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Abstract. In this paper, we study the behaviour of some staggered discretization based numerical schemes for the
barotropic Navier-Stokes equations at low Mach number. Three time discretizations are considered: the implicit-in-time
scheme and two non-iterative pressure correction schemes. The two latter schemes differ by the discretization of the
convection term: linearly implicit for the first one, so that the resulting scheme is unconditionally stable, and explicit for
the second one, so the scheme is stable under a CFL condition involving the material velocity only. We prove rigorously
that these three variants are asymptotic preserving in the following sense: for a given mesh and a given time step, a
sequence of solutions obtained with a sequence of vanishing Mach numbers tends to a solution of a standard scheme for
incompressible flows. This convergence result is obtained by mimicking the proof of convergence of the solutions of the
(continuous) barotropic Navier-Stokes equations to that of the incompressible Navier-Stokes equation as the Mach number
vanishes. Numerical results performed with a hand-built analytical solution show the behaviour that is expected from the
analysis. Additional numerical results are obtained for the shock solutions of problems which are not in the scope of the
present adimensionalization but are nevertheless interesting to understand the behaviour of the scheme.
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1. Introduction. We consider the non-dimensionalized system of time-dependent barotropic com-
pressible Navier-Stokes equations, parametrized by the Mach number denoted thereafter by ε, and posed
for (x, t) ∈ Ω× (0, T ):

∂tρ
ε + div(ρε uε) = 0, (1.1a)

∂t(ρ
ε uε) + div(ρε uε ⊗ uε)− div(τ (uε)) +

1

ε2
∇℘(ρε) = 0, (1.1b)

where T is a finite positive real number, and Ω is an open bounded connected subset of Rd, with d ∈ {2, 3},
which is polygonal if d = 2 and polyhedral if d = 3. The quantities ρε > 0 and uε = (uε1, .., u

ε
d)

T are the
density and velocity of the fluid.

In the isentropic case, the pressure satisfies the ideal gas law ℘(ρε) = (ρε)γ , with γ ≥ 1, the heat
capacity ratio, a coefficient which is specific to the considered fluid. However, more general barotropic
cases can be considered provided the equation of state ℘ is a C1 increasing convex function such that
℘′(1) > 0, see Remark 2.2.

Equation (1.1a) expresses the local conservation of the mass of the fluid while equation (1.1b) ex-
presses the local balance between momentum and forces; for u and v ∈ Rd, the tensor u⊗v is represented
by the d × d matrix with coefficients uivj , and the divergence of this tensor is the vector of Rd defined
by div(u⊗ v) = (div(uv1), . . . , div(uvd))

t. We consider Newtonian fluids so that the shear stress tensor
τ (uε) satisfies:

div(τ (u)) = µ∆u+ (µ+ λ)∇(divu),

where µ and λ are two parameters with µ > 0 and µ + λ > 0. System (1.1) is complemented with the
following boundary and initial conditions:

ρε|t=0 = ρε0, uε|t=0 = uε
0, uε|∂Ω = 0. (1.2)

At the continuous level, when ε tends to zero, the density ρε tends to a constant and the velocity tends, in
a sense to be defined, to a solution of the incompressible Navier-Stokes equations [47]. Heuristically, the

momentum equation (1.1b) indicates that ρε behaves like ρ̄+O(ε
2
γ ) where ρ̄ is a function depending on the

time variable only. Integrating the mass conservation equation (1.1a) over Ω and using the homogeneous
Dirichlet boundary condition (1.2) on uε (a homogeneous Neumann condition would be sufficient) then
implies that ρ̄ is actually a constant. For such a result to hold, some assumptions need to be made on
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the initial data; in particular, the initial density ρε0 must be assumed to be close to ρ̄ in a certain sense.
These assumptions will be specified below. Setting ρ̄ = 1 (here and throughout the paper) without loss
of generality, passing to the limit in the mass conservation equation (1.1a) and in the momentum balance
(1.1b), the limit velocity ū is formally seen to solve the system of incompressible Navier-Stokes equations:

div(ū) = 0,

∂tū+ div(ū ⊗ ū)− µ∆ū+∇π = 0,

where π is the formal limit of (℘(ρε)− 1)/ε2. This formal computation was justified by rigorous studies
[47, 15, 16]; see also [18, 19, 42, 43, 54] for some of the first mathematical analyses on low Mach number
limits and [50, 12, 24, 1, 21, 22, 23] for some of the numerous related works.

Concerning the low Mach limit of numerical schemes for (1.1), the issue is not so clear. Indeed, in
general, schemes designed to compute compressible flows do not boil down, when ε → 0, to standard
schemes for incompressible flows, for essentially two reasons. First, the numerical dissipation introduced
to stabilize the scheme depends on the celerity of the acoustic waves, which blows up when ε → 0; a
reasonable approximation of the incompressible solution may thus need a very small space step, depending
not only on the regularity of the continuous solution but also on ε. Second, these schemes are usually
explicit in time (with a sophisticated derivation of fluxes, for instance through solutions of Riemann
problems at interfaces, which lead to a nonlinear expression with respect to the unknowns); this is not
compatible with a wave celerity blowing up in the incompressible limit? In order to cope with the low
Mach number situation, an implicitation of some terms in the equations is thus necessary; it is usually
performed on the pressure gradient in the momentum balance equation and the mass fluxes divergence
in the mass balance, thus involving implicit-in-time discrete analogues of the wave equation for the
pressure. Unfortunately, the schemes for the compressible case usually use a collocated arrangement of
the unknowns, especially if one intends to compute the numerical fluxes on the basis of the solution of a
Riemann problem at faces, which is well suited to a cell by cell piecewise constant approximation. The
diffusion operator appearing in this wave equation is obtained by a discrete composition of the pressure
gradient and the velocity divergence operators, and is unstable, since collocated approximations do not
satisfy a form of the so-called discrete inf-sup condition. At the incompressible limit, the scheme will
thus need an additional stabilization mechanism [51]. These phenomena have been widely studied and
corrections have been proposed [56, 31, 30, 29, 14, 13, 10, 32, 52, 7, 64]. In order to obtain a scheme
accurate for all Mach number flows, an alternative route consists in starting from techniques that were
initially designed for the incompressible Navier-Stokes equations, and extending them to compressible
flows. This approach may be traced back to the late sixties, when first attempts were done to build ”all
flow velocity” schemes [33, 34]; these algorithms may be seen as an extension to the compressible case
of the celebrated MAC scheme, introduced some years before [35, 3]. These seminal papers have been
the starting point for the development of numerous schemes falling in the class of pressure correction
algorithms (see e.g. [8, 55, 28] for a presentation in the incompressible case), possibly iterative, in the
spirit of the SIMPLE method, some of them based on staggered finite volume space discretizations
[6, 39, 40, 59, 41, 49, 4, 63, 9, 57, 62, 61, 58, 60, 44]; a bibliography extended to the schemes using other
space discretizations may be found in [37].

In this paper, we address, besides a purely implicit scheme, variants of schemes falling in this latter
class, namely non-iterative pressure correction schemes based on staggered discretizations. These schemes
have been developed and studied in the last ten years, first for the barotropic Euler and Navier-Stokes
equations [36, 37] and then for the non-barotropic case [37, 27]; they have been shown to be consistent
and accurate both theoretically and numerically for the Navier-Stokes and Euler equations and for Mach
numbers in the range of unity (including shock solutions in the inviscid cases). In addition, some numerical
experiments [27] suggest that, when the Mach number tends to zero, the numerical solution tends to the
solution of a standard scheme for incompressible or, in non-isothermal situations, quasi-incompressible
flows (in the sense of the classical asymptotic model for low Mach numbers [48]). Our aim here is to
prove rigorously that, in the barotropic case, these schemes are indeed asymptotic preserving: for a given
discretization (i.e. mesh and time step), when the Mach number tends to zero, the solution is shown
to tend to the solution of a standard (stable and accurate) scheme for incompressible flows. To this
purpose, we reproduce at the discrete level the analysis performed in the continuous case in [47] (of
course, with heavy simplifications on compactness arguments, especially concerning the compactness of
the sequence of discrete velocities, thanks to the finite dimensional setting); to our knowledge, this is the
first presentation of such a proof. We draw the reader’s attention of the fact that the results are mainly
presented in the case of the Navier-Stokes equations, but we also explain how they can be easily extended
to the inviscid case of the Euler equations where µ = λ = 0 (see Remarks 5.1 and 6.2).
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We address three different time-discretizations: first, a fully implicit scheme, because the convergence
proof in this case is simpler and necessitates less restrictive assumptions on the initial data; then we turn
to two variants which are more efficient in practice, namely two pressure correction schemes; these two
latter schemes differ by the discretization of the convection term in the momentum balance equation:
linearly implicit for the first one (so that the corresponding scheme is unconditionally stable) and fully
explicit for the second one (so that the corresponding scheme is stable under a CFL condition based on
the material velocity).

The paper is organized as follows. First, for the reader’s convenience, we recall the (part of) the
continuous analysis which is mimicked at the discrete level (Section 2). Then we recall the meshes and
unknowns used by the schemes (Section 3) and the space discretization of the operators involved in the
balance equations (Section 4). The next three sections are devoted to the convergence analysis for the
time discretization variants: the implicit scheme (Section 5) and the two pressure correction schemes
(Sections 6 and 7). The last section presents some numerical results for the pressure correction algorithm
at various Mach numbers on a problem which is designed upon a hand-built analytical solution. The
existence of a time step satisfying the CFL required for the second pressure correction scheme is proven
in a first appendix. Finally, a second appendix is devoted to some numerical tests for shock solutions of
the Euler equations. The problems that are solved in this case are not completely in the scope of the
present adimensionalization but are nevertheless interesting to understand the behaviour of the scheme.

2. Incompressible limit in the continuous setting. The convergence when ε tends to zero of a
weak solution (ρε,uε) to the initial value problem (1.1)-(1.2) is the purpose of various papers published
in the late 90′s [47, 15, 16]. In this section, we wish to recall some of the key arguments that are used in
these works to pass to the limit on the global weak solutions of (1.1)-(1.2) as the Mach number vanishes.

The results proven in the above-mentioned papers on the convergence of (ρε,uε) towards a weak
solution of the incompressible Navier-Stokes equations follow a two-step argument. The first step consists
in deriving a priori bounds on the quantities ρε − 1 and uε which are uniform with respect to ε. These
bounds imply the strong convergence of ρε towards ρ̄ = 1 in L∞((0, T ); Lγ(Ω)), and up to the extraction of
a subsequence, the weak convergence in L2((0, T ); H1

0(Ω)) of u
ε towards some function ū. The second step

consists in passing to the limit in the weak formulation of problem (1.1)-(1.2) thanks to these convergence
properties. The main difficulty in this step is the passage to the limit for the term div(ρεuε ⊗ uε) with
only a weak convergence of the velocity.

Subsequently, we describe the main arguments to obtain the estimates on ρε − 1 and uε, which we
will mimick at the discrete level in order to prove the asymptotic preserving feature of the staggered
schemes in the low Mach number limit. However, the study of the nonlinear term is simpler here since
at the discrete level, i.e. for a fixed mesh, all norms are equivalent and the boundedness of (uε)ε>0 is
enough to obtain convergence in any finite dimensional norm up to the extraction of a subsequence, and
then to pass to the limit on the numerical scheme.

2.1. A priori estimates. We begin by recalling some key identities satisfied by the smooth solu-
tions of (1.1), which are then incorporated in the definition of weak solutions.

Proposition 2.1. Let ψγ be the function defined for ρ > 0 as ψγ(ρ) = ρ ln ρ if γ = 1, and
ψγ(ρ) = ργ/(γ − 1) if γ > 1 and define Πγ(ρ) = ψγ(ρ) − ψγ(1)− ψ′

γ(1)(ρ− 1). The smooth solutions of
(1.1)-(1.2) satisfy the following identities:

• A kinetic energy balance:

∂t(
1

2
ρε |uε|2) + div(

1

2
ρε |uε|2 uε)− div(τ (uε)) · uε +

1

ε2
∇℘(ρε) · uε = 0. (2.1)

• A renormalization identity

∂tψγ(ρ
ε) + div

(

ψγ(ρ
ε)uε

)

+ ℘(ρε) divuε = 0. (2.2)

• A ”positive” renormalization identity:

∂tΠγ(ρ
ε) + div

(

ψγ(ρ
ε)uε − ψ′

γ(1)ρ
εuε
)

+ ℘(ρε) divuε = 0. (2.3)

• An entropy identity:

∂t(
1

2
ρε |uε|2) + 1

ε2
∂tΠγ(ρ

ε) + div
(

(1

2
ρε |uε|2 + 1

ε2
ψγ(ρ

ε)

− 1

ε2
ψ′
γ(1)ρ

ε +
1

ε2
℘(ρε)

)

uε
)

− div(τ (uε)) · uε = 0. (2.4)
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Proof. The proofs of (2.1) and (2.2) are classical. Multiplying the mass conservation equation (1.1a)
by −ψ′

γ(1) and summing with (2.2) yields (2.3). Summing (2.1) and ε−2×(2.3) yields (2.4).
Remark 2.1. We call (2.3) a ”positive” renormalization identity because the function Πγ is positive

thanks to the convexity of ψγ .
Integrating (2.4) over Ω× (0, t) and recalling the homogeneous Dirichlet boundary conditions on the

velocity, we obtain the following estimate on the solution pair (ρε,uε). For all t ∈ (0, T ):

1

2

∫

Ω

ρε(t) |uε(t)|2 + 1

ε2

∫

Ω

Πγ(ρ
ε(t)) + µ

∫ t

0

||∇uε(s)||2L2(Ω)d×dds

+ (µ+ λ)

∫ t

0

||div(uε(s))||2L2(Ω)ds =
1

2

∫

Ω

ρε0 |uε
0|2 +

1

ε2

∫

Ω

Πγ(ρ
ε
0). (2.5)

2.2. Asymptotic behavior of the density and velocity in the zero Mach limit. The global
entropy estimate (2.5) is thus proven for any strong solution of the boundary and initial value problem
(1.1)-(1.2). In the following, we always assume the existence of a weak solution (ρε,uε) to problem
(1.1)-(1.2) satisfying the following inequality:

1

2

∫

Ω

ρε(t) |uε(t)|2+ 1

ε2

∫

Ω

Πγ(ρ
ε(t))+µ

∫ t

0

||∇uε(s)||2L2(Ω)d×dds ≤
1

2

∫

Ω

ρε0 |uε
0|2+

1

ε2

∫

Ω

Πγ(ρ
ε
0). (2.6)

In particular, we assume that all the integrals involved in (2.6) are convergent.

Estimate (2.6) allows to prove the convergence of ρε towards 1 in L∞((0, T ); Lγ(Ω)) provided that
the right hand side, which depends on the initial conditions, is uniformly bounded with respect to ε. We
show in the following that it is indeed the case provided some assumptions on the initial data hold.

