
HOW TO CHOOSE NEW AXIOMS FOR SET THEORY?

LAURA FONTANELLA

1. Introduction

The development of axiomatic set theory originated from the need for a rigorous
investigation of the basic principles at the foundations of mathematics. The classical
theory of sets ZFC offers a rich framework, nevertheless many important mathemati-
cal problems (such as the famous continuum hypothesis) cannot be solved within this
theory. Set theorists have been exploring new axioms that would allow one to answer
such fundamental questions that are independent from ZFC. Research in this area
has led to consider several candidates for a new axiomatisation such as Large Cardi-
nal Axioms, Forcing Axioms, Projective Determinacy and others. The legitimacy of
these new axioms is, however, heavily debated and gave rise to extensive discussions
around an intriguing philosophical problem: what criteria should be satisfied by ax-
ioms? What aspects would distinguish an axiom from a hypothesis, a conjecture and
other mathematical statements? What is an axiom after all? The future of set theory
very much depends on how we answer such questions. Self-evidence, intuitive appeal,
fruitfulness are some of the many criteria that have been proposed. In the first part of
this paper, we illustrate some classical views about the nature of axioms and the main
challenges associated with these positions. In the second part, we outline a survey of
the most promising candidates for a new axiomatization for set theory and we discuss
to what extent those criteria are met. We assume basic knowledge of the theory ZFC.

2. Ordinary mathematics

Before we start our analysis of the axioms of set theory and the discussion about
what criteria can legitimate those axioms, we should address a quite radical view based
on the belief that ‘ordinary mathematics needs much less than ZFC or ZF ’. This claim
suggests that strong axioms such as the Axiom of Choice, or Infinity are not really
needed for standard mathematical results, and certainly ordinary mathematics does
not need new strong axioms such as Large cardinals axioms, Forcing Axioms etc. If
so, then our goal of securing the axioms of ZFC and the new axioms would simply be
irrelevant or a mere set theoretic concern (where set theory is not considered standard
mathematics).
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The issue with this view is to clarify what counts as ‘ordinary mathematics’. In fact,
the Axiom of Choice is heavily used in many fields such as Algebra, General Topol-
ogy, Measure Theory and Functional Analysis. For instance, the Axiom of Choice is
indispensable for the following claims and theorems (they are actually equivalent to
the Axiom of Choice):

• For every equivalence relation there is a set of representatives.
• Every vector space has a basis.
• Krull’s theorem: Every unital ring other than the trivial ring contains a max-

imal ideal.
• Tychonoff theorem.
• In the product topology, the closure of a product of subsets is equal to the

product of the closures.
• Every connected graph has a spanning tree.
• Every surjection has a right inverse.

Other weaker consequences of the Axiom of Choice cannot be proven within ZF:

• Baire category theorem (which is equivalent to the Axiom of Dependent Choice).
• Hahn Banach theorem.
• Every Hilbert space has an orthonormal basis.
• Every field has an algebraic closure.
• Stone’s representation theorem for Boolean algebras.
• Nielse-Schreier theorem: every subgroup of a free group is free.
• Vitali theorem: there exists a set of reals which is not Lebesgues measurable.
• The existence of a set of reals which does not have the Baire property.
• The existence of a set of reals which does not have the perfect set property.
• Every set can be linearly ordered.

Thus, important applications of the Axiom of Choice can be found in many areas,
hence rejecting the Axiom of Choice would come with a big price for the scope of
‘ordinary mathematics’.

The analogous claim that ordinary mathematics does not need more than ZFC runs
into a similar problem, as it is often the case that natural questions, that were raised
in what one might consider a standard mathematical framework, turned out to be
independent from ZFC, thus requiring stronger additional axioms to be settled. It
is the case, for instance, for Whitehead problem in group theory: formulated in the
50’s, Whitehead problem was considered one of the most important open problems
in algebra for many years, until S. Shelah showed in 1974 that it was undecidable in
ZFC (see [21]); Whitehead conjecture is true if we accept the axiom of constructibil-
ity, namely that every set is constructible. A similar case is the Normal Moore Space
Conjecture, a topological problem whose solution was eagerly sought for many years
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until strong large cardinal assumptions turned out to be indispensable for its solu-
tion. The reader is certainly familiar with the famous Fermat’s conjecture recently
demonstrated by Wiles who won the Abel prize for his outstanding result; what the
reader might not be aware of, is that Wiles’s proof makes use of Grothendieck’s uni-
verses whose existence requires large cardinals (strongly inaccessible cardinals). More
recently, McLarty undertook a rigorous investigation of the assumptions needed for
Wiles’s proof and showed that finite order arithmetic suffices for the whole construc-
tion (see [15]). It is generally believed that eventually we will be able to prove Fermat’s
conjecture in Peano Arithmetic, yet this remains an open problem.

