hni + (|hni+1 + zi+1 − hni − zi | + |uni+1 − uni |L0/V0
)
Δxk/Lk

0

,

for a given k ≥ 1 and where we have introduced L0 and V0, respectively a reference length
and a reference velocity stated to the unit value, in order to make consistent the involved
dimensions.

Adopting the notations introduced in (9), we get

h+
i− 1

2
= hni + zi − z+

i− 1
2

and h−
i+ 1

2
= hni + zi − z−

i+ 1
2
, (42)

where we have set

z−
i+ 1

2
= min

(
hni + zi , zi − α−

i+ 1
2

(
zi − zi+ 1

2

))
,

z+
i− 1

2
= min

(
hni + zi , zi − α+

i− 1
2

(
zi − zi− 1

2

))
.

(43)

Next, let us focus on the artificial viscosity. We suggest to consider a similar cut-off
technique by imposing the water height artificial viscosity δh

i+ 1
2
such that hni − δh

i+ 1
2

≥ 0 and

hni+1 + δh
i+ 1

2
≥ 0. As a consequence, we propose
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δh
i+ 1

2
= max

(

−hni+1,min

(

hni ,
1

2
(hni + zni − hni+1 − zi+1)

))

. (44)

In addition, in order to preserve the water heights nonnegative, as usual, we impose that
the adopted numerical flux function F(wL , wR) is associated with a nonnegative preserving
scheme over a flat topography (for instance, see [1,11]). Put in other words, we impose that

Fh(w = 0, wn
i+1) − Fh(wn

i−1, w = 0) ≤ 0, (45)

for all states wn
i±1 in Ω .

We now show that the resulting scheme is nonnegative preserving and it preserves the
stability property established Theorem 1.

Theorem 2 Let (wn
i )i∈Z be given in Ω , and F(wL , wR) be a consistent numerical flux func-

tion assumed to satisfy the nonnegative condition (45). Consider the viscous hydrostatic
reconstruction scheme (20) and (13) with reconstructed water heights given by (42) and
(43), and an artificial viscosity defined by (41) and (44).

(i) The scheme is consistent.
(ii) The scheme is well-balanced; namely if hni + zi = H and uni = 0 for all i in Z, then

hn+1
i + zi = H and un+1

i = 0 for all i in Z.
(iii) Up to a more restrictive CFL-like condition, the scheme is nonnegative preserving;

namely if hni ≥ 0 for all i in Z, then hn+1
i ≥ 0 for all i in Z.

(iv) The scheme is entropy preserving according to the discrete entropy inequality (17) in
Ω0 at least for small enough Δx.

Proof Concerning the consistency of the scheme, it easily comes from the consistency of
z±
i+ 1

2
with the topography function z. We notice that zi+ 1

2
, defined by (39), is consistent with

z whileα±
i+ 1

2
is consistent with 1. As a consequence, z±

i+ 1
2
is consistent withmin(h+z, z) = z

and the considered scheme is proved to be consistent.
Next, in order to prove (i i), let us consider a lake at rest; namely hni + zi = H and uni = 0

for all i in Z. Arguing (41) and (44), we immediately get

δh
i+ 1

2
= 0 and δ

q
i+ 1

2
= 0.

Moreover, we get α±
i+ 1

2
= 1. With the definition of the interface topography, given by (43),

we have

z±
i+ 1

2
= min

(
H , zi+ 1

2

)
,

so that h−
i+ 1

2
= h+

i+ 1
2
. Since uni = 0 for all i in Z, the numerical flux function reads for all i

in Z

F
(

w−
i+ 1

2
, w+

i+ 1
2

)

= f

(
h−
i+ 1

2

0

)

=
⎛

⎜
⎝

0

g

2

(

h−
i+ 1

2

)2

⎞

⎟
⎠ .