We begin by proving the following lemma, which states crucial properties of the function Πγ .
Lemma 2.2 (Estimates on Πγ). The function Πγ has the following lower bounds:

• For all γ ≥ 1 and δ > 0, there exists Cγ,δ > 0 such that:
Πγ(ρ) ≥ Cγ,δ |ρ− 1|γ , ∀ρ > 0 with |ρ− 1| ≥ δ,

(2.7a)

• If γ ≥ 2 then Πγ(ρ) ≥ |ρ− 1|2, ∀ρ > 0. (2.7b)

• If γ ∈ [1, 2) then for all R ∈ (2,+∞), there exists Cγ,R such that:
Πγ(ρ) ≥ Cγ,R |ρ− 1|2, ∀ρ ∈ (0, R),
Πγ(ρ) ≥ Cγ,R |ρ− 1|γ , ∀ρ ∈ [R,∞).

(2.7c)

Moreover, the function Πγ has the following upper bound (for small densities): For all γ ≥ 1 there exists
Cγ such that:

Πγ(ρ) ≤ Cγ |ρ− 1|2, ∀ρ ∈ (0, 2). (2.8)

Proof. For γ = 1, we have Π1 = ρ ln ρ − ρ. Hence Π1 ∼ ρ ln ρ for large values of ρ, which implies
(2.7a). Similarly, for γ > 1, we have Πγ(ρ) = ψγ(ρ)−ψγ(1)−ψ′

γ(1)(ρ− 1) = (γ− 1)−1(ργ − 1−γ(ρ− 1)),
thus Πγ(ρ) ∼ (γ − 1)−1ργ for large values of ρ which proves (2.7a). A second order Taylor expansion of
ψγ yields, for all γ ≥ 1:

Πγ(ρ) = |ρ− 1|2 γ
∫ 1

0

(1 + s(ρ− 1))γ−2(1− s)ds, for all ρ ∈ (0,+∞).

The case γ ≥ 2 is straightforward and we obtain |ρ−1|2 ≤ Πγ(ρ) for all ρ ∈ (0,+∞) and Πγ(ρ) ≤ Cγ |ρ−1|2
for all ρ ≤ 2 with Cγ = γ

∫ 1

0 (1 + s)γ−2(1 − s)ds. For 1 ≤ γ < 2, we easily get Πγ(ρ) ≤ |ρ − 1|2 for all
ρ ∈ (0,+∞) and the lower bound is obtained by separating the case ρ < R and ρ ≥ R. We obtain the
expected lower bound (2.7c) with

Cγ,R = γ

∫ 1

0

1− s

(1 + s(R − 1))2−γ
ds.

Remark 2.2 (The barotropic case). Lemma 2.2 considers the isentropic case ℘(ρ) = ργ . However,
the results of sections 5-7 hold in a more general barotropic case. Indeed, let ℘ be a continuous and
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derivable function. Defining the functions ψ(ρ) = ρ
∫ ℘(s)

s2 ds and Π(ρ) = ψ(ρ) − ψ(1) − ψ′(1)(ρ − 1),
easy computations show that the renormalization identities (2.2) and (2.3) are still valid. Moreover, a
straightforward calculation shows that

Π(ρ) = (ρ− 1)2
∫ 1

0

℘′(s(ρ− 1) + 1)

s(ρ− 1) + 1
(1− s) ds.

Hence, if ℘ is an non-decreasing C1 function such that ℘′(1) > 0, the above integral is positive and it is
a continuous function of ρ; thus, under these assumptions on ℘, there exists C℘,R and C℘,R ∈ R+ such
that

C℘,R(ρ− 1)2 ≤ Πγ(ρ) ≤ C℘,R(ρ− 1)2 for |ρ| ≤ R.

Note that in the discrete setting considered below, this estimate is sufficient since the discrete density ρ is
bounded uniformly with respect to the Mach number. Indeed, the conservative discretisation of the mass
balance (see Section 4.1) yields that the discrete density ρ satisfies

∫

Ω
ρ(x, t) dx =

∫

Ω
ρ0(x) dx, so that

on a given mesh, ρ is bounded by 1
|K|

∫

Ω
ρ0(x) dx where |K| is the measure of the smallest cell.

The results of sections 5-7 are thus still valid in the barotropic case, for a non-decreasing C1 function
℘ such that ℘′(1) > 0.

Let us now assume that the initial data is ”ill-prepared”, in the following sense: ρε0 ∈ L∞(Ω) with
ρε0 > 0 for a.e. x ∈ Ω, uε

0 ∈ L2(Ω)d and there exists C independent of ε such that:

||uε
0||L2(Ω)d +

1

ε
||ρε0 − 1||L∞(Ω) ≤ C. (2.9)

This bound implies that ρε0 tends to 1 in L∞(Ω) when ε → 0; moreover, we suppose that uε
0 weakly

converges in L2(Ω)d towards a function ū0 ∈ L2(Ω)d. The initial data is said to be ”ill-prepared” since

ρε0 − 1 behaves like ε and not like ε
2
γ (or ε2) as suggested by the momentum equation, and the initial

velocity is not required to be close to a divergence free velocity.

Under assumption (2.9), an easy consequence of the upper bound (2.8) on Πγ is that the right-hand
side of the estimate (2.6) is bounded independently of the Mach number ε. We then obtain that for any
weak solution (ρε,uε) to (1.1)-(1.2) that satisfies the global entropy estimate (2.6), the velocity uε is
bounded in L2((0, T ); H1

0(Ω)
d) uniformly with respect to ε.

A further consequence of the lower bound (2.7a) on Πγ is the convergence of ρε towards 1 as ε → 0
in L∞((0, T ); Lγ(Ω)) as stated in the following proposition.

Proposition 2.3. Let, (ρε0,u
ε
0) be a family of ill-prepared initial data and let (ρε,uε) be a corre-

sponding family of weak solutions of (1.1)-(1.2) that satisfy the global entropy estimate (2.6). Then, ρε

converges towards 1 as ε→ 0 in L∞((0, T ); Lγ(Ω)).
Proof. By (2.7a) and estimate (2.6), we have for all δ > 0, and t > 0:

||ρε(t)− 1||γLγ(Ω) ≤ |Ω| δγ +

∫

Ω

|ρε(t)− 1|γ X{|ρε−1|≥δ} ≤ |Ω| δγ +
C ε2

Cγ,δ
.

where, for a given set A, XA denotes the characteristic function of A. Hence,

lim sup
ε→0

||ρε − 1||L∞((0,T );Lγ(Ω)) ≤ |Ω| 1γ δ

for all δ > 0, which concludes the proof.
The following proposition provides a rate of convergence in L∞((0, T ); Lq(Ω)) of ρε towards 1 for

q ∈ [1,min(2, γ)].
Proposition 2.4. Let, (ρε0,u

ε
0) be a family of ill-prepared initial data and let (ρε,uε) be a corre-

sponding family of weak solutions of (1.1)-(1.2) that satisfy the global entropy estimate (2.6). Then, the
following estimates hold.

• If γ ≥ 2, then there exists C > 0 such that, for ε small enough:

||ρε − 1||L∞((0,T );L2(Ω)) ≤ Cε.

• If 1 ≤ γ < 2, then for ε small enough, for all R ∈ (2,+∞), there exists CR > 0 such that:

ε−1||(ρε − 1)X{ρε<R}||L∞((0,T );L2(Ω)) + ε−
2
γ ||(ρε − 1)X{ρε≥R}||L∞((0,T );Lγ(Ω)) ≤ CR.
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As a consequence, for all q ∈ [1,min(2, γ)], there exists C > 0 such that for ε small enough:

||ρε − 1||L∞((0,T );Lq(Ω)) ≤ Cε.

Proof. As already stated, thanks to (2.9) and using the upper bound (2.8) on Πγ(ρ) for small values
of ρ, for ε small enough, the right hand side of (2.6) is bounded by some real number C0, independent of
ε. We now use the lower bounds on Πγ(ρ). For γ ≥ 2, by Lemma 2.2 combined with estimate (2.6), we
have for all t ∈ (0, T ):

||ρε(t)− 1||2L2(Ω) ≤
∫

Ω

Πγ(ρ
ε(t)) ≤ C0 ε

2.

For 1 ≤ γ < 2, invoking once again Lemma 2.2 and estimate (2.6), we obtain for all t ∈ (0, T ) and for all
R ∈ (2,+∞):

(i) ||(ρε(t)− 1)X{ρε(t)≤R}||2L2(Ω) ≤
1

Cγ,R

∫

Ω

Πγ(ρ
ε(t)) ≤ C ε2,

(ii) ||(ρε(t)− 1)X{ρε(t)≥R}||γLγ(Ω) ≤
1

Cγ,R

∫

Ω

Πγ(ρ
ε(t)) ≤ C ε2,

which concludes the proof.

3. Meshes and unknowns.

Definition 3.1 (Staggered mesh). A staggered discretization of Ω, denoted by T , is given by a pair
T = (M, E), where:

• M, the primal mesh, is a finite family composed of non empty triangles and convex quadrilaterals
for d = 2 or non empty tetrahedra and convex hexahedra for d = 3. The primal mesh M is
assumed to form a partition of Ω : Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \ K be the
boundary of K, which is the union of cell faces. We denote by E the set of faces of the mesh, and
we suppose that two neighbouring cells share a whole face: for all σ ∈ E, either σ ⊂ ∂Ω or there
exists (K,L) ∈ M2 with K 6= L such that K ∩ L = σ; we denote in the latter case σ = K|L.
We denote by Eext and Eint the set of external and internal faces: Eext = {σ ∈ E , σ ⊂ ∂Ω} and
Eint = E \ Eext. For K ∈ M, E(K) stands for the set of faces of K. The unit vector normal
to σ ∈ E(K) outward K is denoted by nK,σ. In the following, the notation |K| or |σ| stands
indifferently for the d-dimensional or the (d − 1)-dimensional measure of the subset K of Rd or
σ of Rd−1 respectively.

• We define a dual mesh associated with the faces σ ∈ E as follows. When K ∈ M is a simplex, a
rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the
mass center of K (see Figure 3.1). We thus obtain a partition of K in m sub-volumes, where
m is the number of faces of K, each sub-volume having the same measure |DK,σ| = |K|/m. We
extend this definition to general quadrangles and hexahedra, by supposing that we have built a
partition still of equal-volume sub-cells, and with the same connectivities. The volume DK,σ is
referred to as the half-diamond cell associated with K and σ. For σ ∈ Eint, σ = K|L, we now
define the diamond cell Dσ associated with σ by Dσ = DK,σ ∪ DL,σ. We denote by Ē(Dσ) the
set of faces of Dσ, and by ǫ = Dσ|Dσ′ the face separating two diamond cells Dσ and Dσ′ . As
for the primal mesh, we denote by Ēint the set of dual faces included in the domain and by Ēext
the set of dual faces lying on the boundary ∂Ω. In this latter case, there exists σ ∈ Eext such that
ǫ = σ.

Relying on this definition, we now define a staggered space discretization. The degrees of freedom
for the density (i.e. the discrete density unknowns) are associated with the cells of the mesh M, and are
denoted by:

{

ρK , K ∈ M
}

,

while the degrees of freedom for the velocity are located at the center of the faces of the mesh M and
are therefore associated with the dual cells Dσ, σ ∈ E (as in the low-degree nonconforming finite-element
discretizations proposed in [11, 53]). The Dirichlet boundary conditions are taken into account by setting
the velocity unknowns associated with an external face to zero, so the set of discrete velocity unknowns
reads:

{uσ ∈ Rd, σ ∈ Eint}.
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Dσ′
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|Lǫ = D

σ |D
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Fig. 3.1. Notations for control volumes and dual cells.

We associate functions with the discrete unknowns of the schemes described hereinafter. To this
purpose, we define the following sets of discrete functions of the space variable.

Definition 3.2 (Discrete functional spaces). Let T = (M, E) be a staggered discretization of Ω as
defined in Definition 3.1.

• We denote by LM(Ω) ⊂ L∞(Ω) the space of scalar functions which are piecewise constant on
each primal mesh cell K ∈ M. For all w ∈ LM(Ω) and for all K ∈ M, we denote by wK the
constant value of w in K, so the function w reads:

w(x) =
∑

K∈M

wK XK(x) for a.e. x ∈ Ω,

where XK stands for the characteristic function of K.

• We denote by HE(Ω) ⊂ L∞(Ω) the space of scalar functions which are piecewise constant on each
diamond cell of the dual mesh Dσ, σ ∈ E. For all u ∈ HE(Ω) and for all σ ∈ E, we denote by uσ
the constant value of u in Dσ, so the function u reads:

u(x) =
∑

σ∈E

uσ XDσ
(x) for a.e. x ∈ Ω,

where XDσ
stands for the characteristic function of Dσ. We denote by HE(Ω) = HE (Ω)

d the
space of vector valued (in Rd) functions that are constant on each diamond cell Dσ. Finally, we
denote HE,0(Ω) =

{

u ∈ HE(Ω), uσ = 0 for all σ ∈ Eext
}

and HE,0(Ω) = HE,0(Ω)
d .

4. Space discretization. This section is devoted to the construction of the discrete space differ-
ential operators that approximate the differential operators in (1.1). The discretization is staggered, so
that the discrete operators involved in the discretization of the mass equation (1.1a) are associated with
the primal cells K ∈ M while the discrete operators involved in the discretization of the momentum
equation (1.1b) are associated with the dual cells Dσ, σ ∈ Eint.

4.1. Mass convection flux. The discretization of the convection term div(ρu) in the mass con-
servation equation is defined as follows. Given a discrete density field ρ ∈ LM(Ω) and a velocity field
u ∈ HE,0(Ω), it is a piecewise constant function on each primal cell K ∈ M given by:

div(ρu)K =
1

|K|
∑

σ∈E(K)

FK,σ(ρ,u), ∀K ∈ M. (4.1)

The quantity FK,σ(ρ,u) stands for the mass flux across σ outward K. By the impermeability boundary
conditions, it vanishes on external faces and is given on internal faces by:

FK,σ(ρ,u) = |σ| ρσ uσ · nK,σ, ∀σ ∈ Eint, σ = K|L. (4.2)

The density at the face σ = K|L is approximated by the upwind technique, i.e. ρσ = ρK if uσ ·nK,σ ≥ 0
and ρσ = ρL otherwise.
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4.2. Velocity convection operator. We now describe the approximation of the convection oper-
ator ∂t(ρu)+div(ρu⊗u) appearing in the momentum balance equation. The approximation of the time
derivative part ∂t(ρu) is naturally discretized at the dual cells Dσ, σ ∈ Eint and an approximation ρDσ

of
the density on these dual cells Dσ is thus needed. Given a density field ρ ∈ LM(Ω), this approximation
is built as follows:

|Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL, ∀σ ∈ Eint, σ = K|L. (4.3)

Since different time discretizations of the convection operator are considered, the space discretization
of the term div(ρu⊗v) needs to be introduced; given a discrete density field ρ ∈ LM(Ω), and two discrete
velocity fields u ∈ HE,0(Ω) and v ∈ HE,0(Ω), this approximation is built as follows:

div(ρu⊗ v)σ =
1

|Dσ|
∑

ǫ∈Ē(Dσ)

Fσ,ǫ(ρ,u) vǫ, ∀σ ∈ Eint, (4.4)

where Fσ,ǫ(ρ,u) is the mass flux across the edge ǫ of the dual cell Dσ; its value is zero if ǫ ∈ Ēext,
otherwise, it is defined as a linear combination, with constant coefficients, of the primal mass fluxes at
the neighbouring faces. For K ∈ M and σ ∈ E(K), let ξσK be given by:

ξσK =
|DK,σ|
|K| ,

so that
∑

σ∈E(K) ξ
σ
K = 1. With the definition of the dual mesh adopted here, the value of the coefficients

ξσK is equal to the inverse of the number of faces of K so that it only depends on the type of the
cell K (simplicial or quandrangular/hexahedral). For quadrangular and hexahedral elements, we have
ξσK = 1/(2d) and, for simplicial elements, ξσK = 1/(d+ 1). Then the mass fluxes through the inner dual
faces are constructed so as to satisfy the following properties, see [2, 26] for possible constructions.