Independence results have always caused a certain embarrassment in the community
of mathematicians. When a mathematical problem is proven to be independent from
ZFC, suddenly it is labeled as ‘just set theoretical’ or ‘vague’ and no longer mathe-
matical in the traditional sense. A precise definition of what ‘ordinary mathematics’
means should then take into account this attitude towards those problems which, at
first, seem to emerge naturally as intrinsically relevant questions for mathematical re-
search, then are dismissed after proven to require strong axioms. A simple move would
be to claim that independent problems are legitimate mathematical questions that yet
are ‘unsolvable’. In this perspective, then, any attempt to answer such questions with
stronger assumptions can only be seen as speculative. Surely, many mathematicians
navigate these lines of thoughts. For instance, when Nykos [17] proved in 1980 the
consistency of the Normal Moore Space Conjecture from a strongly compact cardinal,
he titled his paper ‘A provisional solution to the Normal Moore Space Conjecture’
(emphasis mine). However, if any result assuming large cardinals were just ‘provi-
sional’, as Nykos’ choice of words suggests, then Large Cardinals Axioms would be
nothing more than mere hypotheses. Yet, despite the general skepticism towards the
legitimacy of these principles, the mathematical community seems to acknowledge
them a different status, a stronger role. In fact, we can point out that Wiles’s proof
of Fermat’s conjecture was well accepted by the community of number theorists de-
spite its use of inaccessible cardinals. Imagine that his proof were assuming Riemann
hypothesis instead, would this be considered a result even worth publishing? The sup-
porter of the view that ordinary mathematics can all be done in ZFC, or in a much
weaker system than ZF, needs to clarify what should be the status of independent
problems and of the additional assumptions needed for their solution.

3. Intrinsic motivations

The word ‘axiom’ comes from the Greek αξιωµα ‘that which commends itself as ev-
ident’. To these days, the concept of axioms maintains the character of a self-evident
statement. As Feferman pointed out (see [2]), the English Oxford Dictionary defines
‘axiom’ as:
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“a self-evident proposition requiring no formal demonstration to prove its truth,
but received and assented as soon as mentioned”.

Clearly, what counts as obvious, self-evident, intuitive or inherently true is highly
subjective. Thus, claiming that the truth of axioms rests on self-evidence would in-
evitably lead to a conception of mathematics as subjective.

“I can in no way agree to taking ‘intuitively clear’ as a criterion of truth in mathe-
matics, for this criterion would mean the complete triumph of subjectivism and would
lead to a break with the understanding of science as a form of social activity.” (Markov
1962).

The self-evidence criterion is also quite restrictive. Not only the new axioms con-
sidered in contemporary set theory are far from self-evident (not even their strongest
supporters claim they are self-evident), but even the axioms of ZFC are not strictly ob-
vious. Certainly, the Axiom of Choice and the Axiom of Infinity were not immediately
‘received and assented as soon as mentioned’, on the contrary they were extensively
debated and a mild skepticism still survives.

“The set theoretical axioms that sustain modern mathematics are self-evident in
differing degrees. One of them – indeed, the most important of them, namely Cantor’s
axiom, the so-called axiom of infinity – has scarcely any claim to self-evidence at all.”
(Mayberry [14, p. 10])

Maddy’s analysis in [9] shows that even the less controversial axioms of the theory
ZF were not motivated by intrinsic reasons but rather practical ones. Consider for in-
stance the Axiom of Foundation: first introduced in the form A /∈ A to block Russell’s
paradox, it is nowadays adopted in its stronger version “every set is well-founded”.
Reasons for reformulating the axiom in this way were not based on self-evidence, but
originated from the belief that “no field of set theory or mathematics is in any general
need of sets which are not well-founded” (Fraenkel, Bar-Hillel and Levy [[3], p. 88]) –
actually, non-well founded sets can be useful in mathematics –. Today the Axiom of
Foundation is better supported by the so-called ‘Iterative conception’. Roughly, this
consists in the idea that sets must be obtained by an iterative process where at a first
stage certain sets are secured ‘immediately’, then new sets can be obtained starting
from the sets at the first level so to form a second level, and at each stage new sets
can be defined from the ones introduced at the previous levels. Under the Axiom of
Foundation, all sets can be obtained in this way, in fact the class of all sets V coincide
with the Von Neumann Universe which is defined as follows. The level zero V0 is the
empty set, then the first level V1 contains just the empty set, at each successor stage
α + 1, the level Vα+1 is defined as the set of all subsets of Vα (in fact V1 coincides
with P(V0)), at limit stages λ, we let Vλ be the union of all Vα for α < λ. The Von
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Neumann Universe is the class obtained from the union of all Vα’s. The Axiom of
Foundation is equivalent to V being equal to the Von Neumann Universe which is the
main expression of the iterative conception just discussed. This is often considered
to be an intrinsic justification for the Axiom of Foundation, yet it is not obvious that
such an iterative process would exhaust all possible sets. On the other hand, the
Von Neumann hierarchy certainly gives a very useful and elegant description of the
class of all sets, thus the Axiom of Foundation has undoubtedly strong practical merits.