After a direct computation, the scheme (20) now gives wn+1
i = wn

i and the well-balanced
property is stated.
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Next, we turn establishing (i i i). To address such an issue, we introduce the following two
partial updated water heights:

hn+1,1
i = hni − Δt

Δx/2

(

Fh
(

w−
i+ 1

2
, w+

i+ 1
2

)

− Fh
(

w−
i− 1

2
, w+

i− 1
2

))

,

hn+1,2
i = hni + γ

Δt

Δx/2

(

δh
i− 1

2
− δh

i+ 1
2

)

,

such that the updated water height defined by (20) now reformulates as follows:

hn+1
i = 1

2

(
hn+1,1
i + hn+1,2

i

)
. (46)

We recognize hn+1,1
i as the updated state given by a hydrostatic reconstruction scheme

according to the work by Audusse et al [1]. Since h+
i− 1

2
= h−

i+ 1
2

= 0 as soon as hni = 0, the

nonnegative condition (45) to be satisfied by the numerical flux function implies hn+1
i ≥ 0

(see [1,11] for more detail), under the CFL-like condition

Δt

Δx/2
max
i∈Z λi+ 1

2
≤ 1

2
.

Next, concerning hn+1,2
i , after a straightforward computation we get

hn+1,2
i =

(

1 − 4γ
Δt

Δx

)

hni + 2γ
Δt

Δx

(

hni + δh
i− 1

2

)

+ 2γ
Δt

Δx

(

hni − δh
i+ 1

2

)

.

According to the definition of δh
i+ 1

2
, given by (44), we have hni −δh

i− 1
2

≥ 0 and hni +δh
i+ 1

2
≥ 0.

As a consequence, under the CFL-like condition

γ
Δt

Δx
≤ 1

4
,

we get hn+1,2
i ≥ 0, to immediately obtain hn+1

i ≥ 0 according to (46).
To conclude the proof, we have to establish the discrete entropy inequality (17). In fact, it

suffices to apply Lemma 1 for the new definition of the interface topography given by (43)
and the new artificial viscosity (44). Since this stability property is considered in Ω0, with
Δx small enough, the viscosity δh

i+ 1
2
recovers the expected formulation given by (40). Next,

we notice that α±
i+ 1

2
= 1 as soon as hni + zni = hni+1 + zi+1 = H and uni = uni+1. As a

consequence, with Δx small enough, in Ω0 we get

z±
i+ 1

2
= min

(
H , zi+ 1

2

)
= zi+ 1

2
,

and thus the condition (34) is satisfied and Lemma 1 can be applied. The proof is thus
achieved. 	


5 Numerical Experiments

In this section, we display several numerical experiments to illustrate the relevance of the
derived viscous hydrostatic reconstruction scheme (20) and (13) with the water height recon-
struction given by (42) and (43), and the artificial viscosity given by (41) and (44).
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The numerical simulations are performed involving two distinct numerical flux functions.
First, we adopt the numerical flux function for the Suliciu relaxation scheme [7] or equiv-
alently the HLLC scheme [55]. From now on, we emphasize that this scheme is entropy
preserving for flat topography. Next, the second numerical flux function we adopt is asso-
ciated with the VF-Roe scheme [18,19,42]. This second considered scheme is well-known
to be entropy violating. As a consequence, wrong shock discontinuities may appear in the
approximated solutions. Some numerical methods have been proposed to correct such a fail-
ure, such as [16,32,33], but without ensuring fully discrete entropy inequalities. Here we
chose to consider this solver under its non-entropic form to highlight the benefits brought
by our stabilisation technique. To implement the scheme, we have to specify the parameters.
Concerning λi+ 1

2
, in order to be consistent with the entropy inequality satisfied by the Suliciu

relaxation scheme, we adopt

λi+ 1
2

=
(

1 + 1

10

)

max
i∈Z

(
|uni | +

√

ghni

)
. (47)

Concerning Ki+ 1
2
, involved in zi+ 1

2
, and k, involved in α±

i+ 1
2
, we fix this parameters as

follows:

Ki+ 1
2

= min

(
Δx2

L2
0V

2
0

,

(
2

(uni )
2 + (uni+1)

2

))

and k = 2, (48)

where we have introduced L0 and V0, respectively a reference length and a reference velocity
stated to the unit value, in order to make consistent the involved dimensions. The influence
of these parameters is tested later on.