(H1) The discrete mass balance over the half-diamond cells is satisfied, in the following sense. For
all primal cell K in M, the set (Fσ,ǫ(ρ,u))ǫ⊂K of dual fluxes included in K solves the following
linear system

FK,σ(ρ,u) +
∑

ǫ∈Ē(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u) = ξσK
∑

σ′∈E(K)

FK,σ′ (ρ,u), σ ∈ E(K). (4.5)

(H2) The dual fluxes are conservative, i.e. for any dual face ǫ = Dσ|D′
σ, we have Fσ,ǫ(ρ,u) =

−Fσ′,ǫ(ρ,u).
(H3) The dual fluxes are bounded with respect to the primal fluxes (FK,σ(ρ,u))σ∈E(K), i.e.

∀K ∈ M, ∀σ ∈ E(K), ∀ǫ ∈ Ē(Dσ) : ǫ ⊂ K,

|Fσ,ǫ(ρ,u)| ≤ max {|FK,σ′(ρ,u)|, σ′ ∈ E(K)} , (4.6)

The system of equations (4.5) only depends on the type of the cell K (since it only depends on the
coefficient ξσK and sub-cell connectivities) but has an infinite number of solutions, hence the need of the
additional constraint (4.6); however, assumptions (H1)-(H3) are sufficient for the subsequent develop-
ments, in the sense that any choice for the expression of the fluxes satisfying these assumptions yields
stable and consistent schemes [25, 46, 45].

To complete the definition of the convective flux, we now only have to give the expression of the
velocity vǫ at the dual face. As already mentioned, a dual face lying on the boundary is also a primal
face, and the flux across that face is zero. Therefore, the values vǫ are only needed at the internal dual
faces; we choose them to be centered:

vǫ =
1

2
(vσ + vσ′), for ǫ = Dσ|D′

σ.

4.3. Diffusion term. The space discretization of the diffusion term div(τ (u)) in the momentum
balance equation relies on the Crouzeix-Raviart element for the simplicial cells K and on the parametric
Rannacher-Turek (or rotated bilinear) element for quadrangular or hexahedral cells (see [53]). Let PK

be the affine transformation between the reference unit simplex and the simplicial cell K. The space of
discrete functions over a simplicial cell K is

P1(K) =
{

f ◦ P−1
K , with f ∈ span

{

1, (xi)i=1,...,d

}

}

.
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Let QK be the standard Q1 mapping between the reference unit cube and the quadrangular or hexahedral
cell K. The space of discrete functions over such a cell is

Q̃1(K) =
{

f ◦Q−1
K , with f ∈ span

{

1, (xi)i=1,...,d, (x
2
i − x2i+1)i=1,...,d−1

}

}

.

The shape functions are the functions ζσ, σ ∈ E such that for allK ∈ M, ζσ|K ∈ P1(K) ifK is a simplicial
cell and ζσ|K ∈ Q̃1(K) if K is a quadrangular or hexahedral cell and which satisfy the following two
conditions:

(i)

∫

σ

[ζ]σ(x) = 0, where [ζ]σ(x) = lim
y→x

y∈L

ζ(y)− lim
y→x

y∈K

ζ(y), ∀x ∈ σ, ∀σ ∈ Eint, σ = K|L. (4.7a)

(ii)
1

|σ′|

∫

σ′

ζσ(x) = δσ
′

σ , ∀σ, σ′ ∈ E , (4.7b)

with δσ
′

σ = 1 if σ = σ′ and δσ
′

σ = 0 otherwise. Note that condition (i) is consistent with the location of
the velocity degrees of freedom at the faces.

In the finite element context, it is classical to associate the function û(x) =
∑

σ∈E uσζσ(x) to the
discrete velocity field u ∈ HE,0(Ω). The discretization of the diffusion term is a piecewise constant
function on each diamond cell Dσ, whose value reads

div(τ (u))σ = −µ
( 1

|Dσ|
∑

K∈M

∫

K

∇û .∇ζσ

)

− (µ+ λ)
( 1

|Dσ|
∑

K∈M

∫

K

div(û)∇ζσ

)

. (4.8)

The identification between u ∈ HE,0(Ω) and û allows to introduce the broken Sobolev H1 semi-norm
||.||1,T , given for any u ∈ HE(Ω) by:

||u||21,T =
∑

K∈M

∫

K

∇û : ∇û.

The semi-norm ||u||1,T is in fact a norm on the space HE,0(Ω), thanks to a classical discrete Poincaré
inequality.

As in the continuous setting, it is easily seen that the bilinear form derived from the discretization
of the diffusion term controls the discrete H1-norm of the velocity as stated in the following lemma:

Lemma 4.1 (Coercivity of the diffusion operator). For every discrete velocity field u ∈ HE,0(Ω), one
has:

∑

E∈Eint

|Dσ| uσ ·
(

− div(τ (u))σ
)

≥ µ ||u||21,T .

4.4. Pressure gradient term. The discretization of the pressure gradient term ∇℘(ρ) is a piece-
wise constant function on each diamond cell Dσ, the value of which is denoted (∇p)σ. For ρ ∈ LM(Ω),
this term is defined as:

(∇p)σ =
|σ|
|Dσ|

(℘(ρL)− ℘(ρK)) nK,σ, ∀σ = K|L ∈ Eint. (4.9)

This pressure gradient is only defined at internal faces since, thanks to the impermeability boundary
conditions, no momentum balance equation is written at the external faces.

The following discrete duality relation holds for all ρ ∈ LM(Ω) and u ∈ HE,0(Ω):

∑

K∈M

|K| ℘(ρK) div(u)K +
∑

σ∈Eint

|Dσ| uσ · (∇p)σ = 0, (4.10)

where we have set for all K ∈ M, div(u)K = |K|−1
∑

σ∈E(K) |σ|uσ · nK,σ (consistently with (4.1) for

ρ ≡ 1).

The last lemma of this section states that the Crouzeix-Raviart and Rannacher–Turek approximations
are inf-sup stable (see [11, 53]).
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Lemma 4.2 (Inf-sup stability). There exists β > 0, depending only on Ω and on the mesh, such that
for all p =

∑

K∈M pK XK ∈ LM(Ω), there exists u ∈ HE,0 satisfying:

||u||1,T = 1 and
∑

K∈M

|K| pK div(u)K ≥ β ||p−m(p)||L2(Ω),

where m(p) = |Ω|−1
∑

K∈M |K|pK is the mean value of p over Ω.
The inf-sup property is crucial when passing to the limit ε → 0 in the various schemes presented

thereafter. It indeed provides an L2 control on the discrete (zero-mean) pressure through the control of
its gradient.

In fact, the actual inf-sup stability condition states that the real number β only depends on the
regularity of the mesh (in a sense to be defined), and not on the space step; this property, which is satisfied
by low-order staggered discretizations, is inherited by the limit incompressible scheme and guarantees its
stability and the fact that error estimates do not blow up when the mesh is refined. In this paper, since
we work on a fixed discretization, the dependency of β with respect to the mesh does not need to be
precisely stated.

5. Asymptotic analysis of the zero Mach limit for an implicit scheme. We begin with the
analysis of the zero Mach limit for a fully implicit scheme. Let δt > 0 be a constant time step. The
approximate solution (ρn,un) ∈ LM(Ω)×HE,0(Ω) at time tn = nδt for 1 ≤ n ≤ N = ⌊T/δt⌋ is computed
by induction through the following implicit scheme.

Knowing (ρn,un) ∈ LM(Ω)×HE,0(Ω), solve for ρn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω):

1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, ∀K ∈ M, (5.1a)

1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+ div(ρn+1un+1 ⊗ un+1)σ

− div(τ (un+1))σ +
1

ε2
(∇pn+1)σ = 0, ∀σ ∈ Eint. (5.1b)

5.1. Initialization of the scheme. The initial approximations are given by the average of the
initial density ρε0 on the primal cells and the initial velocity uε

0 on the dual cells:

ρ0K =
1

|K|

∫

K

ρε0, ∀K ∈ M,

u0
σ =

1

|Dσ|

∫

Dσ

uε
0, ∀σ ∈ Eint.

(5.2)

It is known that for every ε > 0, there exists a solution (ρε,uε) to the implicit scheme (5.1)-(5.2),
see e.g. [25, Theorem 2.6 and Section 2.4] . Thereafter, we prove that for a fixed discretization, i.e. for
a fixed mesh and a fixed time step δt, the solution (ρε,uε) converges as ε → 0 towards the solution of
an implicit scheme for the incompressible Navier-Stokes equations, which is stable thanks to the inf-sup
condition.

Assumption on the initial data – For the convergence study performed in this section, it is
sufficient to assume that the initial data is ill-prepared, in the sense of Inequality (2.9).

5.2. A priori estimates. We begin with a first lemma which states that the velocity convection
operator defined in Section 4.2 is built so that if a discrete mass conservation equation is satisfied on
the cells of the primal mesh (as in (5.1a)) - which is consistent with the staggered discretization - then a
discrete mass conservation equation is also satisfied on each cell of the dual mesh (see [2] for a proof).

Lemma 5.1 (Discrete dual mesh mass balance). Let two density fields ρn, ρn+1 ∈ LM(Ω) and
a velocity field un+1 ∈ HE,0(Ω) satisfying the discrete mass conservation equation (5.1a) on every
cell of the primal mesh be given. Then, the dual densities {ρnDσ

, ρn+1
Dσ

, σ ∈ E} and the dual fluxes
{Fσ,ǫ(ρ

n+1,un+1), σ ∈ Eint, ǫ ∈ Ē(Dσ)} satisfy a finite volume discretization of the mass balance (1.1a)
over the internal dual cells:

|Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈Ē(Dσ)

Fσ,ǫ(ρ
n+1,un+1) = 0, ∀σ ∈ Eint. (5.3)
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The following lemma is an easy extension of [36, Lemma 3.1], to cope with diffusion terms (while
[36, Lemma 3.1] only deals with the Euler equations). It states that any solution of the implicit scheme
satisfies a discrete counterpart to the kinetic energy balance (2.1); its derivation relies on the previous
relation, namely the dual mass balance (5.3).

Lemma 5.2 (Discrete kinetic energy balance). Any solution to the implicit scheme (5.1) satisfies the
following equality, for all σ ∈ Eint, and 0 ≤ n ≤ N − 1:

1

2δt

(

ρn+1
Dσ

|un+1
σ |2 − ρnDσ

|un
σ|2
)

+
1

2|Dσ|
∑

ǫ=Dσ|D′
σ

Fσ,ǫ(ρ
n+1,un+1)un+1

σ · un+1
σ′

− div(τ (un+1))σ · un+1
σ +

1

ε2
(∇pn+1)σ · un+1

σ +Rn+1
σ = 0, (5.4)

where Rn+1
σ =

1

2δt
ρnDσ

|un+1
σ − un

σ|2.
Proof. Let us take the scalar product of the discrete momentum balance equation (5.1b) by the cor-

responding velocity unknown un+1
σ , which gives the relation T conv

σ −div(τ (un+1))σ ·un+1
σ + 1

ε2 (∇pn+1)σ ·
un+1
σ = 0, with:

T conv
σ =

( 1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+
1

2|Dσ|
∑

ǫ∈Ē(Dσ)
ǫ=Dσ |Dσ′

Fσ,ǫ(ρ
n+1,un+1) (un+1

σ + un+1
σ′ )

)

· un+1
σ .

Now, using the identity 2 (ρ|a|2 − ρ∗a · b) = ρ|a|2 − ρ∗|b|2 + ρ∗|a − b|2 + (ρ − ρ∗)|a|2 with ρ = ρn+1
Dσ

,
ρ∗ = ρnDσ

, a = un+1
σ and b = un

σ, we obtain

T conv
σ =

1

2δt

(

ρn+1
Dσ

|un+1
σ |2 − ρnDσ

|un
σ|2
)

+
1

2|Dσ|
∑

ǫ=Dσ |Dσ′

Fσ,ǫ(ρ
n+1,un+1) un+1

σ · un+1
σ′

+
1

2δt
ρnDσ

|un+1
σ − un

σ|2 +
( 1

δt
(ρn+1

Dσ
− ρnDσ

) + |Dσ|−1
∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n+1,un+1)

) |un+1
σ |2
2

.

The last term is equal to zero thanks to (5.3), which concludes the proof.

We then prove that any solution of the implicit scheme satisfies a discrete counterpart of the renor-
malization identities (2.2) and (2.3) satisfied by any smooth solution of (1.1). To state this result, we
need to extend the notation for divergence operators on the primal cells as follows. For K ∈ M and a
smooth function ϕ,

div
(

ϕ(ρ)u
)

K
=

1

|K|
∑

σ∈E(K)

|σ| ϕ(ρσ)uσ · nK,σ,

where ρσ stands for the upwind value of the density at the face.

Lemma 5.3 (Discrete renormalization identities). Define the function ψγ as ψγ(ρ) = ρ
∫ ρ

0
℘(s)
s2 ds,

which yields ψγ(ρ) = ρ ln ρ if γ = 1 and ψγ(ρ) = ργ/(γ− 1) if γ > 1, and define Πγ(ρ) = ψγ(ρ)−ψγ(1)−
ψ′
γ(1)(ρ − 1). Then, any solution to the implicit scheme (5.1) satisfies the following two identities, for

all K ∈ M and 0 ≤ n ≤ N − 1:

1

δt

(

ψγ(ρ
n+1
K )− ψγ(ρ

n
K)
)

+ div(ψγ(ρ
n+1)un+1)K + ℘(ρn+1

K ) div(un+1)K +Rn+1
K = 0, (5.5)

1

δt

(

Πγ(ρ
n+1
K )−Πγ(ρ

n
K)
)

+ div
(

(

ψγ(ρ
n+1)− ψ′

γ(1) ρ
n+1
)

un+1
)

K

+ ℘(ρn+1
K ) div(un+1)K +Rn+1

K = 0, (5.6)

with :

Rn+1
K =

1

2δt
ψ′′
γ (ρ̄

n+ 1
2

K ) (ρn+1
K − ρnK)2 +

1

2|K|
∑

σ=K|L

|σ| (un+1
σ · nK,σ)

− ψ′′
γ (ρ̄

n+1
σ ) (ρn+1

L − ρn+1
K )2, (5.7)
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where ρ̄
n+ 1

2

K ∈ [min(ρn+1
K , ρnK),max(ρn+1

K , ρnK)], ρ̄n+1
σ ∈ [min(ρn+1

σ , ρn+1
K ),max(ρn+1

σ , ρn+1
K )] for all σ ∈

E(K), and for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). Since ψγ is a convex function, Rn+1
K is

non-negative.
Proof. For the proof of (5.5), see [37, Lemma 3.2]. The equality (5.6) is obtained after multiplying

the discrete mass equation (5.1a) by −ψ′
γ(1) and summing with (5.5).

