A sequent calculus with dependent types
for classical arithmetic

Etienne MIQUEY

Equipe Gallinette, INRIA
LS2N, Université de Nantes

Workshop Réalisabilité
13 Juin 2018

LABORATOIRE
o DES SCIENCES
L DU NUMERIQUE
> DE NANTES

INVENTEURS DU MONDE NUMERIQUE

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC

A constructive proof of dependent choice
compatible with classical logic

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[Jele}

Proofs-as-programs

The Curry-Howard correspondence

Mathematics Computer Science
Proofs Programs
Propositions Types
Deduction rules Typing rules
I'rA=B T+HA I'tt:A—>B Tru:A
(=E) (—E)
I'+B [+tu:B
Benefits:

Program your proofs! ‘

Prove your programs!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[Jele}

Proofs-as-programs

Mathematics Computer Science
ALY = try. . . catch
A=A X 1= 42
All sets can
be well-ordered FEmEE)
Sets that have the stop
same elements are equal goto

Y We want more !

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oceo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oceo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

1990: Griffin discovered that call/cc can be typed by Peirce’s law

(well-known fact: Peirce’s law = AV —A)

Classical Curry-Howard:

A-calculus + <call/cc

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oceo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

1990: Griffin discovered that call/cc can be typed by Peirce’s law

(well-known fact: Peirce’s law = AV —A)

Classical Curry-Howard:

A-calculus + <call/cc

Other examples:
@ quote instruction ~ dependent choice

@ monotonic memory ~ Cohen’s forcing

.
.
.

The motto
With side-effects come new reasoning principles.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
ooe

Teaser

With side-effects come new reasoning principles.

We will use several computational features:

@ dependent types @ lazy evaluation

@ streams @ shared memory

to get a proof for the axioms of dependent and countable choice
that is compatible with classical logic.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
®00000

The axiom of choice

Axiom of Choice:

AC : VxA3yBP(x,y) —» AfA7BYxAP(x, f(x))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
®00000

The axiom of choice

Axiom of Choice:

AC : VxA3yBP(x,y) —» A 7BVxAP(x, f(x))
= AH.(Ax.wit (Hx), Ax.prf (Hx))

Computational content through dependent types:

CLx:Trt:A o Frp:Alt/x] Trt:T

(3r)
T+ Ax.t: VxLA ' T'r(t,p):IxTA '
T'rp:AxTAx) T'Fp:dxlAx)
. (wit) : (prf)
Frwitp:T ['Fprfp:A(witp)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e Jele]ele]

Incompatibility with classical logic

dependent sum + classical logic = &

Choice:
Ht:Vx e Ady € B.P(x,y) = If € B .¥x € A.P(x, f(x))
Excluded-middle:

Fs:VxeX.dye{0,1}.(U(x)Ay=1)V (-U(x) Ay =0)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e Jele]ele]

Incompatibility with classical logic

dependent sum + classical logic = &

Choice:

Ft:Vx e Ady € B.P(x,y) = If € B*V¥x € A.P(x, f(x))
Excluded-middle:

Fs:VxeX.dye{0,1}.(U(x)Ay=1)V (-U(x) Ay =0)
Take U undecidable:
Fts:Af € {0,1} Vx e X.(Ux) A f(x) =1) V (=U(x) A f(x) =0)

Y ie. wit(ts) computes the uncomputable...

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e Jele]ele]

Incompatibility with classical logic

dependent sum + classical logic = &

On the degeneracy of E-Types
in presence of ...

One can define: Herbelin (2005)

Hy :=call/ccy,(1,throw, (0,p)) : dx.x =0

and reach a contradiction: 00
(wit Hp,prfHy) — (1, p)
~——

*x=0

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e Jele]ele]

Incompatibility with classical logic

dependent sum + classical logic = &

in presence of ...