Now, the main difficulty comes from the evaluation of γ to govern the artificial viscosity.
In the simulations, we have decided to select one value of γ per time iteration. At time tn ,
at each interface xi+ 1

2
, we evaluate (E0)ni+ 1

2
and Dn

i+ 1
2
, given by (29) and (30). Then, we fix

γ n such that (E0)ni+ 1
2

+ γ nDn
i+ 1

2
≤ 0.

Equipped with the values of λi+ 1
2
and γ n , the time increment Δtn is evaluated at each

time iteration according to the CFL-like restriction (26) as follows:

Δtn = Δx

2max
i∈Z

(
λi+ 1

2
+ γ

) . (49)

In the sequel, we present three sequences of numerical experiments respectively devoted
to dam-breaks over a flat topography, stationary flows over a bump and wet/dry transitions.

5.1 Dam-Breaks over a Flat Topography

Here, the simulation domain is made of the interval [0, 25] where the topography function
is fixed to z(x) = 0. The initial data for the first dam-break is given by

h(x, 0) =
{
1.5 if x < 12.5,

0.5 if x > 12.5,
and u(x, 0) = 0. (50)

The exact solution ismade of a rarefactionwave and a shockwave. Since theSuliciu relaxation
scheme is entropy preserving over a flat topography, the evaluation of the viscosity parameter
imposes γ n = 0 for all n > 0 in this simulation. Concerning the approximation given by the
VF-Roe scheme, we also obtain γ n = 0 for all n > 0. In fact, for such a Riemann problem,
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Fig. 2 Numerical simulation obtained for the first dam-break given for the initial data (50) at time t = 1.5
with 200 cells

the VF-Roe scheme does not involve entropy fix and we obtain the expected approximate
solution. The numerical results for this first dam-break are displayed Fig. 2.

The second simulated dam-break is obtained by considering the following initial data:

h(x, 0) =
{
2.0 if x < 12.5,

0.1 if x > 12.5,
and u(x, 0) = 0. (51)

Once again, the Suliciu relaxation scheme is entropy preserving andwe obtain a good approx-
imation of the solution made of a rarefaction wave and a shock wave. Now, the situation turns
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Fig. 3 Numerical simulation obtained for the second dam-break given for the initial data (51) at time t = 1.5
with 200 cells

out to be drastically different concerning the VF-Roe scheme. Indeed, the VF-Roe scheme
produces a strong entropy violating shock wave as displayed Fig. 3.

Nevertheless, as soon as the artificial viscosity is activated, the entropy stability is recov-
ered and the approximated solution becomes in a good agreement when compared to the
exact solution.

In Fig. 4, we present the evolution of γ n versus time obtained during the simulation. It is
clear that the values of γ n do not restrict the CFL condition and do not perturb the order of
accuracy as presented Table 1.

123



Journal of Scientific Computing

Fig. 4 Second dam-break given for the initial data (51) at time t = 1.5 with 200 cells, evolution of the viscous
parameter γ n versus time

Table 1 Errors evaluation of viscous VF-Roe scheme for the second dam-break with initial data (51)

Cells L2 water height error L2 discharge error

200 1.6197E-2 4.8550E-2

400 9.1830E-3 2.7253E-2

800 5.4305E-3 1.6455E-2

1600 3.0831E-3 8.8137E-3

5.2 Stationary Solutions

Now, we focus on simulations of stationary solutions. Here, the domain of simulation is given
by [0, 25] while the topography contains a bump as follows:

z(x) = max(0, 0.2 − 0.05(x − 10)2). (52)

First, we simulate the well-known lake at rest. Then, the initial data is given by

h(x, 0) = max(0, 0.5 − z(x)) and u(x, 0) = 0. (53)

As presented Fig. 5, since the scheme is well-balanced, the initial data is preserved by
both Suliciu scheme and VF-Roe scheme with errors equal to O(10−15). Of course, since
the steady solution is exactly captured, the artificial viscosity remains equal to zero during
the simulation.