As a consequence of Lemmas 5.2 and 5.3, the implicit scheme satisfies a discrete counterpart of the
local-in-time entropy identity (2.4).

Lemma 5.4 (Local-in-time discrete entropy inequality, existence of a solution). Let ε > 0 and assume
that the initial density ρε0 is positive. Then, there exists a solution (ρn,un)0≤n≤N to the scheme (5.1),
such that ρn > 0 for 0 ≤ n ≤ N , and the following inequality holds for 0 ≤ n ≤ N − 1:

1

2

∑

σ∈Eint

|Dσ|
(

ρn+1
Dσ

|un+1
σ |2−ρnDσ

|un
σ|2
)

+
1

ε2

∑

K∈M

|K| (Πγ(ρ
n+1
K )−Πγ(ρ

n
K))+ µ δt ||un+1||21,T +Rn+1 ≤ 0,

(5.8)
where Rn+1 =

∑

σ∈Eint
Rn+1

σ + ε−2
∑

K∈MRn+1
K ≥ 0.

Proof. The positivity of the density is a consequence of the properties of the upwind choice (4.2) for
ρ [26, Lemma 2.1]. Let us then sum equation (5.4) over the faces σ ∈ Eint, ε−2× (5.6) over K ∈ M,
and, finally, the two obtained relations. Since the discrete gradient and divergence operators are dual
with respect to the L2 inner product (see (4.10)), noting that the conservative dual fluxes vanish in the
summation and that the diffusion term is coercive (see Lemma 4.1), we get (5.8).

Given discrete density and velocity fields (ρn,un), the proof of existence of a solution (ρn+1,un+1)
to the implicit scheme at the time step n+1 is the same as that given in [36, Proposition 3.3] in the case
of the Euler equations. It may be inferred by the Brouwer fixed point theorem, by an easy adaptation
of the proof of [20, Proposition 5.2]. This proof relies on the following set of mesh-dependent estimates:
the conservativity of the mass balance discretization, together with the fact that the density is positive,
yields an estimate for ρ in the L1-norm, and so, by a norm equivalence argument, of the pressure in any
norm; then, for a given density ρ, the discrete global kinetic energy inequality (i.e. (5.4) summed over the
control volumes) provides a control on the velocity. Therefore, computing ρ from the mass balance for
fixed u, then p from ρ by the equation of state ℘(ρ), and finally u from the momentum balance equation
with fixed ρ, yields an iteration in a bounded convex subset of a finite dimensional space.

The following lemma states that the solution of the implicit scheme satisfies a discrete counterpart
of the global estimate (2.6); its proof is an easy adaptation of [36, Proposition 3.3].

Lemma 5.5 (Global discrete entropy inequality). Let ε > 0 and assume that the initial data (ρε0,u
ε
0)

is ill-prepared in the sense of (2.9). By Lemma 5.4, there exists a solution (ρn,un)0≤n≤N to the scheme
(5.1). In addition, there exists C > 0 independent of ε such that, for ε small enough and for all 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρnDσ
|un

σ|2 + µ
n
∑

k=1

δt ||uk||21,T +
1

ε2

∑

K∈M

|K|Πγ(ρ
n
K) ≤ C. (5.9)

Proof. Multiplying equation (5.8) by δt and summing over the time steps yields for 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρnDσ
|un

σ|2 + µ

n
∑

k=1

δt ||uk||21,T +
1

ε2

∑

K∈M

|K|Πγ(ρ
n
K) +Rn

≤ 1

2

∑

σ∈Eint

|Dσ| ρ0Dσ
|u0

σ|2 +
1

ε2

∑

K∈M

|K| Πγ(ρ
0
K), (5.10)

with Rn =
∑n−1

k=0

(
∑

σ∈Eint
Rk+1

σ + ε−2
∑

K∈MRk+1
K

)

≥ 0.

Let us prove that the right hand side of (5.10) is uniformly bounded for ε small enough. By (2.9)
and (5.2), for ε small enough, one has ρ0K ≤ 2 for all K ∈ M and therefore ρ0Dσ

≤ 2 for all σ ∈ Eint, since
the dual densities are convex combinations of the primal density unknowns. Hence, one has:

1

2

∑

σ∈Eint

|Dσ| ρ0Dσ
|u0

σ|2 ≤
∑

σ∈Eint

|Dσ|−1
∣

∣

∣

∫

Dσ

uε
0

∣

∣

∣

2

≤ ||uε
0||2L2(Ω)d ,

which by (2.9) is uniformly bounded with respect to ε. Then, using the upper bound on Πγ(ρ) for small
values of ρ (see Lemma 2.2), we can see that the second term of the right hand side of (5.10) is uniformly
bounded with respect to ε, for ε small enough.
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Lemma 5.6 (Control of the pressure). Let ε > 0 and assume that the initial density ρε0 is positive
and that the initial data (ρε0,u

ε
0) is ill-prepared in the sense of (2.9). Then, there exists a solution

(ρn,un)0≤n≤N to the scheme (5.1). Let pn = ℘(ρn) and define δpn =
∑

K∈M δpnK XK where δpnK =
(pnK −m(pn))/ε2 with m(pn) the mean value of pn over Ω ( i.e. m(pn) = |Ω|−1

∑

K∈M |K| pnK). Then,
one has, for all 1 ≤ n ≤ N :

||δpn|| ≤ CT ,δt, (5.11)

where the real number CT ,δt depends on the mesh and the time step but not on ε, and || · || stands for any
norm on the space of discrete functions.

Proof. The staggered discretization satisfies the inf-sup condition (see Lemma 4.2), which implies
that there exists a positive real number β, depending only on Ω and on the mesh, such that for δpn =
(pn −m(pn))/ε2, there exists a discrete velocity field v, with ||v||1,T = 1 and satisfying:

β ||δpn||L2(Ω) ≤
1

ε2

∑

K∈M

|K| pnK div(v)K .

Hence by the gradient-divergence duality property (4.10), taking the scalar product of (5.1b) with |Dσ|vσ

and summing over σ in Eint, we get β||δpn||L2(Ω) ≤ T n
1 + T n

2 + T n
3 with:

T n
1 =

1

δt

∑

σ∈Eint

|Dσ| (ρnDσ
un
σ − ρn−1

Dσ
un−1
σ ) · vσ,

T n
2 =

∑

σ∈Eint

|Dσ|div(ρnun ⊗ un)σ · vσ,

T n
3 = −

∑

σ∈Eint

|Dσ|div(τ (un))σ · vσ.

The proof of (5.11) follows if one is able to control each of these terms T n
1 , T

n
2 and T n

3 independently of ε.
Since the mesh and the time step δt are fixed, a norm equivalence argument in a finite dimensional space
yields the existence of a positive function CT ,δt depending on the discretization, which is non-decreasing
in each of its variables, such that:

|T n
1 + T n

2 + T n
3 | ≤ CT ,δt (||ρn||L1 , ||ρn−1||L1 , ||un||1,T , ||un−1||1,T , ||v||1,T ).

We have ||v||1,T = 1 and by the estimate (5.9), ||un||1,T and ||un−1||1,T are controlled independently of ε.
In addition ρn and ρn−1 are controlled in L1 by conservativity of the discrete mass balance equation.

5.3. Incompressible limit of the implicit scheme. We may now state the main result of this
section which is the convergence, up to a subsequence, of the solution to the compressible scheme (5.1)
towards the solution of an implicit inf-sup stable incompressible scheme when the Mach number tends
to zero.

Theorem 5.7 (Asymptotic behavior of the implicit scheme). Let (ε(m))m∈N be a sequence of positive
real numbers tending to zero, and let (ρ(m),u(m))m∈N be a corresponding sequence of solutions of the

scheme (5.1). Let us assume that the initial data (ρε
(m)

0 ,uε(m)

0 ) is ill-prepared, i.e. satisfies Relation (2.9)
for m ∈ N. Then the sequence (ρ(m))m∈N tends to the constant function ρ = 1 when m tends to +∞ in
L∞((0, T ),Lγ(Ω)). Moreover, for all q ∈ [1,min(2, γ)], there exists C > 0 such that:

||ρ(m) − 1||L∞((0,T );Lq(Ω)) ≤ Cε(m), for m large enough.

In addition, the sequences (u(m))m∈N and (δp(m))m∈N are bounded in any discrete norm which may

depend on the fixed discretization. If a subsequence of (u(m), δp(m))m∈N tends, in any discrete norm, to
a limit (u, δp), then (u, δp) is a solution to the standard (Rannacher-Turek or Crouzeix-Raviart) implicit
scheme for the incompressible Navier-Stokes equations:

Knowing δpn ∈ LM(Ω) and un ∈ HE,0(Ω), solve for δpn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω):

div(un+1)K = 0, ∀K ∈ M, (5.12a)

1

δt

(

un+1
σ − un

σ

)

+ div(un+1 ⊗ un+1)σ − div(τ (un+1))σ + (∇δpn+1)σ = 0, ∀σ ∈ Eint. (5.12b)
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At the limit, the scheme uses as initial condition only the L2-projection of u0 (the limit of uε
0) on the

space ET (Ω) of the discrete divergence-free functions: ET (Ω) = {v ∈ HE,0(Ω), div(v)K = 0, ∀K ∈ M}.

Proof. The proof of the convergence of (ρ(m))m∈N towards ρ = 1 when m tends to +∞ is the same
as in the continuous setting. It follows from the combination of the lower bounds on Πγ(ρ) proven in
Lemma 2.2 and the discrete global entropy estimate (5.9).

Using again estimate (5.9), one can see that the sequence (u(m))m∈N is bounded in any discrete norm

and the same holds for the sequence (δp(m))m∈N by Lemma 5.6. By the Bolzano-Weierstrass Theorem and

a norm equivalence argument for finite dimensional spaces, there exists a subsequence of (u(m), δp(m))m∈N

which tends, in any discrete norm, to a limit (u, δp). Passing to the limit cell-by-cell in the implicit scheme
(5.1), one obtains that (u, δp) is a solution of the standard implicit scheme (5.12) for the incompressible
Navier-Stokes equations.

If u1 is a solution of the first time-step of (5.12) then u1 ∈ ET (Ω), and for all ϕ ∈ ET (Ω), taking
the scalar product of (5.12b) with |Dσ|ϕσ and summing over σ ∈ Eint, one gets that u1 satisfies:

1

δt

(

u1,ϕ
)

L2 +
∑

σ∈Eint

|Dσ|div(ρ1u1 ⊗ u1)σ ·ϕσ +
∑

K∈M

∫

K

τ (û1) : τ (ϕ̂) =
1

δt

(

u0,ϕ
)

L2 . (5.13)

This system is known to be the part of the algebraic system associated with one time step of the scheme
determining the velocity (even if the uniqueness of this unknown is guaranteed only for small time
steps), in the sense that the velocity may be computed from (5.13), the remaining equations yielding the
pressure. Observing that in the right hand side of (5.13), u0 can be replaced by its L2-projection P(u0)
onto ET (Ω) (since

(

u0 −P(u0),ϕ
)

L2 = 0 for all ϕ ∈ ET (Ω) by definition of P(u0)), we obtain that only
the divergence-free part of the initial velocity is seen by the implicit scheme.

Remark 5.1 (Control of the velocity and extension to the Euler equations). Estimate (5.9) provides
a control on the sequence of discrete velocities (u(m))m∈N in a discrete L2((0, T ); H1

0(Ω)
d)-norm provided

that µ > 0. However, even for the Euler case where µ = 0, one can derive a uniform bound on (u(m))m∈N

in any discrete norm. Indeed, since the mesh is fixed, ρ(m) → 1 as m → +∞ means that the discrete
density unknown tends to 1 in every cell. Hence, by the kinetic energy part of (5.9), there exists a

minimum density ρmin,T > 0 depending on the fixed mesh such that ||u(m)||L2(Ω)d ≤
√

2C
ρmin,T

for all

m ∈ N. Therefore, the result of Theorem 5.7 is still valid for the Euler equations: the solution to the
compressible scheme (5.1) (with µ = λ = 0 and homogeneous Neumann boundary conditions on the
velocity) converges, when the Mach number tends to zero, towards the solution of an implicit inf-sup
stable scheme for the incompressible Euler equations.

6. Asymptotic analysis of the zero Mach limit for a pressure correction scheme. Since
the scheme (5.1) is fully implicit, the implementation of the algorithm requires the solution of a fully
non-linear coupled system which is difficult in a real computational context due to the computational
cost and lack of robustness. This is why we also perform the analysis of the low Mach number limit for
a semi-implicit scheme which is implemented in the software (CALIF3S [5]). This scheme is obtained
thanks to a partial decoupling of the discrete equations, and falls in the family of pressure correction
schemes. It consists (after a rescaling step for the pressure gradient) in two main steps:

• a prediction step, where a tentative velocity field is obtained by solving a linearized momentum
balance in which the mass convection flux and the pressure gradient are explicit,

• a correction step where a nonlinear problem on the pressure is solved, and the velocity is updated
in such a way to recover the discrete mass conservation equation.

Let δt > 0 be a constant time step. The approximate solution at time tn = nδt for 1 ≤ n ≤ N =
⌊T/δt⌋ is denoted (ρn,un) ∈ LM(Ω)×HE,0(Ω).

Knowing (ρn−1, ρn,un) ∈ LM(Ω)×LM(Ω)×HE,0(Ω), the considered algorithm consists in computing
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ρn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω) through the following steps:

Pressure gradient scaling step:

(∇p)nσ =
( ρnDσ

ρn−1
Dσ

)1/2

(∇pn)σ, ∀σ ∈ Eint. (6.1a)

Prediction step – Solve for ũn+1 ∈ HE,0(Ω):

1

δt

(

ρnDσ
ũn+1
σ − ρn−1

Dσ
un
σ

)

+ div(ρnun ⊗ ũn+1)σ − div(τ (ũn+1))σ +
1

ε2
(∇p)nσ = 0, ∀σ ∈ Eint. (6.1b)

Correction step – Solve for ρn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω):

1

δt
ρnDσ

(un+1
σ − ũn+1

σ ) +
1

ε2
(∇pn+1)σ − 1

ε2
(∇p)nσ = 0, ∀σ ∈ Eint. (6.1c)

1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, ∀K ∈ M. (6.1d)

6.1. Initial data and initialization of the scheme. As mentioned in the introduction, for the
pressure correction scheme, it is not sufficient to assume ”ill-prepared” initial data. In this section, the
initial data (ρε0,u

ε
0) are assumed to be well-prepared in the sense of the following definition:

Definition 6.1. The initial data (ρε0,u
ε
0) is said to be well-prepared if ρε0 ∈ L∞(Ω), ρε0 > 0,

uε
0 ∈ H1

0(Ω)
d for all ε > 0 and if there exists C independent of ε such that:

||uε
0||H1(Ω)d +

1

ε
||divuε

0||L2(Ω) +
1

ε2
||ρε0 − 1||L∞(Ω) ≤ C. (6.2)

Consequently, ρε0 tends to 1 when ε → 0; moreover, we suppose that uε
0 converges in L2(Ω)d towards a

function u0 ∈ L2(Ω)d (the uniform boundedness of the sequence in the H1(Ω)d norm already implies this
convergence up to a subsequence).