Herbelin (2005)

On the degeneracy of E-Types
One can define:

Hy :=call/ccy,(1,throw, (0,p)) : dx.x =0

and reach a contradiction:

0=0
(wit Hy,prfHy) — (1, p)
————
x=0
We need to:
Y+ share Y restrict dependent types

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
00e000

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VxNFyPP(x,y) — AFNBYXNP(x, f(x))

@ Proof:

AC := AH.(An.if n = 0 then wit(H 0) else
ifn=1then wit(H 1) else ...,

An.if n =0 then prf(H 0) else
ifn=1then prf(H1)else...)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
00e000

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VxNFyPP(x,y) — AFNBYXNP(x, f(x))

@ Proof:
ACN = AH.let Hy = H 0 1in
letHi =H 11in

(An.if n = 0 then wit H, else
ifn=1then wit H; else ...,
An.if n = 0 then prf H, else
if n=1then prfH, else...)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
00e000

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VxNFyPP(x,y) — AFNBYXNP(x, f(x))

@ Proof:
ACNn:=AH.letH, = (HO0,H1,...,Hn,...)in
(An.wit (nth n Hy),An.prf (nth n Hy))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
00e000

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VxNFyPP(x,y) — AFNBYXNP(x, f(x))

@ Proof:
AC := AH.let He = cofix) (H n,b(S(n)))in
(An.wit (nth n Hy),An.prf (nth n Hy))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e]e]e] Jele]

dPA® (Herbelin’s recipe)

A proof system:
@ classical:
p,q == ... | catchy, p | throw, p

@ with stratified dependent types :

e terms: t,u=..|witp
o formulas: A,B:u=..|VxLA|3dxTA| ga.Blt=u
@ proofs: p.q = ..| Axp | (t,p) | Aa.p

@ a syntactical restriction of dependencies to NEF proofs

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
(e]e]e] Jele]

dPA® (Herbelin’s recipe)

A proof system:
@ classical:
p,q == ... | catchy, p | throw, p

@ with stratified dependent types :

e terms: t,u=..|witp
o formulas: A,B:u=..|VxLA|3dxTA| Hgay.Blt=u
@ proofs: p.qu=...| Ax.p | (t,p) | Aa.p

@ a syntactical restriction of dependencies to NEF proofs
@ call-by-value and sharing:

p,qi=..|leta=gqinp
@ with inductive and coinductive constructions:
p.q == ... | fix} [po|ps] | cofix] p

@ lazy evaluation for the cofix

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC

[e]e]ele] le]

State of the art

Subject reduction

fTFp:Aandp — g, thenT g : A

If I + p : Athen p is normalizable.

| requires

J’édpAw 1

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

CPS-translation?

Y
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

Remark: CPS usually factorize through sequent calculi!

A-calculus A-calculus
CbN CbV
| embed. | embed.
Apfi-calculus Apfi-calculus
CPS ChN] CPS ChbY
| CPS | CPS

A-calculus]

A-calculus]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

 typing/reduction preservation
Y

dLPA®?

+ sequent calculus . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

. CPS-translation?
\
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

 typing/reduction preservation
Y

dLPA®?

+ sequent calculus . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

Allorx] —

. CPS-translation?
\
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

 typing/reduction preservation
Y

dLPA®?
- + sequent calculus . .
dL— [| dependent types F------- Subject reduction
+ co-fixpoints
+ sharing & laziness

(& J

. CPS-translation?
\
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts

Danvy’s semantic artifacts

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
@®@0000000000

CPS translation

Continuation-passing style translation: [-] : source — Amachin
@ preserving reduction

st =[] S [
@ preserving typing
F'rt:A = IT] + [t] : [A]

@ the type [L] is not inhabited

If Amachin is sound and normalizing:
@ If [t] normalizes, then t normalizes
@ If tistyped, then t normalizes

© The source language is sound, i.e. there is noterm Ft: L

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
@®@0000000000

CPS translation

Continuation-passing style translation: [-] : source — Amachin

@ preserving reduction
@ preserving typing
@ the type [L] is not inhabited

If Amachin is sound and normalizing:
@ If [t] normalizes, then t normalizes
@ If tistyped, then t normalizes

© The source language is sound, i.e. there is noterm ¢ : L

Danvy’s methodology —
) . Defunctionalized Interpreters
@ an operational semantics for Call-by-Need Evaluation
) Danvy et al. (2010)
© a small-step calculus or abstract machine
© a continuation-passing style translation

©Q a realizability model

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
(e] Jolelelelelele)ele)

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:

(Proofs) pu=allap| pa.c
(Contexts) ex=a|p-e|fa.c
(Commands) c :=(p|e)

Typing rules:
F'rit:A|A I'le:ArA

(tle)«(I'FA)