Next, the second simulation is devoted to a subcritical flow with an initial data given by

h(x, 0) = 2 − z(x) and u(x, 0) = 0. (54)

In this simulation, the boundary conditions are imposed as follows:

h(0, t)u(0, t) = h(25, t)u(25, t) = 4.42 and h(25, t) = 2
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Fig. 5 Numerical simulation obtained for the lake at rest given for the initial data (53) at time t = 100 with
200 cells

while h(0, t) is given by an usual Neumann condition.
The obtained numerical results are displayed Fig. 6. Here, we present the results obtained

by adopting the original version of the Suliciu relaxation scheme and the VF-Roe scheme as
well as the viscous extension according to the introduced artificial viscosity technique. The
discharge error evaluations, given Tables 2 and 3, are clearly convincing. Because of the non
vanishing topography function, the artificial viscosity is here active.

In Fig. 7, we display the obtained values of γ n versus time. We notice that some values
of γ n are very large. However, these large values are only for some time iterations and not
during all the simulation. As a consequence, it seems more relevant to introduce the time
average of γ n as follows:
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Fig. 6 Numerical simulation obtained for the subcritical flow at time t = 100 with 200 cells

γ̄ = 1

T

N∑

n=0

γ nΔtn, (55)

where N is the total number of time iteration performed by the simulation and T is the final
time of the simulation.

In fact, once again, the artificial viscosity does not seem to impose a restrictive CFL
condition. Such an assertion is confirmed in both Tables 2 and 3 when exhibiting how much
the artificial viscosity increases the number of time iterations. However, the percent of the
increase of the number of iterations, presented Table 2, seems to become greater for a cell
number from 200 to 1600. Hence, we have also performed a numerical simulation with 10000
cells and we notice that the percent of increase is less than 5% while this percent is larger

123



Journal of Scientific Computing

Table 2 Subcritical flow at time t = 100 with the relaxation scheme

Cells Non viscous relaxation Viscous relaxation

L2-error max(E0) N L2-error maxn>0 γ n γ̄ N (increase)

200 7.0821E-4 5.6105 11899 7.0822E-4 761.51 0.1055 12057 ( 1%)

400 3.0611E-4 5.6105 23883 3.0611E-4 839.24 0.1606 24377 ( 2%)

800 1.4219E-4 5.6105 47863 1.4218E-4 2089.60 0.3018 49745 ( 3%)

1600 6.8524E-5 5.6105 95843 6.8517E-5 197463.81 0.4054 100921 ( 5%)

10000 1.0649E-5 5.6105 599794 1.0648E-5 25405.12 0.3641 628536 ( 5%)

Evolution with respect to the cell number of the discharge L2-error, the dissipation rate E0, the number of
time iterations N and the percent increasing, the maximum value of γ n and the average in time of γ n

Table 3 Subcritical flow at time t = 100 with the VF-Roe scheme

Cells Non viscous VF-Roe Viscous VF-Roe

L2-error max(E0) N L2-error maxn>0 γ n γ̄ N (increase)

200 2.8502E-4 1.9294 11880 2.8502E-4 825.92 0.2213 12231 ( 3%)

400 7.3086E-5 1.9294 23826 7.3086E-5 526.77 0.6017 25744 ( 8%)

800 1.8496E-5 1.9294 47718 1.8496E-5 2809.42 0.1962 48970 ( 2%)

1600 4.6518E-6 1.9294 95504 4.6518E-6 23790.89 0.2119 98214 ( 3%)

Evolution with respect to the cell number of the discharge L2-error, the dissipation rate E0, the number of
time iterations N and the percent increasing, the maximum value of γ n and the average in time of γ n

than 5% with 1600 cells. This indicates that the increase of the iteration number is not in
correlation with the number of cells. This remark will be confirmed by all the following
numerical simulations.