The initial velocities uε
0 are in H1

0(Ω)
d. In particular, their trace is thus well defined as an L2 function

on any smooth (or Lipschitz-continuous) hypersurface of Ω. The initialization of the pressure correction
scheme (6.1) is performed as follows. First, ρ0 and u0 are given by the average of the initial conditions
ρε0 and uε

0 respectively on the primal cells and on the faces of the primal cells:

ρ0K =
1

|K|

∫

K

ρε0, ∀K ∈ M,

u0
σ =

1

|σ|

∫

σ

uε
0, ∀σ ∈ Eint.

(6.3)

Finally, we compute ρ−1 by solving the mass balance equation (6.1d) for n = −1, where the unknown is
ρ−1 and not ρ0. This procedure allows to perform the first prediction step with (ρ−1

Dσ
)σ∈E , (ρ

0
Dσ
)σ∈E and

the dual mass fluxes satisfying the mass balance :

|Dσ|
δt

(ρ0Dσ
− ρ−1

Dσ
) +

∑

ǫ∈Ē(Dσ)

Fσ,ǫ(ρ
0,u0) = 0, ∀σ ∈ Eint. (6.4)

In this section, we prove that for every ε > 0, there exists a solution (ρε,uε) to the pressure correction
scheme (6.1) with the aforementioned initialization, and that for a fixed discretization, i.e. for a fixed
mesh and a fixed time step δt, the solution (ρε,uε) converges as ε→ 0 towards the solution of a pressure
correction scheme for the incompressible Navier-Stokes equations, which is inf-sup stable.

The first property to check for the scheme to be well defined is the positivity of the density at
the fictitious time step n = −1. Indeed, since ρε0 is assumed to be positive on Ω and by definition of
the discrete density ρ0 (6.3), one clearly has ρ0K > 0 for all K ∈ M. This positivity property is not
straightforward for ρ−1 and is a consequence of the following result.

Lemma 6.2. If the initial conditions (ρε0,u
ε
0) are assumed to be well-prepared in the sense of Definition

6.1, then there exists C > 0 independent of ε such that:

1

ε2
max
K∈M

|ρ0K − 1| +
1

ε2
max
σ∈Eint

|(∇p0)σ| +
1

ε
max
K∈M

|ρ−1
K − 1| ≤ C. (6.5)
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Proof. Since the initial conditions (ρε0,u
ε
0) are well-prepared, the discrete density at the time step

n = 0 satisfies for all K ∈ M:

|ρ0K − 1| ≤ 1

|K|

∫

K

|ρε0 − 1| ≤ ||ρε0 − 1||L∞(K) ≤ Cε2. (6.6)

Then, using the definition of the pressure gradient, we also obtain |(∇p0)σ| ≤ Cε2 for all σ ∈ Eint, where
C ∈ R+ may depend on the (fixed) mesh and on γ (or on ℘′(1) in the general barotropic case) but is
independent of ε. Let us then verify that for ε small enough the discrete density at time step n = −1 is
close to 1. This density is computed in such a manner that, for all K ∈ M:

ρ−1
K − 1 = ρ0K − 1 + δt

∑

σ∈E(K)

|σ|
|K| ρ

0
σ u

0
σ · nK,σ

= ρ0K − 1 + δt ρ0K
∑

σ∈E(K)

|σ|
|K| u

0
σ · nK,σ + δt

∑

σ∈E(K)

|σ|
|K| (ρ

0
σ − ρ0K)u0

σ · nK,σ

= T1 + T2 + T3

with T1 = ρ0K − 1, T2 = δt ρ0K
1

|K|

∫

K

divuε
0 and T3 = δt

∑

σ∈E(K)

|σ|
|K| (ρ

0
σ − ρ0K)u0

σ · nK,σ.

By (6.6), using a trace inequality to bound u0
σ in T3, we get that T1 ≤ Cε2 and T3 ≤ Cε2 for C ∈ R+

independent of ε (but dependent on the mesh). Moreover T2 ≤ Cε for some C ∈ R+ independent of ε
since the divergence of the initial velocity satisfies (6.2). The expected bound on |ρ−1

K − 1| follows.
Remark 6.1. All the developments below are still valid under the slightly less restrictive condition

on the divergence of the initial velocities:

||divuε
0||L2(Ω) → 0 as ε→ 0.

Indeed, under this relaxed condition, we still have max
K∈M

|ρ−1
K − 1| → 0 as ε→ 0.

6.2. A priori estimates. Let us now derive the estimates satisfied by the solutions of the pressure
correction scheme. As for the implicit scheme, any solution of the pressure correction scheme satisfies a
discrete counterpart to the kinetic energy balance (2.1), see [27, Lemma 4.1]. The proof of this result is
an easy adaptation (again because of the diffusion terms) of that of [36, Lemma 3.11]; we give the proof
for the sake of completeness.

Lemma 6.3 (Discrete kinetic energy balance). Any solution to the pressure correction scheme (6.1)
satisfies the following equality, for all σ ∈ Eint and 0 ≤ n ≤ N − 1:

1

2δt

(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|2
)

+
1

2|Dσ|
∑

ǫ=Dσ|D′
σ

Fσ,ǫ(ρ
n,un) ũn+1

σ · ũn+1
σ′ − div(τ (ũn+1))σ · ũn+1

σ

+
1

ε2
(∇pn+1)σ · un+1

σ +
δt

2 ε4

(

∣

∣(∇pn+1)σ
∣

∣

2

ρnDσ

−
∣

∣(∇pn)σ
∣

∣

2

ρn−1
Dσ

)

+Rn+1
σ = 0, (6.7)

where Rn+1
σ =

1

2δt
ρn−1
Dσ

|ũn+1
σ − un

σ |2.
Proof. Let us take the scalar product of the velocity prediction equation (6.1b) with the corresponding

velocity unknown ũn+1
σ . Thanks to the time shift in the dual densities and the dual mass fluxes in the

velocity prediction equation (6.1b), together with the dual mass balance (at the previous time step)

1

δt
(ρnDσ

− ρn−1
Dσ

) + |Dσ|−1
∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un) = 0, ∀σ ∈ Eint,

we obtain, by a similar computation to that in the proof of Lemma 5.2:

1

2 δt

(

ρnDσ
|ũn+1

σ |2 − ρn−1
Dσ

|un
σ |2
)

+
1

2 |Dσ|
∑

ǫ=Dσ |Dσ′

Fσ,ǫ(ρ
n,un) ũn+1

σ · ũn+1
σ′

− div(τ (ũn+1))σ · ũn+1
σ +

1

ε2
(∇p)nσ · ũn+1

σ +Rn+1
σ = 0,

with Rn+1
σ =

1

2δt
ρn−1
Dσ

|ũn+1
σ − un

σ|2. (6.8)
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Dividing the velocity correction equation (6.1c) by
(ρnDσ

δt

)
1
2

, we obtain:

(ρnDσ

δt

)1/2

un+1
σ +

( δt

ρnDσ

)1/2 1

ε2
(∇pn+1)σ =

(ρnDσ

δt

)1/2

ũn+1
σ +

( δt

ρnDσ

)1/2 1

ε2
(∇p)nσ .

Squaring this relation and summing it with (6.8) yields

1

2δt

(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|2
)

+
1

2|Dσ|
∑

ǫ=Dσ|D′
σ

Fσ,ǫ(ρ
n,un) ũn+1

σ · ũn+1
σ′

− div(τ (ũn+1))σ · ũn+1
σ +

1

ε2
(∇pn+1)σ · un+1

σ +Rn+1
σ +

1

ε4
Pn+1
σ = 0,

where Pn+1
σ =

δt

2 ρnDσ

(

∣

∣(∇pn+1)σ
∣

∣

2 −
∣

∣(∇p)nσ
∣

∣

2
)

. Recalling that the rescaled pressure is defined as

(∇p)nσ =
( ρnDσ

ρn−1
Dσ

)1/2

(∇pn)σ

for all σ ∈ Eint, we obtain (6.7).

The discrete renormalization identities are again valid for the pressure correction algorithm, thanks
to the fact that the mass balance (6.1d) is satisfied. The proof is identical to that of Lemma 5.3.

Lemma 6.4 (Discrete renormalization identities). A solution to the system (6.1) satisfies for all
K ∈ M and 0 ≤ n ≤ N − 1 the identities (5.5) and (5.6), with Rn+1

K defined by (5.7).

Lemma 6.5 (Local-in-time discrete entropy inequality, existence of a solution). Let ε > 0 and assume
that the initial data (ρε0,u

ε
0) is well-prepared in the sense of Definition 6.1, i.e. satisfies (6.2). Then, for

ε small enough to ensure that ρ−1 is positive, there exists a solution (ρn,un)0≤n≤N to the scheme (6.1)
such that ρn > 0 for 1 ≤ n ≤ N and the following inequality holds for 0 ≤ n ≤ N − 1:

1

2

∑

σ∈Eint

|Dσ|
(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|2
)

+
1

ε2

∑

K∈M

|K|
(

Πγ(ρ
n+1
K )−Πγ(ρ

n
K)
)

+ µ δt ||ũn+1||21,T +
δt2

2ε4

∑

σ∈Eint

|Dσ|
(

∣

∣(∇pn+1)σ
∣

∣

2

ρnDσ

−
∣

∣(∇pn)σ
∣

∣

2

ρn−1
Dσ

)

+Rn+1 ≤ 0, (6.9)

where Rn+1 =
∑

σ∈Eint
Rn+1

σ + ε−2
∑

K∈MRn+1
K ≥ 0, with Rn+1

σ defined by (6.8) and Rn+1
K defined by

(5.7).
Proof. For ε small enough, by Lemma 6.2, both ρ−1 and ρ0 are positive. The positivity of ρn, for

1 ≤ n ≤ N , is a consequence of the properties of the upwind choice (4.2) for ρ in the mass balance of the
correction step (6.1d).

After multiplication by |Dσ|, we sum the kinetic energy balance equation (6.7) over the faces, and
after multiplication by ε−2|K|, using Lemma 6.4, we sum the relative entropy balance (5.6) over the
primal cells, and finally sum the two obtained relations. Since the discrete gradient and divergence
operators are dual with respect to the L2 inner product (see (4.10)), noting that the conservative fluxes
vanish in the summation and that the diffusion term is coercive (see Lemma 4.1), we get (6.9).

Given the discrete density and velocity fields (ρn−1, ρn,un), the predicted velocity ũn+1 is the solution
of the linear system (6.1b). Multiplying (6.8) by |Dσ|, summing over the faces and using Young’s
inequality, yields the following inequality, which is valid for all α > 0:

1

2δt
||√ρnũn+1||2L2 − α

2ε2
||ũn+1||2L2 + µ ||ũn+1||21,T ≤ 1

2δt
||
√

ρn−1un||2L2 +
1

2αε2
||(∇p)n||2L2 .

In this inequality, ρn and ρn−1 are the piecewise constant fields equal to ρnDσ
and ρn−1

Dσ
on each dual face

Dσ. Choosing α > 0 small enough yields the coercivity of the linear system (6.1b) and therefore the
existence of a unique solution ũn+1 to the prediction step. The existence of a solution (ρn+1,un+1) to
the correction step (6.1c)-(6.1d) follows from the Brouwer fixed point theorem, by an easy adaptation of
the proof of [20, Proposition 5.2].

Let us now turn to the global entropy inequality; it was first proven in [25, Theorem 3.8], we prove
here that the bound is independent of ε if the initial data is well-prepared.
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Lemma 6.6 (Global discrete entropy inequality). Let ε > 0 and assume that the initial data (ρε0,u
ε
0)

is well-prepared in the sense of Definition 6.1, i.e. satisfies (6.2). By Lemma 6.5, there exists a solution
(ρn,un)0≤n≤N to the scheme (5.1). In addition, there exists C > 0 independent of ε such that, for ε
small enough and for all 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ |2+µ

n
∑

k=1

δt ||ũk||21,T +
1

ε2

∑

K∈M

|K|Πγ(ρ
n
K)+

δt2

2ε4

∑

σ∈Eint

|Dσ|
ρn−1
Dσ

|(∇pn)σ|2 ≤ C. (6.10)

Proof. Summing (6.9) over n yields the expected inequality (6.10) with

C =
1

2

∑

σ∈Eint

|Dσ| ρ−1
Dσ

|u0
σ|2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
0
K) +

δt2

2ε4

∑

σ∈Eint

|Dσ|
ρ−1
Dσ

|(∇p0)σ|2.

Let us prove that if the initial data is well-prepared in the sense of (6.2), then for ε small enough, C
is uniformly bounded independently of ε. By Lemma 6.2, ρ−1

K is bounded for all K ∈ M for ε small
enough and therefore so is ρ−1

Dσ
for all σ ∈ Eint. Hence, since uε

0 is uniformly bounded in H1(Ω)d by (6.2),
a classical trace inequality yields the boundedness of the first term. By (6.5), one has |ρ0K − 1| ≤ Cε2

for all K ∈ M. Hence, by (2.8), the second term vanishes as ε → 0. The third term is also uniformly
bounded with respect to ε thanks to (6.5).

Lemma 6.7 (Control of the pressure). Let ε > 0 and assume that the initial data (ρε0,u
ε
0) is well-

prepared in the sense of Definition 6.1, i.e. satisfies (6.2). By Lemma 6.5, for ε small enough, there exists
a solution (ρn,un)0≤n≤N to the scheme (5.1). Let pn = ℘(ρn) and define δpn =

∑

K∈M δpnK XK where
δpnK = (pnK −m(pn))/ε2 with m(pn) the mean value of pn over Ω ( i.e. m(pn) = |Ω|−1

∑

K∈M |K| pnK).
Then, one has, for 1 ≤ n ≤ N :

||δpn|| ≤ CT ,δt, (6.11)

where the real number CT ,δt depends on the mesh and the time step but not on ε, and || · || stands for any
norm on the space of discrete functions.

Proof. According to (6.10), the discrete pressure gradient is controlled in L∞ by CT ,δt ε
2 where

CT ,δt is a real number depending on the mesh and the time step but not on ε. Hence, by a finite-
dimensional argument ∇(δpn) is controlled in any norm uniformly with respect to ε. In particular, one
has ||∇(δpn)||−1,T ≤ CT ,δt, where || . ||−1,T is the discrete (H−1)d-norm defined for v ∈ HE,0(Ω) by:

||v||−1,T = sup
{

∑

σ∈E

|Dσ| vσ ·wσ, with w ∈ HE,0(Ω) such that ||w||1,T ≤ 1
}

.

Invoking the gradient divergence duality (4.10) and the inf-sup stability of the scheme (see Lemma 4.2),
||∇(δpn)||−1,T ≤ CT ,δt implies that ||δpn||L2 ≤ β−1CT ,δt.

6.3. Incompressible limit of the pressure correction scheme. We may now state the main
result of this section which is the convergence, up to a subsequence, of the solution to the compressible
scheme (6.1) towards the solution of a pressure correction inf-sup stable scheme when the Mach number
tends to zero.