Let us reformulate the self-evidence requirement and consider the following criterion
that we may call ‘intrinsic necessity ’:

An axioms must have some intuitive appeal, however the axiom may not be imme-
diately obvious, but it should ultimately occur to us that what the axiom states is true
and it could not be otherwise.

This reformulation may legitimate those controversial axioms that were not im-
mediately accepted, such as the Axiom of Choice, but were progressively welcome
and employed. While the well-ordering principle mainly encountered reluctance, the
equivalent statement ‘the cartesian product of a collection of non-empty sets is non-
empty’ seems to be better accepted by the mathematical community as a fundamental
truth. Unfortunately, the criterion of intrinsic necessity is still problematic. There
is no strong reason for believing that what the Axiom of Choice states could not be
otherwise. In fact, as proven by Banach and Tarski, the Axiom of Choice is actually
paradoxical as it implies a quite counterintuitive statement (Banach-Tarski paradox):
given a solid ball in a 3-dimensional space, there exists a decomposition of the ball
into a finite number of disjoint subsets, which can then be put back together in a
different way to yield two identical copies of the original ball. Thus the Axiom of
Choice challenges basic geometric intuition, leaving a shadow on its alleged intrinsic
necessity. Even the Axiom of Foundation can hardly be justified by the criterion of
intrinsic necessity, as there is no compelling reason for taking the cumulative hierarchy
as a necessary feature or the universe of sets.

4. Extrinsic motivations

We argued that intrinsic motivations such as self-evidence, intrinsic necessity etc.
are subjective and restrictive. Those considerations led Maddy to claim that axioms
are mainly supported by extrinsic motivations, namely by their success, or fruitful-
ness. The roots of this idea already appeared in Gödel [5]:

“Furthermore, however, even disregarding the intrinsic necessity of some new ax-
iom, and even in case it had no intrinsic necessity at all, a decision about its truth
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is possible also in another way, namely, inductively by studying its “success”, that
is, its fruitfulness in consequences and in particular in ‘verifiable’ consequences, i.e.,
consequences demonstrable without the new axiom, whose proofs by means of the new
axiom, however, are considerably simpler and easier to discover, and make it possible
to condense into one proof many different proofs.” (Gödel [5, p. 521] 1947)

It is important to stress that Gödel and Maddy mean different things with the term
‘fruitful’. Let us discuss first Gödel’s view. For Gödel, the fruitfulness of an axiom is
measured in terms of ‘verifiable consequences ’. This is a delicate notion that deserves
several comments. How can we verify a mathematical statement? Is this verification
the result of an empirical process? Gödel was known to believed in some sort of
perception of mathematical entities analogous to our perception of physical objects.
Thus, in Gödel’s view, a mathematical statements can be verified to the extent that
our intuition provides us with an immediate perception of the mathematical objects
involved; other statements cannot be verified directly, but they can be supported by
strong enough extrinsic evidence as long as their consequences can be ‘verified’.

In more recent work, Magidor considers this mathematical verification to be directly
connected to our empirical knowledge of the physical world:

“As far as verifiable consequences, I consider the fact that these axioms [large car-
dinals] provide new Π1

0 sentences which so far were not refuted. In some sense we can
consider these Π1

0 sentences as physical facts about the world that so far are confirmed
by the experience.” (Magidor [13, p. 13])

Whatever meaning we accord to the expressions ‘mathematical verification’ and
‘mathematical evidence’, we should note that, as for natural sciences, a plurality of
verifiable consequences cannot secure the theory with certainty, since even inconsis-
tent mathematical theories can, at first, appear to have many verifiable consequences.
Thus, we can only say of a given axiom or theory that it was not refuted so far. In
other words, paraphrasing Popper, mathematical theories are not strictly speaking
verifiable, they are only falsifiable; but this is not different from physics, chemistry or
other sciences.

A more challenging remark is that mutually incompatible theories can all be ‘suc-
cessful’ in the sense of both Gödel’s and Magidor’s quote. Consider, for instance, the
theory ZFC plus the axiom of measurable cardinals versus ZF+ V=L (more details
about these axioms will be provided in the second part of this paper). These two
theories are incompatible, yet none of their consequences was ‘refuted’ so far.