In addition, we notice that the artificial viscosity does not modify the numerical error.
Moreover, let us emphasize that the non viscous schemes violate the entropy condition since
the entropy dissipation rate E0 may be positive. In this simulation,we notice that themaximum
value of E0 is independent of the mesh refinement.

The third stationary solution concerns the transcritical flowwithout shock. This simulation
is obtained by adopting the following initial data:

h(x, 0) = 0.66 − z(x) and u(x, 0) = 0. (56)

The boundary conditions are given by:

h(0, t)u(0, t) = h(25, t)u(25, t) = 1.53 and h(25, t) = 0.66

while h(0, t) is given by an usual Neumann condition.
The obtained numerical results are displayed Fig. 8.We notice that the numerical solution,

obtained by the original (non viscous) VF-Roe scheme, contains a strong shock discontinuity
violating the entropy stability.

We remark that the artificial viscosity technique clearly increases the stability of the
scheme, in particular the VF-Roe scheme which now gives a correct approximate solution
(see Table 5). Moreover, the expected entropy stability is reached with a neglecting amount
of supplementary time iterations. Indeed, after Table 4 the entropy stability is get by adding
a few percent of supplementary time iterations. Concerning the VF-Roe scheme, since it
does not give a correct approximation with a vanishing viscosity, the comparison between
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Fig. 7 Evolution of γ n versus time (left) and a zoom (right) obtained for the subcritical flow at time t = 100
with 200 cells

viscous and non viscous approach is not relevant. However, we notice that the number of
time iterations for the viscous VF-Roe scheme is very similar to the number of time iterations
for the viscous Suliciu relaxation scheme. Once again, all these comments make the artificial
viscosity technique very attractive.

The last stationary solutionwe simulate is the transcritical flowwith shock. This numerical
experiment is obtained by adopting the following initial data:

h(x, 0) = 0.33 − z(x) and u(x, 0) = 0. (57)

The boundary conditions are given by

h(0, t)u(0, t) = h(25, t)u(25, t) = 0.18 and h(25, t) = 0.33
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Fig. 8 Numerical simulation obtained for the transcritical flow without shock at time t = 200 with 200 cells

while h(0, t) is given by an usual Neumann condition.
The obtained numerical results are displayedFig. 9.Once again,we notice that the artificial

viscosity increases the stability of the scheme, in particular the VF-Roe scheme which now
gives a correct approximate solution (see Table 5). Moreover, the expected entropy stability
is reached with a neglecting amount of supplementary time iterations as shown Tables 6 and
7. Once again, this makes the artificial viscosity technique very attractive.

To conclude the steady state simulations, we adopt this last numerical experiment devoted
to the transcritical flow with shock, to evaluate the behavior of the scheme with respect to
the definition of the parameters Ki+ 1

2
and k, currently fixed by (48). In Tables 8 and 9

we present the discharge L2-error for several values of these parameters. We immediately
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Fig. 9 Numerical simulation obtained for the transcritical flow with shock discontinuity at time t = 200 with
200 cells

Table 5 Transcritical flow
without shock at time t = 200
with the viscous VF-Roe scheme

Cells L2-error maxn>0 γ n γ̄ N

200 1.8791E-3 1473.34 0.2038 21018

400 8.8806E-4 793.23 0.1330 41778

800 4.3061E-4 334.02 8.5518E-2 83156

1600 2.1189E-4 13041.94 5.7416E-2 165818

Evolution with respect to the cell number of the discharge L2-error, the
maximum value of γ n and the average in time of γ n
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Table 6 Transcritical flow with shock at time t = 200 with the relaxation scheme