Theorem 6.8 (Incompressible limit of the pressure correction scheme).
Let (ε(m))m∈N be a sequence of positive real numbers tending to zero, and let (ρ(m),u(m)) be a corre-

sponding sequence of solutions of the scheme (6.1). Let us assume that the initial data (ρε
(m)

0 ,uε(m)

0 ) is
well-prepared in the sense of Definition 6.1, i.e. satisfies (6.2) for m ∈ N. Then the sequence (ρ(m))m∈N

tends to the constant function ρ = 1 when m tends to +∞ in L∞((0, T ),Lγ(Ω)). Moreover, for all
q ∈ [1,min(2, γ)], there exists C > 0 such that:

||ρ(m) − 1||L∞((0,T );Lq(Ω)) ≤ Cε(m), for m large enough.

In addition, the sequence (u(m), δp(m))m∈N tends, in any discrete norm, to the solution (u, δp) of the usual
(Rannacher-Turek or Crouzeix-Raviart) pressure correction scheme for the incompressible Navier-Stokes
equations, which reads:
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Knowing δpn ∈ LM(Ω) and un ∈ HE,0(Ω), compute δpn+1 ∈ LM(Ω) and un+1 ∈
HE,0(Ω) through the following steps:

Prediction step – Solve for ũn+1 ∈ HE,0(Ω):

1

δt

(

ũn+1
σ − un

σ

)

+ div(un ⊗ ũn+1)σ − div(τ (ũn+1))σ + (∇(δpn))σ = 0, ∀σ ∈ Eint. (6.12a)

Correction step – Solve for δpn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω):

1

δt
(un+1

σ − ũn+1
σ ) + (∇δpn+1)σ − (∇(δpn))σ = 0, ∀σ ∈ Eint. (6.12b)

div(un+1)K = 0, ∀K ∈ M. (6.12c)

Proof. As in the implicit case, the proof of the convergence of (ρ(m))m∈N towards ρ = 1 when m
tends to +∞ is the same as in the continuous case.

Since ρ(m) → 1 as m → +∞, the discrete density unknowns tend to 1 in every cell. Hence, by the
kinetic energy part of (6.10), there exists a minimum density ρmin,T > 0 depending on the fixed mesh

such that ||u(m)||L2(Ω)d ≤
√

2C
ρmin,T

for all m ∈ N. Moreover, the sequence (δp(m))m∈N is also bounded

by Lemma 6.7. By the Bolzano-Weierstrass theorem and a norm equivalence argument, there exists a
subsequence of (u(m), δp(m))m∈N which tends, in any discrete norm, to a limit (u, δp). Passing to the
limit cell-by-cell in (6.1), one obtains that (u, δp) is a solution to (6.12). Since this solution is unique, the
whole sequence converges, which concludes the proof.

Remark 6.2 (Control of the velocity and extension to the Euler equations). As for the implicit
scheme, one can extend the result of Theorem 6.8 to the inviscid case where µ = λ = 0. Indeed, the bound
on the sequence of velocities is obtained thanks to the control by the estimate (6.10) of the kinetic energy
part of the global entropy, invoking the convergence for the densities towards 1.

7. Asymptotic analysis of the zero Mach limit for a semi-implicit scheme. Another in-
teresting semi-implicit scheme for low viscosity flows (typically a viscosity µ which is of the same order
of magnitude as the space step hT ) is a scheme, where in the momentum equation, only the pressure is
treated in an implicit way (which is mandatory for stability reasons).

Let δt > 0 be a constant time step. The approximate solution at time tn = nδt for 1 ≤ n ≤ N =
⌊T/δt⌋ is denoted (ρn,un) ∈ LM(Ω)×HE,0(Ω); it is computed through the following algorithm:

Knowing (ρn−1, ρn,un) ∈ LM(Ω) × LM(Ω) ×HE,0(Ω), solve for ρn+1 ∈ LM(Ω) and un+1 ∈
HE,0(Ω):

1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, ∀K ∈ M, (7.1a)

1

δt

(

ρnDσ
un+1
σ − ρn−1

Dσ
un
σ

)

+ div(ρnun ⊗ un)upσ − div(τ (un))σ +
1

ε2
(∇pn+1)σ = 0, ∀σ ∈ Eint. (7.1b)

Computing un+1
σ from the second equation and inserting in the first one yields a nonlinear diffusion-

convection-reaction problem on the density ρn+1 or the pressure pn+1. This algorithm may also equiva-
lently be set under the form of a pressure-correction scheme:

Prediction step – Compute ũn+1 ∈ HE,0(Ω) by:

1

δt

(

ρnDσ
ũn+1
σ − ρn−1

Dσ
un
σ

)

+ div(ρnun ⊗ un)upσ − div(τ (un))σ = 0, ∀σ ∈ Eint. (7.2a)

Correction step – Solve for ρn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω):

1

δt
ρnDσ

(un+1
σ − ũn+1

σ ) +
1

ε2
(∇pn+1)σ = 0, ∀σ ∈ Eint. (7.2b)

1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, ∀K ∈ M. (7.2c)
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The L2-stability of this scheme is expected to be ensured under a CFL restriction on the time step of
the form δt ≤ c(hT /|u|+ h2T /µ), provided that an upwind space discretization is used in the convection
term of the momentum balance equation. Hence, for the semi-implicit scheme (7.1), this convection term
is defined as:

div(ρu⊗ v)upσ =
∑

ǫ∈Ē(Dσ)

Fσ,ǫ(ρ,u) vǫ, ∀σ ∈ Eint, (7.3)

where the dual mass fluxes Fσ,ǫ(ρ,u) are defined as in Section 4.2 and where the approximation of
the convected velocity on a dual face ǫ = Dσ|D′

σ is computed with the upwind technique: vǫ = vσ if
Fσ,ǫ(ρ,u) ≥ 0, vǫ = vσ′ otherwise.

7.1. Initial data and initialization of the scheme. In the case of the semi-implicit scheme (7.1),
as in the case of the pressure correction scheme, it is not sufficient to assume ”ill-prepared” initial data.
In this section, the initial data (ρε0,u

ε
0) is assumed to satisfy

ρε0 > 0, ρε0 ∈ L∞(Ω), uε
0 ∈ H1

0(Ω)
d,

||uε
0||H1(Ω)d +

1

ε
||divuε

0||L2(Ω) +
1

ε
||ρε0 − 1||L∞(Ω) ≤ C,

(7.4)

for a real number C independent of ε. Moreover, we suppose that uε
0 converges in L2(Ω)d towards a

function u0 ∈ L2(Ω)d. Note that these hypotheses are less restrictive than assuming well-prepared initial
data since the density is here assumed to be close to 1 with an ε rate (and not ε2).

The initialization of the scheme (7.1) is performed similarly to that of the pressure-correction scheme.
First, ρ0 and u0 are given by the average of the initial conditions ρε0 and uε

0 respectively on the primal
cells and on the faces of the primal cells; then we compute ρ−1 by solving the mass balance equation
(7.1a) for n = −1, where the unknown is ρ−1 and not ρ0. As in the case of the pressure correction scheme,
one may prove that the discrete densities ρ−1

K , K ∈ M, are close to 1 for ε small enough and therefore
positive and bounded. More precisely, we have the following lemma, the proof of which is similar to that
of Lemma 6.2.

Lemma 7.1. If the initial conditions (ρε0,u
ε
0) are assumed to satisfy (7.4), then there exists C ∈ R+

independent of ε such that the following inequality holds.

1

ε
max
K∈M

|ρ0K − 1| +
1

ε
max
σ∈Eint

|(∇p0)σ| +
1

ε
max
K∈M

|ρ−1
K − 1| ≤ C. (7.5)

7.2. A priori estimates. The discrete renormalization identities are again valid for the scheme
(7.1), thanks to the fact that the mass balance (7.1a) is satisfied. The proof is identical to that of Lemma
5.3.

Lemma 7.2 (Discrete renormalization property). A solution to the system (7.1) satisfies for all
K ∈ M and 0 ≤ n ≤ N − 1 the identities (5.5) and (5.6), with RK defined by (5.7).

Let us now turn to the discrete kinetic energy balance which leads to the L2 stability of the scheme.
We begin with the following proposition which characterizes the rigidity matrix associated with the
discretization of the diffusion term in the momentum equation.

Proposition 7.3. Let A be the d♯Eint × d♯Eint rigidity matrix associated with the finite element
discretization of the diffusion term. The matrix A is the block matrix A = (Aσ,σ′ )σ,σ′∈Eint, where for
σ, σ′ ∈ Eint, Aσ,σ′ is the d× d matrix defined by:

Aσ,σ′ =
∑

K∈M

(

µ

∫

K

∇ζσ ·∇ζσ′I + (µ+ λ)

∫

K

∇ζσ ⊗∇ζσ′

)

, (7.6)

and A is a symmetric positive-definite matrix.
Proof. Let us identify u = (uσ)σ∈Eint and v = (vσ)σ∈Eint with vectors in Rd♯Eint and denote (., .) the

canonical scalar product in Rd♯Eint. The result follows from the elementary computation:

(Au,v) =
∑

σ∈Eint

∑

σ′∈Eint

Aσ,σ′uσ′ · vσ

=
∑

σ∈Eint

|Dσ|
(

− div(τ (u))σ
)

· vσ

=
∑

K∈M

µ

∫

K

∇û : ∇v̂ + (µ+ λ)

∫

K

(div û)(div v̂).
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The expression (7.6) of the block-entries of the matrix A then follows by developing the expression of û
and v̂ on the basis of the shape functions and identifying the terms.

The following lemma states the L2-stability of the explicit upwind prediction step (7.2a) under some
CFL restriction on the time step.

Lemma 7.4 (L2-stability of the prediction step). Any solution to (7.2a), and thus to the semi-implicit
scheme (7.1), satisfies the following inequality, for all 0 ≤ n ≤ N − 1:

1

2δt

∑

σ∈Eint

|Dσ|
(

ρnDσ
|ũn+1

σ |2 − ρn−1
Dσ

|un
σ|2
)

+Rn+1
E ≤ 0, (7.7)

where, denoting ̺(A) the spectral radius of the matrix A, the remainder term Rn+1
E is given by:

Rn+1
E =

∑

σ∈Eint

(ρnDσ
|Dσ|
2δt

− 1

2

∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρ
n,un)

)− − 1

4
̺(A)

)

|ũn+1
σ − un

σ|2. (7.8)

Proof. Taking the scalar product of the momentum equation (7.2a) with |Dσ| ũn+1
σ , we obtain

T conv
σ + T diff

σ = 0, with:

T conv
σ =

( |Dσ|
δt

(

ρnDσ
ũn+1
σ − ρn−1

Dσ
un
σ

)

+
∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)un

ǫ

)

· ũn+1
σ ,

T diff
σ = −|Dσ|div(τ (un))σ · ũn+1

σ .

For the convection term, the dual density unknowns and mass fluxes are chosen so as to have:

|Dσ|
δt

(ρnDσ
− ρn−1

Dσ
) +

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un) = 0, ∀σ ∈ Eint;

thus, thanks to the time-shift in (7.2a) in order to exploit the mass balance at the previous time step, we
may apply [38, Lemma A.2 (i)] to obtain:

T conv
σ =

|Dσ|
2δt

(

ρnDσ
|ũn+1

σ |2 − ρn−1
Dσ

|un
σ |2
)

+
1

2

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)|un

ǫ |2 +
|Dσ|
2δt

ρnDσ
|ũn+1

σ − un
σ|2

− 1

2

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)|un

ǫ − un
σ|2 +

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)(un

ǫ − un
σ) · (ũn+1

σ − un
σ).

Thanks to the upwind choice for un
ǫ , the term un

ǫ − un
σ vanishes whenever the dual flux Fσ,ǫ(ρ

n,un) is
non-negative. Applying Young’s inequality to the product in the last term yields:

T conv
σ ≥ |Dσ|

2δt

(

ρnDσ
|ũn+1

σ |2 − ρn−1
Dσ

|un
σ |2
)

+
1

2

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)|un

ǫ |2 +
|Dσ|
2δt

ρnDσ
|ũn+1

σ − un
σ|2

− 1

2

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n,un)−|ũn+1

σ − un
σ|2. (7.9)

For the diffusion term, we observe that:

∑

σ∈Eint

T diff
σ = (Aun, ũn+1) = (Aun, ũn+1 − un) + (Aun,un).

The Cauchy-Schwarz inequality for the scalar product associated with the real positive-definite symmetric
matrix A yields

(Aun, ũn+1 − un) ≥ −(Aun,un)
1
2 (A(ũn+1 − un), ũn+1 − un)

1
2 .

Applying Young’s inequality yields:

∑

σ∈Eint

T diff
σ ≥ −1

4
(A(ũn+1 − un), ũn+1 − un) ≥ −1

4
̺(A)

∑

σ∈Eint

|ũn+1
σ − un

σ|2. (7.10)
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By the conservativity of the dual fluxes, taking the sum of (7.9) over σ ∈ Eint and summing the result
with (7.10) yields the expected inequality (7.7).

We are now in position to state the following local-in-time kinetic energy balance.
Lemma 7.5 (Discrete kinetic energy balance). Any solution to the semi-implicit scheme (7.1) satisfies

the following inequality, for all 0 ≤ n ≤ N − 1:

1

2δt

∑

σ∈Eint

|Dσ|
(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ |2
)

+
1

ε2

∑

σ∈Eint

|Dσ| (∇pn+1)σ · un+1
σ

+
δt

2 ε4

∑

σ∈Eint

|Dσ|
ρnDσ

∣

∣(∇pn+1)σ
∣

∣

2
+Rn+1

E ≤ 0, (7.11)

where Rn+1
E is defined by (7.8).

Proof. As for the first pressure correction scheme, we write the velocity correction equation as:

(ρnDσ

δt

)1/2

un+1
σ +

( δt

ρnDσ

)1/2 1

ε2
(∇pn+1)σ =

(ρnDσ

δt

)1/2

ũn+1
σ ,

square this relation and sum it with (7.7), which yields the desired inequality.
We may now state the following result.

Lemma 7.6 (Local-in-time discrete entropy inequality, existence of a solution). Let ε > 0 and assume
that the initial data satisfies (7.4). Then, for ε small enough to ensure that ρ−1 is positive, there exists
a solution (ρn,un)0≤n≤N to the scheme (7.1), and for 1 ≤ n ≤ N , the density ρn is positive. Moreover,
assuming that the time-step satisfies the following CFL restriction:

δt ≤ min
σ∈Eint

4 ρnDσ
|Dσ|

2
∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρ
n,un)

)−
+ ̺(A)

, (7.12)

the following inequality holds:

1

2

∑

σ∈Eint

|Dσ|
(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|2
)

+
1

ε2

∑

K∈M

|K|
(

Πγ(ρ
n+1
K )−Πγ(ρ

n
K)
)

+
δt2

2 ε4

∑

σ∈Eint

|Dσ|
ρnDσ

∣

∣(∇pn+1)σ
∣

∣

2
+Rn+1 ≤ 0, (7.13)

where Rn+1 = Rn+1
E + ε−2

∑

K∈MRn+1
K ≥ 0, with Rn+1

E defined by (7.8) and Rn+1
K defined by (5.7).

Proof. The positivity of the density is a consequence of the properties of the upwind choice (4.2) for
ρ in the mass balance of the correction step (7.1a). After multiplication by ε−2|K|, using Lemma 7.2,
we sum the renormalization identity (5.6) over the primal cells, and sum the obtained relation with the
kinetic energy balance (7.11). Since the discrete gradient and divergence operators are dual with respect
to the L2 inner product (see (4.10)), we get (7.13). Under the CFL condition (7.12), the remainder term
Rn+1

E defined in (7.8) is non-negative. The existence of a solution (ρn+1,un+1) to the scheme (7.1) again
follows from the Brouwer fixed point theorem.