In Maddy, the concepts of extrinsic justification and fruitfulness changes over her
various writings. In [10] she argues that mathematical entities such as sets are not
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abstract but concrete objects; it follows that an immediate empirical verification of
mathematical statements is possible. In [11], she describes extrinsic justifications as
an inductive process, where a first level mathematics is secured intrinsically, then new
axioms can be justified via their consequences demonstrable in lower-level theories.
Thus, in this view, the verification can be regarded as a proof that the mathematical
statement in question can be derived from a more basic theory for which we have some
sort of intrinsic evidence. Later, Maddy developed a wider conception of extrinsic jus-
tifications that she describes as based on practical, inter-theoretic motivations. In [12],
she explains the ‘success’ of an axiom or a theory on the basis of its effectiveness to
achieve specific mathematical goals, Maddy refers to these sorts of motivations as the
‘proper methods ’. So, for instance, the Axiom of Choice allows one to solve natural
outstanding problems in various areas of mathematics, Projective Determinacy came
into considerations as the result of a broader research for new axioms that might
settle certain problems in analysis and set theory that could not be solved within
ZFC, accordingly certain Large Cardinals axioms are justified as they imply Projec-
tive Determinacy and settle other problems that are independent from ZFC, and so on.

Once again, distinct incompatible theories can be equally successful, even in this
sense. For instance, if many strong Large Cardinals Axioms such as the axiom of
measurable cardinals can be justified in this way, even the axiom of constructibility
V=L can be viewed as an effective mean to achieve specific mathematical goals: V=L
settles the continuum problem as it implies the Continuum Hypothesis (and even
GCH), it also implies the Axiom of Choice (which can be used itself for proving clas-
sical fundamental theorems in mathematics), it settles many other questions that are
independent from ZF, for instance it implies the negation of the Suslin’s hypothesis.
Thus, even this approach is not immune to set theoretical pluralism; if one wants to
defend the view that only one theory of sets is legitimate, then additional motivations
are needed for choosing a specific theory over the others. Maddy’s suggestion is to
appeal on the maximality principle. Roughly, this consists in the idea that we should
prefer the theory that maximizes the concept of set. For instance, the concept of set
underlying large cardinals seems to be wider than the one associated with the axioms
of constructibility which is often ruled out as ’too restrictive’. Reference to this ‘max-
imize rule’ can be found for instance in Drake [1], Moschovakis [16] and Scott [20].
Nevertheless, the alleged restrictiveness of the axiom of constructibility was recently
refuted by Hamkins [6] who proved, roughly, that the axiom of constructibility is reach
enough to allow one to talk about the concept of sets in the sense of large cardinals
within a model of V = L. We will discuss this further in Section 5.

Finally, we can remark that the ‘extrinsic approach’ makes axioms depend on their
consequences. This conflicts with the traditional view that considers axioms to be the
starting point for demonstration from which, ideally, the truth of the other mathe-
matical statements can be derived. Here, the situation is reversed: the consequences
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of an axiom legitimate the axiom, or they lead us to reject it when we have some
‘counter-evidence’ for such mathematical consequences. In this picture, then, math-
ematics resembles Quine’s web of belief, namely any part of mathematics, including
axioms, could be altered in the light of ‘evidence’.

5. The axiom of constructibility

We now illustrate the main candidates for new axioms considered in contemporary
set theory. The oldest one is certainly the Axiom of Constructibility V=L, that asserts
that every set is constructible, namely every set belongs to Gödel’s constructible
universe L. L is inductively defined as follows:

• L0 = ∅;
• Lα+1 is the set of all subsets a of Lα that are definable with parameters in
Lα (i.e. there is a formula ϕ(x, a1, ..., an) with parameters ai ∈ Lα such that
a = {x ∈ Lα; Lα |= ϕ(x, a1, ..., an)});
• when λ is a limit ordinal, Lλ =

⋃
α<λ Lα.

Finally, L :=
⋃
α∈Ord Lα (L is a class). The constructible universe was introduced

by Gödel in 1938 to prove the consistency of the continuum hypothesis. In fact, the
axiom of constructibility implies the generalised continuum hypothesis. Moreover, it
implies the Axiom of Choice, and it settles many other questions that are independent
from ZF, for instance it implies the negation of the Suslin’s hypothesis.