Cells Non viscous relaxation Viscous relaxation

L2-error max(E0) N L2-error maxn>0 γ n γ̄ N (increase)

200 8.7526E-4 9.2310E-3 10304 8.7526E-4 2307.32 5.3771E-3 10320 ( 0.1%)

400 4.9291E-4 9.2310E-3 21526 4.9291E-4 135.05 3.8418E-3 21550 ( 0.1%)

800 2.6938E-4 9.2310E-3 44271 2.6938E-4 37.66 1.9463E-3 44295 ( 0.05%)

1600 1.3965E-4 9.2310E-3 89571 1.3965E-4 37.61 1.9499E-3 89619 ( 0.05%)

Evolution with respect of the cell number of the discharge L2-error, the dissipation rate E0, the number of
time iterations N and the percent increasing, the maximum value of γ n and the average in time of γ n

Table 7 Transcritical flow with
shock at time t = 200 with the
viscous VF-Roe scheme

Cells L2-error maxn>0 γ n γ̄ N

200 8.4623E-4 80.86 6.7037E-2 10804

400 4.0205E-4 75.24 3.4464E-2 22114

800 2.1277E-4 106.62 1.7206E-2 44722

1600 1.080E-4 528.53 9.4965E-3 90001

Evolution with respect to the cell number of the discharge L2-error, the
maximum value of γ n and the average in time of γ n

Table 8 Transcritical flow with shock at time t = 200 with 400 cells

K
i+ 1

2
Discharge L2-error

Viscous relaxation Viscous VF-Roe

min

(

1,

(
2

uni +uni+1

)2
)

2.2790E-3 2.2574E-3

min

(

10,

(
2

uni +uni+1

)2
)

3.1749E-3 3.1874E-3

min

(

Δx2

L20V
2
0

,

(
2

uni +uni+1

)2
)

4.9291E-4 4.0205E-4

min

(

Δx4

L20V
2
0

,

(
2

uni +uni+1

)2
)

4.9291E-4 4.0205E-4

Discharge L2-error versus the definition of K
i+ 1

2

Table 9 Transcritical flow with
shock at time t = 200 with 400
cells

k Discharge L2-error

Viscous relaxation Viscous VF-Roe

1 4.8110E-4 3.6097E-4

2 4.9291E-4 4.0205E-4

3 4.9367E-4 4.0431E-4

4 4.9371E-4 4.0445E-4

Discharge L2-error versus the definition of k involved in α
i+ 1

2
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Fig. 10 Numerical simulation of the hydraulic jump (zoom of the transcritical flow with shock discontinuity)
at time t = 200 with 200 cells for the viscous VF-Roe scheme

notice that the approximate solution depends very weakly on the parameter k. Similarly, the
dependence on the definition of Ki+ 1

2
is not crucial. However, we have a better approximation

with a minimum value near zero. Moreover, here, we want to emphasize the very good
approximation we obtain within the hydraulic jump as presented Fig. 10. Indeed, it is worth
noticing that the hydraulic jump is approximatedwith only one point for a nonpositive entropy
dissipation rate E .

To conclude this section devoted to the approximation of well-known steady solutions, we
notice that the designed numerical viscosity technique supplemented with a relevant recon-
struction gives numerical simulations with similar accuracy than usual numerical schemes
[1,7,11,23,34,40]. In the present work, the main improvement stays in the entropy stability
since the discrete energy estimate (17) is now preserved.

5.3 Wet and Dry Transitions

In the two last simulations, we test the relevance of the viscosity technique when approxi-
mating wet and dry transitions. In the first simulation, we consider a dam-break over a flat
topography. Then, we have fixed z(x) = 0. Here, the domain of computation is [−10, 20].
The numerical results are displayed Fig. 11.