Remark 7.1. The restriction (7.12) on the time-step is a convective-diffusive CFL condition. In
particular, it is satisfied if the time step simultaneously satisfies the following two conditions:

δt ≤ min
σ∈Eint

ρnDσ
|Dσ|

∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρ
n,un)

)− and δt ≤ min
σ∈Eint

2 ρnDσ
|Dσ|

̺(A)
.

The first condition is a convective CFL restriction associated with the velocity of the fluid, which is
consistent with the explicit upwind discretization of the momentum convection term in (7.2a). As to the
second condition, it is also a classical diffusive CFL restriction associated with an explicit treatment of
the diffusion term. Indeed, if the Lamé coefficients µ and λ are of the same order of magnitude, usual
regularity assumptions on the mesh imply that:

̺(A) ∝ µhd−2
T ,
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where hT is a characteristic length of the mesh cells. Therefore, if the viscosity µ is small, typically
µ ≈ hT , the diffusive CFL restriction is comparable to the convective CFL restriction.

Lemma 7.7 (Global discrete entropy inequality). Let ε > 0 and assume that the initial data (ρε0,u
ε
0)

satisfies (7.4). By Lemma 7.6, for ε small enough, there exists a solution (ρn,un)0≤n≤N to the scheme
(7.1). Moreover, if the time-step satisfies the CFL restriction (7.12) for all 1 ≤ n ≤ N , then there exists
C > 0 independent of ε such that, for ε small enough and for all 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ|2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
n
K) +

δt2

2 ε4

n
∑

k=1

∑

σ∈Eint

|Dσ|
ρk−1
Dσ

∣

∣(∇pk)σ
∣

∣

2 ≤ C. (7.14)

Proof. Multiplying equation (7.13) by δt and summing over the time steps yields for 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ|2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
n
K) +

δt2

2 ε4

n
∑

k=1

∑

σ∈Eint

|Dσ|
ρk−1
Dσ

∣

∣(∇pk)σ
∣

∣

2
+Rn

≤ 1

2

∑

σ∈Eint

|Dσ| ρ−1
Dσ

|u0
σ|2 +

1

ε2

∑

K∈M

|K| Πγ(ρ
0
K), (7.15)

with Rn =
n−1
∑

k=0

(

Rk+1
E + ε−2

∑

K∈M

Rk+1
K

)

≥ 0.

Let us prove that the right hand side of (7.15) is uniformly bounded for all ε small enough. By Lemma
7.1, ρ−1

K is bounded for all K ∈ M for ε small enough and therefore so is ρ−1
Dσ

for all σ ∈ Eint. Hence,
since uε

0 is uniformly bounded in H1(Ω)d by (7.4), a classical trace inequality yields the boundedness of
the first term. By (7.4), one has |ρ0K − 1| ≤ Cε for all K ∈ M. Hence, by (2.8), the second term is also
uniformly bounded with respect to ε.

From now on, we need to assume that we use a time step independent of the Mach number and
satisfying the constraint (7.12) (which involves the velocity field, which itself depends on ε). The existence
of such a time step is proven in Appendix A.

Under this assumption, by the same arguments as for the pressure correction scheme (see Lemma
6.7), we get that the dynamic pressure is controlled independently of ε; this is stated in the following
lemma.

Lemma 7.8 (Control of the pressure). Let ε > 0 and assume that the initial data (ρε0,u
ε
0) satisfies

(7.4). Then, there exists a solution (ρn,un)0≤n≤N to the scheme (7.1). Let pn = ℘(ρn) and define
δpn =

∑

K∈M δpnK XK where δpnK = (pnK −m(pn))/ε2 with m(pn) the mean value of pn over Ω. If the
time step δt satisfies the CFL condition (7.12) for all 1 ≤ n ≤ N independently of the Mach number ε,
then, one has, for all 1 ≤ n ≤ N :

||δpn|| ≤ CT ,δt, (7.16)

where the real number CT ,δt depends on the mesh and the time step but not on ε, and || · || stands for any
norm on the space of discrete functions.

7.3. Incompressible limit of the scheme. By the same proof as for the previous pressure cor-
rection scheme, we have the following convergence result. Note that by Remark 5.1, an analogous result
is also valid in the inviscid case µ = λ = 0.

Theorem 7.9 (Incompressible limit of the semi-implicit scheme (7.1)).
Let (ε(m))m∈N be a sequence of positive real numbers tending to zero. Let the associated sequence of initial

data (ρε
(m)

0 ,uε(m)

0 ) satisfy (7.4), and the time step satisfy the CFL condition (7.12) for all 1 ≤ n ≤ N
independently of m. Let (ρ(m),u(m)) be a corresponding sequence of solutions of the scheme (7.1). Then
the sequence (ρ(m))m∈N tends to the constant function ρ = 1 when m tends to +∞ in L∞((0, T ),Lγ(Ω)).
Moreover, for all q ∈ [1,min(2, γ)], there exists C > 0 such that:

||ρ(m) − 1||L∞((0,T );Lq(Ω)) ≤ Cε(m), for m large enough.

In addition, the sequence (u(m), δp(m))m∈N tends, in any discrete norm, to a limit (u, δp) which is
the solution to the following inf-sup stable semi-implicit scheme for the incompressible Navier-Stokes
equations:
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Knowing δpn ∈ LM(Ω) and un ∈ HE,0(Ω), solve for δpn+1 ∈ LM(Ω) and un+1 ∈ HE,0(Ω) :

div(un+1)K = 0, ∀K ∈ M, (7.17a)

1

δt

(

un+1
σ − un

σ

)

+ div(un ⊗ un)upσ − div(τ (un))σ + (∇δpn+1)σ = 0, ∀σ ∈ Eint. (7.17b)

8. Numerical tests. We assess the convergence of the scheme on a test case built for this purpose.
Analytical solutions of the 2D barotropic Euler and Navier-Stokes equations are obtained through the
following steps: we first derive a compactly supported H2(R2) solution of the stationary incompressible
barotropic Euler equations consisting in a standing vortex; then, we obtain a time-dependent solution of
the Euler equations by adding a constant velocity motion; finally, we pass to the Navier-Stokes equations
by compensating the viscous forces at the right-hand side. The velocity field of the standing vortex is
sought under the form:

û = f(ξ)

[

−x2
x1

]

, with ξ = x21 + x22.

A simple derivation of this expression yields:

(û ·∇)û = −f(ξ)2
[

x1
x2

]

.

Let us seek the pressure under the form p̂ = g(ξ), so:

∇p̂ = 2 g′(ξ)

[

x1
x2

]

.

Assuming a perfect gas pressure law, the density is given by ρ̂ = g(ξ)1/γ . By construction, these functions
satisfy div(ρ̂û) = 0. Moreover, one has ρ̂(û ·∇)û +∇p̂ = 0 if, and only if −g(ξ)1/γ f(ξ)2 + 2 g′(ξ) = 0
for all ξ. We thus obtain a solution of the stationary Euler equations if g takes the following expression:

g =
(γ − 1

2γ
(F + cM )

)γ/(γ−1)

,

where F is such that F ′ = f2 and cM is a positive integration constant. For the present numerical study,
we choose γ = 3 and f(ξ) = 10 ξ2(1 − ξ)2 if ξ ∈ (0, 1), f = 0 otherwise, which indeed yields an H2(R2)
velocity field. The associated expression of F is:

F (ξ) = 100
(1

5
ξ5 − 2

3
ξ6 +

6

7
ξ7 − 1

2
ξ8 +

1

9
ξ9
)

if ξ ∈ (0, 1), F (ξ) = F (1) =
10

63
otherwise.

The problem is made unstationary by a time translation: given a constant vector field a, the density
ρ and the velocity u are deduced from the steady state solution ρ̂ and û by ρ(x, t) = ρ̂(x − at) and
u(x, t) = û(x − at) + a. The center of the vortex is initially located at x0 = (0, 0)t, the translation
velocity a is set to a = (1, 1)t, the computational domain is Ω = (−1.2, 2.8)2 and the computation is
run on the time interval (0, 0.8). We perform several computations keeping the velocity constant (and
therefore of order 1, according to the expression of f) and varying the Mach number by changing the
parameter cM and therefore also the pressure level and the speed of sound (given by c2 = γ p(γ−1)/γ).
Choosing 1 as the reference value for the velocity and choosing the speed of sound outside the vortex as
the reference speed of sound, the parameter cM and the Mach number Ma (formerly ε) are related as
given in Table 8:

cM 1 102 104 106 108

c 1.08 10. 100 1000 10000

Ma ≃ 1 0.1 0.01 0.001 0.0001
Table 8.1

Values of the speed of sound and Mach number with respect to the parameter cM .
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Fig. 8.1. Euler case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for various Mach numbers
(the curves cannot all be distinguished) and analytical solution.
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Fig. 8.2. Euler case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for various Mach numbers
; zoom near the minimum of the velocity.

Computations are run with the open-source CALIF3S software developed at IRSN [5], with the
pressure correction algorithm (6.1). The mesh is a 500 × 500 uniform grid, and the time step is set at
the same value as the space step, i.e. δt = 0.008, for all the computations, which corresponds to a CFL
number with respect to the material velocity close to 1.5. We apply inlet boudary conditions on ∂Ω with
a velocity fixed to (1, 1)t and the initial fields are computed from the exact solution.

Euler equations. – In the Euler case, since the convection term in the momentum balance is approxi-
mated with a centered discretization, the computations are stabilized by taking into account an artificial
viscosity given by:

µa = ρext vmax h/10,

where ρext stands for the density outside the vortex (which depends on the computation), vmax = 1.4 is
an approximation of the maximal value of the components of the velocity and h is the space step. This
viscosity is of the order of a fifth of the upwinding-induced numerical viscosity. We plot on Figure 8.1 the
second component of the velocity obtained at t = 0.8 along the line x2 = 0.8, which crosses the center of
the vortex. The results are almost independent of the Mach number (in fact, the curves are superimposed
on the figure). To check the differences, a zoom of the curves near the minimum value of the velocity
is shown on Figure 8.2; the maximum of the differences is close to 0.0016, while the amplitude of the
analytical velocity variation is equal to 1.

In addition, the expression of the pressure shows that F is much lower than cM , so a Taylor expansion
shows that the quantity δp defined by

δp = (p− pext)/c,
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Fig. 8.3. Euler case – Difference between the local pressure and the pressure outside the vortex scaled by the speed of
sound, along the line x2 = 0.8, for various Mach numbers.

with pext the pressure outside the vortex and c the speed of sound given in the above table, should be
approximatively independent of the Mach number. This quantity is plotted on Figure 8.3, which shows
that it is indeed the case (the observed discrepancy when the Mach number is close to 1 may be attributed
to the fact that F/cM takes in this case its largest value, and the Taylor expansion is less accurate). Note
that, in the present sequence of tests, the density behaves as the inverse of the Mach number, so we
indeed get the expected scaling of the pressure gradient (or, as plotted here, the pressure variation) as
ρ u2 (or, in other words, an equivalent adimensionalization keeping the density close to 1 would yield the
expected behaviour of the pressure gradient as the square of the Mach number).

Finally, the L1 norm of the difference between the numerical velocity and the piecewise constant
function obtained by taking, on each diamond cell, the value of the continuous solution at the cell mass
center is, at t = 0.8: 0.192 for a Mach number Ma close to 1, 0.189 for Ma= 0.1 and 0.187 for the other
values of the Mach number. For the pressure, the same discrete L1 norm of the difference between the
numerical and analytical solutions scales as the magnitude of the pressure variations, which, in turn, as
said before, scales as the speed of sound c. The ratio between this norm and c reads: 0.0168, 0.0223,
0.0229, 0.0227 and 0.0264, for the tested Mach numbers from 1 to 0.0001. The slightly larger value
obtained for Ma= 0.0001 is probably due to the fact that the pressure is so high in this case that the
algebraic solvers become less accurate.

We also ran a second series of test cases in order to check the stability of the scheme with respect to
acoustic perturbations. For this purpose, an over-pressure ∆p is added to the initial pressure field inside
the vortex (i.e. in the set {x = (x1, x2) s.t. ξ = x21 + x22 ≤ 1}). This pressure perturbation generates a
density perturbation ∆ρ that must scale as Ma2 in accordance with the well-prepared data requirement
(see Definition 6.1). One has

∆ρ

ρ0
=

1

3

∆p

p0

where 1/p0 scales like Ma3. Hence, ∆p must vary as 1/Ma as decribed in Table 8.

Ma 0.1 0.01 0.001

∆p 100 1000 10000
Table 8.2

Values of the over-pressure with respect to the Mach number.

Acoustic waves generated by the pressure perturbation are reflected by the Dirichlet boudary condi-
tions on the velocity but are progressively damped by the numerical viscosity. These waves are visible for
Ma= 0.1 in Figure 8.4 but cannot be distinguished for smaller Mach numbers because the perturbation
is too small. The same feature can be observed for the pressure (Figure 8.5).

Finally, the analytical solution is also approximated with the incompressible scheme (6.12) and the
obtained velocity is compared with the velocity computed with compressible scheme. Here again, the
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Fig. 8.4. Euler case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for various Mach numbers
with and without (“wp”) pressure perturbation and analytical solution.
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Fig. 8.5. Euler case – Difference between the local pressure and the pressure outside the vortex scaled by the speed of
sound, along the line x2 = 0.8, for Ma= 0.01 with and without (“wp”) pressure perturbation.
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Fig. 8.6. Euler case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for Ma= 0.001 with and
without (“wp”) pressure perturbation and with the incompressible scheme.

various plots are not easily distinguisheable (Figure 8.6) which assess the asymptotic preserving behaviour
of the scheme for small Mach numbers. A zoom of the curves near the minimum value of the velocity is
shown on Figure 8.7.
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Fig. 8.7. Euler case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for Ma= 0.01 and Ma= 0.001
and for the incompressible scheme; zoom near the minimum of the velocity.
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Fig. 8.8. Navier-Stokes case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for various Mach
numbers (all the curves canot be distinguished) and analytical solution.

Navier-Stokes equations. – The same analytical solution is used for the Navier-Stokes equations, with
a viscosity now given by:

µ = ρext/50,

so for a Reynolds number in the range of 50 (equal to 50 if the characteristic velocity range is set to 1,
equal to 75 if its is set to vmax = 1.5). The corresponding viscous term is compensated by a source term
at the right-hand side of the momentum balance equation. The same curves as for the Euler case are
shown on Figures 8.8-8.10. The numerical error for the velocity (as defined before) is almost independent
of the Mach number: it always falls in the interval (0.099, 0.1). For the pressure, the same scaled quantity
as before reads: 0.0108, 0.0138, 0.0147, 0.0146 0.0183, for the tested Mach numbers from 1 to 0.0001.
The conclusions are thus the same, up to the minor difference that the results in the Navier-Stokes case
are slightly more accurate.

Appendix A. Existence of a time step satisfying the CFL condition (7.12) for all Mach

numbers.