Sentiment in favour of the Axiom of Constructibility can be found for example in
Fraenkel, Bar-Hillel and Levy [3]. Nevertheless, the axiom of constructibility counts
very few supporters among contemporary set theorists. Gödel him self did not consider
V = L as a valid candidate axiom for set theory, as he believed that CH was actually
false. On the other hand, there is no clear evidence for the Continuum Hypothesis or
its negation that would count as a corroboration or a falsification for the Axiom of
Constructibility. Here we have a lucid example of how the extrinsic approach prior-
itizes the consequences over the axiom. Similarly, Maddy suggests that V=L should
be rejected on the basis of the fact that it implies the existence of a an analytic (∆1

2)
non-measurable set of reals, but there is no evidence for the claim that every set of
reals is Lebesgue measurable (we will discuss Lebesgue measurability in Section 8).

“There are also extrinsic reasons for rejecting V = L, most prominently that it
implies the existence of a a ∆1

2 well-ordering of the reals, and hence that there is a ∆1
2

set which is not Lebesgue measurable.” (Maddy [9])

The strongest objections to the Axiom of Constructibility are related to its appar-
ent restrictiveness. In fact, L is provably the smallest inner model of ZFC (i.e. the
smallest class satisfying the axioms of ZFC and containing all the ordinals). It follows
that, if we consider other axioms such as the Axiom of Measurable cardinals (a large
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cardinal axiom that establishes the existence of a measurable cardinal), despite the
incompatibility of this axiom with V=L, it is always possible to talk about the concept
of set in the sense of V=L within the theory ZFC+∃κ measurable, while the converse
seems not possible.

“The language of set theory as used by the believer in V=L can certainly be trans-
lated into the language of set theory as used by the believer in measurable cardinals,
via the translation ϕ 7→ ϕL. There is no translation in the other direction.”(Steel [2])

Actually, as Hamkins showed in [6], there is a sense in which the converse is also
possible.

“even if we have very strong large cardinal axioms in our current set-theoretic uni-
verse V, there is a much larger universe V + in which the former universe V is a
countable transitive set and the axiom of constructibility holds.”

This means that, even the Axiom of Constructibility is reach enough to allow us to
talk about the concept of sets in the sense of large cardinals within a model of V = L.

6. Large cardinals axioms

Let us discuss now Large Cardinals Axioms –there is a whole hierarchy of large car-
dinals axioms, we will discuss just some notions–. A large cardinal is any uncountable
cardinal κ which is at least weakly inaccessible, namely which satisfies the following
two properties:

(1) for every cardinal γ < κ, we have γ+ < κ;
(2) for every subset X ⊆ κ of size < κ, we have supX < κ.

If we replace the condition 1 with the stronger ‘for every cardinal γ < κ, we have
2γ < κ’, then we have the notion of strong inaccessible cardinal; we will simply call in-
accessible the strong inaccessible cardinals. We can observe that the properties above
are all satisfied by ℵ0, thus the axioms of weakly and strongly inaccessible cardinals
establish that there are other cardinals than ℵ0 with those properties. There is no
precise definition of what a large cardinal axiom is, but we can say that all large
cardinals axioms establish or imply the existence of inaccessible cardinals.

The existence of a weakly inaccessible cardinal yields the consistency of ZFC, as if
κ is a weakly compact cardinal, then Lk is a model of ZFC. Since, by Gödel’s incom-
pleteness theorem, ZFC cannot prove its own consistency, it follows that the existence
of large cardinals cannot be proven within ZFC; neither the consistency of large car-
dinals axioms can be proven from the consistency of ZFC. This marks an important
difference between large cardinals axioms and other kind of axioms such as V = L
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whose consistency can be proven relative to the consistency of ZFC.

Let us discuss some intrinsic motivations for the existence of inaccessible cardinals.

• Uniformity. Roughly, this is the belief that the universe of sets should be
uniform, in the sense that “it doesn’t change its character substantially as one
goes over from smaller to larger sets or cardinals, i.e., the same or analogous
states of affairs reappear again and again (perhaps in more complicated ver-
sions)” (Wang [23, pp. 189-90], see also Kanamori and Magidor [8], Solovay,
Reinhardt and Kanamori [22], and Reinhardt [19]); ℵ0 is the first cardinal with
the properties (1) and (2) above, hence a cardinal with the same property must
reappear at higher levels.
• Inexhaustibility. The universe of all sets is too rich to be exhausted by some

basic operations such as power set or replacement, therefore there must be a
cardinal which is not generated by those operations (see e.g. Gödel [5], Wang
[23] or Drake [1]); such a cardinal can be proven to be inaccessible.
• Reflection. The universe of sets is too complex to be completely described by

some property, hence anything that is true of the entire universe, must be true
also at some initial segment of it, it must “reflect” at some Vκ. In particular
there must be a Vκ which is also closed by the power set and replacement
operations; then κ can be proven to be inaccessible.