(a:A) el [La:A+p:B|A c: (C'rAo:A)
F'ra:A|A 'rlap:A—=B|A I'Fpoc:AlA
(o :A) € A F'rp:A|lA ['leBFrA c:(T,a:ArA)
'l o :Ar A 'lp-e:A>BFrA I'|pac:ArA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
(e] Jolelelelelele)ele)

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:

(Proofs) pu=allap| pa.c
(Contexts) ex=a|p-e|fa.c
(Commands) c :=(p|e)

Typing rules:
' A|A 'l ArA

TrA)
A €T I', A+ BJ|A 'rA, A
' A|A I'+ A—>B|A I'+ Al A
A €A ' A|A ' BErA I, ArA
'l ArA I' | A—->BFA I'| AFA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
(e] Jolelelelelele)ele)

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:

(Proofs) pu=allap| pa.c
(Contexts) ex=a|p-e|fa.c
(Commands) c :=(p|e)

Typing rules:
F'rit:A|A I'le:ArA

(tle)«(I'FA)

(a:A) el [La:A+p:B|A c: (C'rAo:A)
F'ra:A|A 'rlap:A—=B|A I'Fpoc:AlA
(o :A) € A F'rp:A|lA ['leBFrA c:(T,a:ArA)
'l o :Ar A 'lp-e:A>BFrA I'|pac:ArA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
(e] Jolelelelelele)ele)

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:
(Proofs) pu=allap| pa.c
(Contexts) ex=a|p-e|fa.c
(Commands) c :=(p|e)
Reduction:
(dapllq-e) — (gl palple)
(0l fra.cy — c[p/al peP
(pa.cley — cle/a] ee&
Critical pair: (uer.c | jia.c')
/ N
clpa.c’/a] ¢’'[pa.c/a]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
(e] Jolelelelelele)ele)

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:
(Proofs) pu=V|pua.c (Values) Vie=al la.p
(Contexts) e :==F | jla.c (Co-values) E:ux=a|p-e
(Commands) c :=(p|e)

Reduction: i
(Aaplg-e) — (qlpalpler)
(pl fa.cy — c[p/al peP
(na.cley — cle/a] eec&
Critical pair: » (uer.c | jia.c') i
v N
clpa.c’/a] c'[pa.c/a]

A sequent calculus with dependent types for classical arithmetic

Etienne MIQUEY

Semantic artifacts
(e]e] Jelelelelele)ele)

Call-by-name Apjfi-calculus

Syntax:
(Proofs) p ==V | ua.c (Contexts) e ==FE | fia.c
(Values) V:i=al lap (Co-values) E:x=a|p-e

(Commands) c:=(p|e)
Reduction rules:

(pll pa.c) — c[p/a]
(ua.c | E) c[E/a]
(Aa.plq-e) — (gl ralpler)

l

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0000000000

Semantic artifacts

(Proofs) p ==V | ua.c (Contexts) e ==E | fia.c
(Values) V :=allayp (Co-values) E:x=a|p-e

(Commands) c=={p|e)

Small steps

1. plpacy ~ ce[p/a]

PlE). v Pl E),
1, (paclE), ~ Ce[E/a]
(VIE), ~ (VIE)E

TE Vlgas ~ (Vigey
—v Qaplg-ey ~ {qlialple,

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0000000000

Semantic artifacts

(Proofs) p ==V | ua.c (Contexts) e ==E | fia.c
(Values) V :=allayp (Co-values) E:x=a|p-e

(Commands) c=={p|e)

Small steps CPS
1. Aplpac) o celp/al [ia.clep = (Aa.[c]c) p
PIE). ~ (lE), [Elep = p [E]£
1L, (paclEy, ~ ce[E/a] [pa.clyE 2 (Aa.[c].)E
(VIE), ~ (VIEE [VI,E=ZE[V]y
T Vig-e)g ~ (Vig-eyw lg-ele V=V]ql, el
TV Laplg-eyy ~ {(qlpalpler). [Aa.plv qge = (Aa.e[p],) q