In this appendix, we prove that for the semi-implicit scheme (7.1), it is possible to define a time-step
δt which satisfies the CFL condition (7.12) independently of the Mach number ε. This allows to prove
the discrete global entropy estimate (7.14) independently of the Mach number. More precisely, we prove

that under a convective CFL condition which is more restrictive than expected (δt ≤ Ch
1+ d

2

T instead of
δt ≤ ChT with C independent of ε), the discrete global entropy estimate (7.14) holds true.

Let θT be a measure of the regularity of the mesh in the sense that

K ∈ M, ∀σ, σ′ ∈ E(K), |σ′|/|Dσ| ≤ C1(θT )h
−1
T (A.1)
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Fig. 8.9. Navier-Stokes case – Second component of the velocity at t = 0.8 along the line x2 = 0.8 for various Mach
numbers ; zoom near the minimum of the velocity.
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Fig. 8.10. Navier-Stokes case – Difference between the local pressure and the pressure outside the vortex scaled by the
speed of sound, along the line x2 = 0.8, for various Mach numbers.

for some nondecreasing function C1.
Moreover, thanks to classical inverse inequalities, there exists a nondecreasing function C2 such that

∀u ∈ HE(Ω), ||u||L∞(Ω)d ≤ C2(θT )h
− d

2

T ||u||L2(Ω)d . (A.2)

Since the initial data satisfies (7.4), the initial total energy is uniformly bounded with respect to ε.
We denote by C0 a uniform upper bound (which depends on the real number C appearing in (7.4) and
on the spatial discretization T ), which thus satisfies for all ε > 0:

1

2

∑

σ∈Eint

|Dσ| ρ−1
Dσ

|u0
σ|2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
0
K) ≤ C0.

We define:

C(d, θT , C0) :=
1

2
√
2dC1(θT )C2(θT )C

1
2
0

.

We have the following result.
Proposition A.1. Let η be a fixed small parameter in (0, 1). If the time step δt satisfies the following

CFL condition, which is independent of the Mach number:

δt ≤ (1− η)min

(

C(d, θT , C0)h
1+ d

2

T , min
σ∈Eint

2 |Dσ|
̺(A)

)

, (A.3)
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then there exists ε̄ (depending on γ, the spatial discretization T , the real number C in (7.4) and on η)
such that for all ε ∈ (0, ε̄):

max
n=0,..,N

{1

2

∑

σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ |2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
n
K)
}

≤ C0. (A.4)

Remark A.1. As a by-product of the proof, we can see that, if the time step δt satisfies the CFL
condition (A.3), then it satisfies the classical CFL condition (7.12) independently of the Mach number
ε, and this also allows to prove (A.4). Actually the proof given hereunder consists in proving (7.12) and
(A.4) simultaneously, thanks to an induction process.

Proof. Let δt satisfy the CFL condition (A.3). Let (αn
ε )n=0,..,N and (βn

ε )n=0,..,N be the two sequences
defined by:

αn
ε := min

(

min
σ∈Eint

ρnDσ

|Dσ|−1
∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρn,un)
)− , min

σ∈Eint

2 ρnDσ

|Dσ|−1̺(A)

)

,

βn
ε :=

1

2

∑

σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ|2 +

1

ε2

∑

K∈M

|K|Πγ(ρ
n
K).

By Lemma 7.6 and Remark 7.1, we know that for all 0 ≤ n ≤ N − 1 and for all ε > 0, δt ≤ αn
ε =⇒

βn+1
ε ≤ βn

ε . Let us prove by induction that for all 0 ≤ n ≤ N − 1, if

∃ εn > 0 such that βn+1
ε ≤ βn

ε ≤ .. ≤ β0
ε ≤ C0 for all ε ∈ (0, εn), (A.5)

then

∃ εn+1 > 0 with εn+1 ≤ εn such that δt ≤ αn+1
ε for all ε ∈ (0, εn+1). (A.6)

Let us assume that (A.5) holds for some n such that 0 ≤ n ≤ N − 1. Then, for every σ = K|L ∈ Eint,
thanks to (4.6), we get:

|Dσ|−1
∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρ
n+1,un+1)

)− ≤ 2d|Dσ|−1 max
σ′∈E(K)∪E(L)

|FK,σ′(ρn+1,un+1)|

≤ 2d max
σ′∈E(K)∪E(L)

|σ′|
|Dσ|

|ρn+1
σ′ | |un+1

σ′ |

≤ 2dC1(θT )h
−1
T

(

max
K∈M

|ρn+1
K |

)(

max
σ∈Eint

|un+1
σ |

)

≤ 2dC1(θT )h
−1
T

(

max
K∈M

|ρn+1
K |

)

||un+1||L∞(Ω)d ,

(A.7)

with C1(θT ) defined by (A.1). Now by (A.2),

||un+1||L∞(Ω)d ≤ C2(θT )h
− d

2

T ||un+1||L2(Ω)d

≤ C2(θT )h
− d

2

T

( 2

min
K∈M

ρnK

)
1
2
(1

2

∑

σ∈Eint

|Dσ| ρnDσ
|un+1

σ |2 + 1

ε2

∑

K∈M

|K|Πγ(ρ
n+1
K )

)
1
2

.

Hence by (A.5) , we obtain that

||un+1||L2(Ω)d ≤
( 2

min
K∈M

ρnK

)
1
2

C
1
2
0 .

Injecting in (A.7), we obtain:

min
σ∈Eint

ρn+1
Dσ

|Dσ|−1
∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρn+1,un+1)
)− ≥ C(d, θT , C0)h

1+ d
2

T

min
K∈M

ρn+1
K

max
K∈M

ρn+1
K

(

min
K∈M

ρnK

)
1
2

.

Invoking once again the left hand side of (A.5), we have βn+1
ε ≤ βn

ε ≤ C0 for all ε ∈ (0, εn), which implies
that ||Πγ(ρ

n+1)||L1(Ω) ≤ C0ε
2 and ||Πγ(ρ

n)||L1(Ω) ≤ C0ε
2 for all ε ∈ (0, εn). By Lemma 2.2, this implies
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that for all K ∈ M, ρnK → 1 and ρn+1
K → 1 as ε→ 0. Hence, there exists 0 < εn+1 ≤ εn such that for all

ε ∈ (0, εn+1):

min
σ∈Eint

ρn+1
Dσ

|Dσ|−1
∑

ǫ∈Ē(Dσ)

(

Fσ,ǫ(ρn+1,un+1)
)− ≥ (1− η)C(d, θT , C0)h

1+ d
2

T . (A.8)

Obviously, εn+1 depends on η. It also depends on γ and on the spatial discretization (namely θT and
hT ) since one has to bound the L∞-norm of ρn − 1 (resp. of ρn+1 − 1) by the Lmin(2,γ)-norm of ρn − 1
(resp. of ρn+1 − 1) thanks to an inverse inequality, combined with the estimates of Lemma 2.2. Upon
diminishing εn+1, we can also prove that for all ε ∈ (0, εn+1):

min
σ∈Eint

2 ρn+1
Dσ

|Dσ|−1̺(A)
≥
(

min
σ∈Eint

2 |Dσ|
̺(A)

)

(

min
K∈M

ρn+1
K

)

≥ (1− η) min
σ∈Eint

2 |Dσ|
̺(A)

. (A.9)

Combining (A.8) and (A.9), we obtain that δt ≤ αn+1
ε for all ε ∈ (0, εn+1). Hence, by a straightforward

induction process, the proposition is proved with ε̄ := εN−1 provided that there exists ε0 such that
β1
ε ≤ β0

ε for all ε ∈ (0, ε0). Again by Remark 7.1, it is sufficient to prove that for some ε0 > 0, δt ≤ α0
ε

for all ε ∈ (0, ε0). Following similar steps as above, this is easily proved with ε0 only depending on the
real number C in (7.4) and on the discretization.

Appendix B. Test of the scheme on a low Mach number shock solution.

In this section, we complement the numerical tests of the scheme with the computation of a shock
solution, namely the solution of Euler equations featuring a single shock travelling to the right, and
generating material velocities small compared to the speed of sound. This test is slightly beyond the
scope of the present analysis since the adimensionalization used to formulate the problem does not hold
here. Indeed, in order to obtain the inverse of the square of the Mach number Ma as factor of the pressure
gradient, all the other terms of the momentum balance equation must behave before adimensionalization
as Ma2; for ∂t(ρ u), this requires that the time behaves as 1/Ma. From a physical point of view, this
assumption is justified by the fact that the flow under consideration is governed by material convection, so
that the unknowns vary at a time scale equal to L/u, with L a characteristic range of the geometry of the
computational domain. However, it seems impossible to satisfy this assumption for a solution governed
by shock waves, since, in this case, the characteristic speed governing the variation of the unknowns is
now in the range of the speed of sound, and not of the material velocity. As a consequence, as we observe
below, the pressure gradient (or pressure variation) behaves like the Mach number, and not its square.
Nevertheless, it seems interesting to check the behaviour of the scheme when computing such a flow.

The equation of state is now

p = ℘(ρ) = ρ2.

Let ρR and uR = 0 be the right state, and let ξ be the speed of the shock. This latter is supposed to be
the right wave, so, in order to satisfy entropy conditions, ξ much be larger than the speed of sound in
the right state, i.e. ξ2 ≥ 2ρR. The Rankine-Hugoniot conditions yield the left state:

ρL =
1

2

(

(ρ2R + 4ξ2ρR)
1/2 − ρR

)

, uL =
ξ

ρL
(ρL − ρR).

Let us introduce the parameter M ≥ 0 such that the shock speed reads:

ξ2 = (2 + 3M) ρR.

For low values of M , we have, at the leading order:

ρL ≃ ρR, ρL − ρR ≃ ρRM, uL ≃ (2ρR)
1/2M ≃ (2ρL)

1/2M,

so that the parameter M is approximatively equal to the ratio between the velocity and the speed of
sound in the left state, i.e. the characteristic Mach number of the flow.

The computational domain is Ω = (−1.5, 1) and the shock is located initially at x = −0.5. The
computation is performed with the natural one-dimensional version of the scheme, and, in one-dimensional
cases, no stabilization seems to be needed, so that no artificial viscosity is used here. The density ρR is
equal to 1, and thus the shock velocity is slightly larger than 2, depending on M . The space step is 0.001
and the time step is 0.00025; therefore the CFL number with respect to the waves celerity is close to 0.5.
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Fig. B.1. Travelling shock – Ratio between the velocity and the parameter M at t = 0.5 for various Mach numbers
(curves for M = 0.01 and M = 0.001 cannot be distinguished).
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Fig. B.2. Travelling shock – Quantity (p − 1)/M at t = 0.5 for various Mach numbers (curves for M = 0.01 and
M = 0.001 cannot be distinguished).

We plot the results obtained at t = 0.5 for the quantities u/M and (p−pR)/M . As expected, results only
slightly vary with the Mach number: for M close to one, the compression at the shock counterbalances
the numerical diffusion, and the shock is slightly less smeared; results are very similar for all low values
of M . One can note the presence of a ”ghost 1-wave”, that is a perturbation of the numerical solution at
the location of the 1-wave, the amplitude of which is zero in the continuous solution; this perturbation
tends to zero with the space and time steps.

We now turn to a test case inspired by [13, 17]. The computational domain is Ω = (0, 1), the equation
of state is

p = ℘(ρ) =
1

2

1

M
ρ2,

where M is a small parameter, and the initial data is

for x < 0.2, ρ = 1, u = −M
2
,

for 0.2 ≤ x < 0.3, ρ = 1 +M, u = 0,

for 0.3 ≤ x < 0.7, ρ = 1, u =
M

2
,

for 0.7 ≤ x < 0.8, ρ = 1−M, u = 0,

for 0.8 ≤ x, ρ = 1, u = −M
2
.

In the considered range for M , the speed of sound is close to M−1/2 and, to keep the waves inside
the domain, we choose T = 0.1M1/2 as final time. The space step is h = 0.001 and we first choose
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Fig. B.3. Compressible test case – Ratio between the velocity and the parameter M1/2 at final time for M = 0.01 and
M = 0.0001.

δt = h/(1 +M−1/2) as time step, which yields a CFL number with respect to the waves celerity close to
1.

We first compute the solution for M = 0.01 and M = 0.0001, and observe that the velocity varies as
M1/2 while the pressure variation in the domain remains close to one. In vue of the value of the speed of
sound, the Mach number is close to M . In addition, as for the travelling shock test case, the behaviour of
the pressure and the velocity is consistent with an equilibrium between the ∇p and ∂t(ρu) terms; indeed,
the pressure variation δp satisfies

δp ≃ L

T
ρu,

with L/T in the range of the waves celerity. The quantities u/M1/2 and P − 1/M are plotted on Figures
B.3 and B.4 respectively. The quality of the results given by the scheme does not appear to be affected
by the value of M .

For M = 0.0001, we next investigate the effect of raising the time step (Figures B.5 and B.6). We
observe that the scheme remains stable, and, as expected, when taking larger and larger time steps,
results are progressively smeared.

Remark B.1 (Shifting the value of the velocity). If we choose as initial data ũ = u+1, the solution
(ũ, p̃) may be simply deduced from the solution (u, p) of the initial problem by ũ(x, t) = u(x− t, t)+ 1 and
p̃ = p(x−t) (for instance, thanks to the invariance of the Euler equations with respect to a Galilean change
of observation frame). One the one hand, we would thus expect that it would not change the behaviour
of the system with respect to the balance between compressibility and material convection effects, but, on
the other hand, the strict application of the Mach number definition now yields Ma ≡ M1/2 (since the
velocity is now close to 1 and the speed of sound is unchanged) and the pressure variation now varies
as ρu2 (both are close to 1). In addition, note that we may add any constant value to the velocity, so
solutions deduced one from the another one by the above mentioned simple shift of the velocity and change
of space variable may be associated with quite different Mach numbers. In view of these considerations,
the proper way to adimentionalize such a problem is not so clear to us.
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[52] S. Noelle, G. Bispen, K. Arun, M. Lukác̆ová-Medvid̆ová, and C.-D. Munz. A weakly asymptotic preserving low Mach

number scheme for the Euler equations of gas dynamics. SIAM Journal of Scientific Computing, 36:989–1024,
2014.

[53] R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numerical Methods for Partial
Differential Equations, 8:97–111, 1992.

[54] S. Schochet. Hyperbolic-hyperbolic singular limits. Communications in Partial Differential Equations, 12:589–632,
1987.
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[60] D. Vidović, A. Segal, and P. Wesseling. A superlinearly convergent Mach-uniform finite volume method for the Euler
equations on staggered unstructured grids. Journal of Computational Physics, 217:277–294, 2006.

[61] C. Wall, C. Pierce, and P. Moin. A semi-implicit method for resolution of acoustic waves in low Mach number flows.
Journal of Computational Physics, 181:545–563, 2002.

[62] I. Wenneker, A. Segal, and P. Wesseling. A Mach-uniform unstructured staggered grid method. International Journal
for Numerical Methods in Fluids, 40:1209–1235, 2002.

[63] S. Yoon and T. Yabe. The unified simulation for incompressible and compressible flow by the predictor-corrector
scheme based on the CIP method. Computer Physics Communications, 119:149–158, 1999.

[64] H. Zakerzadeh. On the Mach-uniformity of the Lagrange-projection scheme. Mathematical Modelling and Numerical
Analysis, 51:1343–1366, 2017.

36