All these arguments seem to rest on mathematical platonism in an essential man-
ner, as they appeal on some specific conception of “the universe of sets” as uniform,
inexhaustible, indescribable and so on. But even assuming a platonic point of view,
what reasons do we have to believe that the universe of sets has such features? Some
issues arise, for instance, with the claim of uniformity. In fact, there are properties
that do hold at ℵ0 and do not occur at higher cardinals. For instance, Ramsey’s
theorem establishes that for every n,m < ℵ0 and for every coloring of the n-tuples of
ℵ0 into m colors, we can find a set H ⊆ ℵ0 of size ℵ0 such that all the n-tuples of H
have the same color, this is called a homogeneous set ; on the other hand, it can be
proven that no uncountable cardinal can satisfy the same property: if we replace ℵ0
with an uncountable κ, we get a statement that is provably false in ZFC.

Typically, large cardinals generalize properties of ℵ0. For instance, the notions of
Ramsey cardinal, Erdös cardinal, weakly compact cardinals and others can be defined
as special generalizations of the theorem of Ramsey that we just mentioned; some lim-
itations are necessary because as we said the direct generalization of Ramsey Theorem
to an uncountable cardinal is provably false in ZFC. We consider, for example, the
axiom of weakly compact cardinals which establishes the existence of an uncountable
cardinal κ such that for every coloring of the pairs of ordinals of κ into less than κ
many colors there is a homogeneous set of size κ. Once again, we stress the fact that
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generalizations are dangerous as they may lead to inconsistencies as in the case above.

The axiom of weakly compact cardinals can also be defined as a generalization of
Compactness theorem to the infinitary language Lκ,κ. Given two infinite cardinals
κ, λ, we denote by Lκ,λ the infinitary language that roughly allows conjunctions and
disjunctions of less than κ many formulas, and quantifications over less than λ many
variables. Thus, for instance Lω,ω corresponds to first order logic. An uncountable
cardinal κ is weakly compact if, and only if, whenever we have a theory T in Lκ,κ with
at most κ non logical symbols, if T is < κ-satisfiable (i.e. every family of less than κ
many sentences of T is satisfiable), then T is satisfiable. If we remove the restriction
to ‘theories that have at most κ non-logical symbols, we have the notion of strongly
compact cardinal. Other large cardinals axioms can be defined as generalizations of
compactness theorem. Such generalizations imply interesting ‘compactness results’,
namely given some structure, we assume that all its smaller substructures satisfy a
certain property and we deduce that the whole structure satisfy the same property.
For instance assuming a strongly compact cardinal κ it is possible to prove that ev-
ery abelian group of size at least κ is free abelian whenever all its smaller subgroups
are free abelian. The axiom of constructibility on the other hand is the ‘cemetery of
compactness properties’ : for instance, compactness for the freeness of abelian groups
is actually false in V = L. The analysis of such compactness or incompactness results
gives us no strong motivation to support one theory over the other, as there is no co-
gent reason to deem compactness more suitable than incompactness or the converse.
Not even Uniformity helps us in this case, as ZFC proves both compactness and in-
compactness results: for example, König’s lemma can be regarded as a compactness
result1, but on the other hand its generalization to ℵ1 is provably false in ZFC (there
are Aronszajn trees).

We can see that the notion of weakly compact cardinal can be defined both as a
combinatorial and model-theoretic notion. The same occur for other large cardinals,
namely it is often the case that certain mathematical problems arising in completely
different contexts and fields lead to the same large cardinal notions. This fact is
sometimes considered to be an intrinsic motivation for large cardinals, but however
remarkable this might seem, it is not clear how it can can actually be considered as
evidence for these axioms, rather than just a practical advantage.

The most powerful large cardinals axioms are the ones that can be defined as ele-
mentary embeddings of V into some inner model of ZFC. We discuss some of these
notions in the next section.

1Given a tree of height ω whose levels are finite, if every finite subtree has a branch of the same
length as the height subtree, then the whole tree also has a branch of the same length as the height
of the tree
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7. Measurable cardinals and elementary embeddings

In the history of large cardinals axioms the introduction of measurable cardinals was
probably the most crucial step as it lead to the theory of elementary embeddings that
are extremely useful in solving set theoretical problems and answering other mathe-
matical questions. Let us discuss, then, these notions.