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0000000000

Semantic artifacts

(Proofs) p ==V | ua.c (Contexts) e ==E | fia.c
(Values) V :=allayp (Co-values) E:x=a|p-e
(Commands) c=={p|e)
Small steps CPS
1. Aplpac), o ce[p/al [ia.clep = (Aa.[c]c) p
PIE. ~ {plE), [Elep = p[Ele
1L, (paclEy, ~ ce[E/a] [pa.clyE 2 (Aa.[c].)E
VIE), ~ (VI E)g [VI,E=ZE[V]y
TF Vlg-e)g ~ Vig-ew lg-ele V=V]ql, el
TV (laplg-eyy ~ (qlpalple)). [Aa.plv qge = (Aa.e[p],) q
cvo = el —p [

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0000000000

Semantic artifacts

(Proofs) (Contexts)
(Values) (Co-values)

(Commands) c:={p|e)

CPS Types translation
1. paclep = (Aafc]o)p [A]l. = [All, — L
[[E]]ep ép [[E]]E
1, pacyE= (Aec]c) E [A]l, £ [Allg — L
[V, EZ ETVIy
T° la-elev=Vidlp el [Allz = [Allv — L
TV [Pap]vqge 2 (Aae[p],)q [A— Bllv = [All, — [Alle — L

Trp:A|A - [T1,.[ADz + [pl, : [AL

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts

[e]e]e]e] Jelelelelele]

Consequences

Normalization

Typed commands of the call-by-name Apji-calculus normalize.

Inhabitation

There is no simply-typed A-term t such that ¢ : [L]],.

Proof. [L]lp = (L — 1) — L and Ax.x is of type L — L. O

Soundness

There is no proof p such that Fp: L |.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

rle

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

pley>c>-->cp

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

pley>c>-->cpe 1L?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

pley>c>-->cpe 1L?

~ 1l C A% II closed by anti-reduction

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A||: contexts, opponent to A
@ truth value |A]| : proofs, player of A

@ pole 1: commands, referee

pley>c>-->cpe 1L?
~ 1l C A% II closed by anti-reduction

Truth value defined by orthogonality :
Al = IAII- ={peA:Vec|Alple) e 1}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O00000@0000

Semantic artifacts++

(Terms) pu=paclalV (Contexts)
(Values) V= Aa.p (Co-values)

Small steps

plpacye ~ ce[p/al
PIE). — ~ LI E)p

(pa-clE), ~ clE/a]
(VIE), ~ (VIE)

Vlg-e)p ~ (Vlg-e)y
(Aaplg-eyy ~ (qlpaiple).

|
[
by

|
[
<

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O00000@0000

Semantic artifacts++

(Terms) pu=paclalV (Contexts) e == fia.c | E
(Values) V= Aa.p (Co-values) Ex=a |p-e
Small steps Realizability
(plpacye ~ ce[p/a] IAlle = Al
PIE)e P 1E),
s (pa.clEy, ~ ce[E/a] Al = Al
VIE), ~ VIE)E
+r (Vlig-ey ~ (Vig-ey IA—= Bz ={g-e: qelA]
. A e € ||B|le
Ly Gaplg-ey ~ (qliaiple), ¢ € lIBle]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O000000e000

Extension to second-order

I'|e:A[n/x]+A
'le:Vx.Ar A

LrpsAlA x¢FVT.A)
Trp:VxA|A e

(V)

Fle:A[B/X]I—A(vZ) Trp:A|A X ¢FV([,A) v
Tle:VX.ArA ! TrFp:YX.A|A)

(Curry-style)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000000e00

Realizability a la Krivine (2/2)

Standard model N for 1%'-order expressions

Definition (Pole)

1. € A XII of commands s.t.:

Ye,o!, (e lLAec—) = cell

Truth value (player):
Alp = lAlle™ ={pe A:Vec |lAll,(ple) € 1}

Falsity value (opponent):

IA—=Bllg = {g-e: qe€lAl, Ae€|Bl}
Al, = Al = {p: VeellAllg{ple)ye 1}
|Alle = JAl," = {e: YpelAl.(ple)e 1}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000000e00

Realizability a la Krivine (2/2)

Standard model N for 1%'-order expressions

Definition (Pole)
1L € A X II of commands s.t.:

Ye,o!, (e lLAec—) = cell

Truth value (player):
Alp = lAlle™ ={pe A:Vec |lAll,(ple) € 1}

Falsity value (opponent):

IA—=Bllg = {g-e: qe€lAl, Ae€|Bl}
IVx.Allg = Unen IA[n/x]llE

Al = lAlle™ = {p: Vee llAllg.<ple) € 1L}
IAlle = [Al," = {e: Vpe|A(ple) e L}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O0000000e00