Since the Suliciu relaxation scheme is entropy stable over a flat topography, the artificial
viscosity stays inactive during the simulation and we get γ n = 0. In Table 10, we exhibit the
evolution of the L2-error versus the number of cells. Concerning the non viscous VF-Roe
scheme, once again, it is entropy violating and generates a wrong shock discontinuity. In
Table 11, we give the evolution of the L2-error, of the maximum value of γ n and the average
γ̄ n . We notice that the needed number of time iterations if similar for both viscous schemes
which indicates that the the artificial viscosity does not increase the time iterations. It is worth
noticing that the suggested artificial viscosity approach is relevant to deal with dry areas over
a flat topography to make it very attractive.
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Fig. 11 Numerical simulation obtained for dam-break over a dry area at time t = 1.5 with 200 cells

Table 10 Dam-break over a dry
area at time t = 1.5 with the
relaxation scheme

Cells water height L2-error discharge L2-error N

200 1.3978E-2 4.0196E-2 132

400 8.5398E-3 2.5132E-2 278

800 5.0803E-3 1.5307E-2 581

1600 2.9665E-3 9.1340E-3 1204

Evolution with respect to the cell number of both water height and dis-
charge L2-error and the number of time iterations N
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Table 11 Dam-break over a dry
area at time t = 1.5 with the
viscous VF-Roe scheme

Cells L2-error maxn>0 γ n γ̄ N

200 3.9049E-2 17.1792 0.1670 138

400 2.5349E-2 17.1792 0.1214 287

800 1.5729E-2 17.1792 8.1975E-2 592

1600 9.4474E-3 17.1792 5.2373E-2 1218

Evolution with respect to the cell number of the discharge L2-error, the
maximum value of γ n , the average in time of γ n and the number of time
iterations N

Fig. 12 Numerical simulation obtained for dam-break over a bump at time t = 1.5 with 200 cells
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Table 12 Dam-break with dry area over a bump at time t = 1.5 with both viscous relaxation and VF-Roe
schemes

Cells Viscous relaxation Viscous VF-Roe

max(E0 + γ nD) γ̄ N max(E0 + γ nD) γ̄ N

200 0. 9.3316 360 8.2667E-9 10.0568 323

400 3.8231E-8 4.9594 1228 7.2315E-9 12.5455 1021

800 1.7686E-5 6.0375 2094 1.4186E-6 24.9256 3279

1600 2.0661E-5 9.6409 5691 1.0098E-6 22.9878 7619

Evolution of the entropy dissipation rate and the number of iteration versus the number of cells

The last simulation we propose concerns a dam-break over a topography containing a
bump as displayed Fig. 12. Here the considered domain is [−10, 20] while the topography
function z is defined by (52). Because of the bump in the dry area, according to Theorem 2,
the discrete entropy inequality (17) is no longer satisfied in the wet and dry transition nor
dry areas. In fact, the viscosity parameter γ n cannot be evaluated relevantly. Indeed, in the
wet and dry transition, it is not possible to evaluate γ n ≥ 0 bounded such that the entropy
dissipation rate E , defined by (28), stays nonpositive. However, in order to perform this
numerical experiment, we impose γ n = 0 as soon as D = 0. As a consequence, in this
simulation, we are not able to enforce the required entropy inequality. However, as presented
Table 12, the violation of the entropy dissipation rate remains very small and we may expect
a correct convergence.

Conclusion

In this work, we have introduced amodification of the well-known hydrostatic reconstruction
scheme to get fully discrete entropy inequalities. Themethod employs an appropriate artificial
viscosity technique, resulting from a slight adaptation of the Riemann solver implied in
the numerical resolution. The efficiency of the method has been shown throught a series of
numerical experiments. In particular, when applied to entropy-violating schemes such as VF-
Roe, the viscous correction allows to recover stability. In has been observed numerically that
the viscous stabilization does not bring a significant increase of time iterations. The question
arises as to how extend themethod to amore general class of Finite-Volume schemes, together
with its adaptation to high-order reconstructions. This is subject of ongoing work.
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