In 1902, Lebesgue formulated the measure problem: he asked whether there is a
function that associates to every bounded set of reals a real number between 0 and 1
and such that the function is not identically 0, it is translation invariant and countably
additive. Motivated by this question, he introduced his famous Lebesgue measure (a
function with these properties) and asked whether every bounded set of reals was
Lebesgue measurable, namely whether his measure was defined over every bounded
set of reals. Vitali soon found a counterexample under the Axiom of Choice, the
problem was then reformulated by replacing the condition of translation invariance
with ‘every singleton must have measure 0’, the minimal request for avoiding trivial
solutions. The problem was still proven to be independent from ZF, in fact a coun-
terexample can be built under CH. At this point Banach realized that the problem
did not depend on the structure of R, and it could be reformulated for a general set
S : is there a function µ : P(S) → [0, 1] which is not identically 0, assigns to every
singleton the value 0 and is countably additive? The solution of this problem comes
down to the existence of certain large cardinal, the real valued measurable cardinals.
A cardinal κ is real valued measurable if every set of size κ has a measure µ with the
properties above which moreover is κ-additive, namely for every family {Xα}α of less
than κ many sets, µ(

⋃
αXα) =

∑
α µ(Xα). This is an example of a notion that can be

justified extrinsically by Maddy’s ‘proper methods’, namely it arose naturally as the
solution to a specific mathematical problem.

Now, if we require that not only every set of size κ has a measure, but also the
measure takes just two values 0 or 1, then we have measurable cardinals. In fact this
notion has an extremely powerful characterization: κ is measurable if and only if one
can define a non-trivial elementary embedding2 j : V → M where M is a transitive
class, such that κ is the least cardinal that is moved by j. By using this characteriza-
tion, Scott was able to prove that if there is a measurable cardinal, then V 6= L. Thus,
measurable cardinals, as well as any other stronger large cardinal, are incompatible
with the axiom of constructibility.

Many powerful large cardinal notions can be defined in terms of elementary embed-
dings where we require the transitive class M to be ‘closer’ to V. These notions have
weak intrinsic justifications, in fact the ultimate large cardinal notion expressible in

2A function j : V →M is an elementary embedding if for every formula ϕ and parameters a1, ..., an
one has V |= ϕ(a1, ..., an) if and only if M |= ϕ(j(a1), ..., j(an)).
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terms of elementary embeddings is provably inconsistent with ZFC. This is the no-
tion of Reinhardt cardinal, an uncountable cardinal κ for which there is a non trivial
embedding j of V into itself where κ is the least cardinal which is moved by j.

Large cardinals axioms that establish the existence of elementary embeddings are
more successfully justified by their fruitfulness, as they settle a number of questions
that are independent from ZFC. The mort remarkable application of such cardinals is
the theory of projective sets that under these cardinals gets a very elegant and exhaus-
tive analysis. In fact, the existence of infinitely many Woodin cardinals implies that
every projective set of reals is Lebesgue measurable, has the perfect set property and
the Baire property, the so-called regularity properties. These considerations brings us
to discuss Determinacy hypotheses, which is the object of the next section.

8. Determinacy Hypotheses

The study of regularity properties dates back to the earliest 20th century from the
work of the french analysts Borel, Baire and Lebesgue. Research in this area led to
the development of an independent discipline, known as descriptive set theory. About
40 years later, it was shown that the open questions that descriptive set theorists
were trying to solve (namely whether every set of real has the regularity properties
above) could not be answered within ZFC (as we have seen for Lebesgue mesura-
bility). In 1962 Mycielski and Steinhaus introduced the Axiom of Determinacy AD
which was proven to solve such problems. AD is the assertion that every set of reals
is determined, that means that for every set of reals A, one of the two players has
a winning strategy in the following game of length ω. We regard A as a subset of
ωω (in set theory a real is an omega sequence of natural numbers), the two players
I and II alternatively choose natural numbers n0, n1, n2, ... At the end of the game a
sequence 〈ni; i ∈ N〉 is generated, player I wins if and only if the sequence belongs to A.

The Axiom of Determinacy implies that all sets of reals are Lebesgue measurable,
have the perfect set property and the Baire property. Moreover, the statement that
every set of reals has the perfect set property implies a weak form of the continuum
hypothesis: every uncountable set of reals has the same cardinality as the full set of
reals. On the other hand, AD implies the negation of of the generalised continuum
hypothesis. Despite its fruitfulness, AD was never seriously considered as a valid can-
didate new axiom for set theory as it contradicts the Axiom of Choice –once again the
priority goes on the consequences rather than the axiom, but the consequence (here
the Axiom of Choice) is itself in need for a justification–. This led to investigate two
distinct directions. The first approach was to assume AD in a quite natural subuni-
verse, namely L(R), together with AC in the full universe V (L(R) is the smallest
transitive inner model of ZF containing all the ordinals and the reals). The second
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approach was to consider a weakening of AD, called Projective Determinacy, PD. Pro-
jective Determinacy is the statement that every projective set of reals is determined.
PD implies that every projective set of reals is Lebesgue measurable, has the perfect
set property and the Baire property, and unlike AD, Projective Determinacy is not
known to contradict the Axiom of Choice. Projective Determinacy follows from the
existence of infinitely Woodin cardinals and this is the reason why this large cardi-
nal assumption implies that every projective set of reals has the regularity properties
above.

9. Ultimate L and Forcing Axioms

As we said, the Axiom of Constructibility and the Axiom of Determinacy both
decide the continuum problem (the former implies GCH, the latter implies a weak
form of CH, but it also implies the negation of the generalised continuum hypothesis).
Large cardinals axioms, on the other hand, do not decide the size of the continuum.
So, a quite promising direction of research was considered which combine large car-
dinals with L and it may shed light on the size of the continuum, this approach is
known as V=Ultimate L.

To understand this view, consider the intuition behind the Axiom of Constructibil-
ity: L is build up from a cumulative process where each stage is obtained from the
previous one by a canonical operation, namely by taking the definable subsets of the
previous stage. The universe of sets resulting from this process is quite restrictive as
only few ‘canonical’ sets are accepted at each stage. The idea behind V=Ultimate L
is that, while we want large cardinals to exist in the universe of sets, we only want
to include sets that are canonical or necessary after a fashion. Ultimate L, proposed
by Woodin, is the alleged inner model for supercompact cardinals. Roughly this is
an L-like model where lives a supercompact cardinal. Such a model was not build
yet and it is an open problem whether it can actually be found, but it can be proven
that if the construction of the Ultimate L is successful, then it would contain also
all the stronger large cardinals (i.e. stronger than supercompact cardinals). More
importantly, V=Ultimate L would imply CH.

Magidor, however, expressed some doubts about this approach:

“It is very likely that the Ultimate L, like the old L, will satisfy many of the com-
binatorial principles like ♦ω1 . These principles are usually the reason that “L is the
paradise of counter examples”. They allow one to construct counter examples to many
elegant conjectures. (The Suslin Hypothesis is a famous case).” (Magidor [13])
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As for the Axiom of Constructibility, V=Ultimate L rests on the idea of a limi-
tation of the concept of set through a cumulative process, while other views rely on
the opposite slogan that the concept of set should be as rich as possible. The most
important example of such a liberal view is given by Forcing axioms. Forcing is the
main tool for proving independence results in set theory. There are essentially two
main approaches for building models of set theory and proving consistency results:
one is through inner models which are obtained roughly by ‘restricting’ V into a sub-
class; the other is by using the Forcing technique where, conversely, V is expanded to
a larger universe. Forcing axioms roughly establish that anything that can be forces
by some ‘nice’ forcing notions (a forcing is simply a partially ordered set) is a set in
the universe. For instance, the two most fruitful Forcing Axioms, PFA and MM, are
the following statements.

The Proper Forcing Axiom PFA states that if P is a forcing notion that is proper
and D is a collection of ℵ1 many dense subsets of P, then there is a generic filter that
meets all the dense sets in D.

Roughly, this says that anything that can be forced by a proper forcing is a set in
the universe.

Martin’s Maximum MM asserts that if P is a forcing notion that preserves station-
ary subsets of ω1 and D is a collection of ℵ1 many dense subsets of P, then there is a
generic filter that meets all the dense sets in D.

Roughly, this says that anything that can be forced by a forcing that preserves
stationary subsets of ω1 is a set in the universe. We will not discuss these notions
in the details, we should only point out that MM is the strongest possible version
of a Forcing Axiom and it was proven to be consistent relative to the existence of a
supercompact cardinal (this provides another motivation for large cardinals axioms).
Forcing Axioms settle many important questions that cannot be answered within
ZFC, but more importantly they find remarkable applications in cardinal arithmetic.
In fact, Foreman Magidor and Shelah proved in 1988 that Martin’s Maximum settles
the size of the continuum, it implies that the 2ℵ0 = ℵ2. Later in 1992, Todorčević
and Veličkovic̀ showed that even the weaker axiom PFA implies that the size of the
continuum is ℵ2. Other remarkable applications of Forcing Axioms include the singular
cardinals hypothesis (from PFA), the Axiom of Determinacy in L(R), the statement
that any two ℵ1-dense subsets of R are isomorphic (from PFA), every automorphism
of the Boolean algebra P(ω)/fin is trivial (from PFA), the ℵ2-saturation of the ideal
of non stationary sets on ω1 (from MM), and the reflection of stationary subsets of κ
for any regular cardinal κ ≥ ω2 (from MM).
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