Realizability a la Krivine (2/2)

Standard model N for 1%'-order expressions

Definition (Pole)

1. € A XII of commands s.t.:

Ye,o!, (e lLAec—) = cell

Truth value (player):
Alp = lAlls" ={p e A:Ve e |lAll.{plle) € 1L}
Falsity value (opponent):
IF(er,....e)lle = F([e],- .., [ex])
IA—=Bllg = {g-e: qe€lAl, Ae€|Bl}
IVx.Alle = Unen lA[n/x]llE
VX Alle = UrnespallAF/X]E
[Al, = llAllE" = {p: Vee llAllg.(ple) € 1}
[Alle = A" = fe: Vpe|Alp(ple) € 1L}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O00000000e0

Adequacy

Valuation p:
p(x) e N p(X) : Nk = P(10)
Substitution o:

ocu=¢|o,a=p|o,a:=E

clkT £ {"(“)e Al V(a:A)eT
o(a) € |Allg Y(a:A"%)eT

Adequacy
If o IF (' U A)[p], then:
QTrp:AlA = plo] € lAlplly Qc:TrA) = clo]lel

@Tle:ArA = efo] € llA[p]ll

Proof. By mutual induction over the typing derivation. O

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
O000000000e

Results

Normalizing commands

1Ly = {c: c normalizes} defines a valid pole.

Proof. If c — ¢’ and ¢’ normalizes, so does c. O

Normalization

For any command c, if ¢ : I’ + A, then ¢ normalizes.

Proof. By adequacy, any typed command c belongs to the pole 1L . O

Soundness

There is no proof p such that Fp: L |.

Proof. Otherwise, p € | L|, = II"* for any pole, absurd (1L 2 0). O

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need

Classical call-by-need

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
@®0000

Reminder

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

. J

 typing/reduction preservation
Y

dLPA®?

—_ + sequent calculus : .

Allora] — + dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

(& J

. CPS-translation?
\
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
OC@000

Classical call-by-need

Classical Call-by-Need

> Sequent Calculi: ...
The)'[lv'r*] 'CaICUIUS: Ariola et al. (2012)

@ a sequent calculus with explicit “stores”
@ Danvy’s method of semantics artifact:

@ derive a small-step reduction system
@ derive context-free small-step reduction rules

© derive an (untyped) CPS

Questions:
- Does it normalize?

% Can the CPS be typed?

% Can we define a realizability interpretation?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e] le]e)

The Z[lm*]-calculus

Syntax:
(Proofs) p ==V |pua.c e:x=E| pa.c (Contexts)
(Weak values) V u:=wv|a E:=a | F| j[a].{a| F)r (Catchable contexts)
(Strong values) v == Ada.p|k Fu=p-Elxk (Forcing contexts)
(Commands) c¢ :==(p|e)
(Closures) [:=cr
(Store) 7 u=¢€|r[a:=p]
Reduction rules:
(Lazy storage) | pa.cyr — ctla = p]
(pa.c|Eyr — (c[E/a])T
(Lookup) (a| F)rla :=p]z’ — Pl ala](al FYr')z
(Forced eval.) (V| gla]{a| F)t")r — (V| F)rla:=V]r’
(Adaplq-E)r — (qll palpl E))c

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] Jo)

Semantic artifacts

Small steps:

1 e pliacyr - corla=p]
P | Eyer > (pIE)r
-+ P (pa.c| E),t — (c[E/a])T
(VIE,t — (VIEwr

T E (Vlplalal F)z")gt - (VI Fyyrla:=V]t

(VI Fgt - VIFywrt
-V (a| Fyyrla:=p]r’ — (ol plal{al F)r'),7

Jap | Fyyr — (daplF)pr

T F (Aa.plq-E)pt — (qlpaplE))et

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] Jo)

Semantic artifacts

CPS :

+p

Etienne MIQUEY

[plle]

[fa.clle
[E]T.

[pa.cllp
[V

+ £ lplal<al F)r']le

[Flle

[allo
[La.pllo

[g- EllF

Lelle [71l- Tpll,

Arp.[c] t[a := p]
Atp.pt [EllE

ATE.([e]le T)[E/a]
AMEET[V].

AMV.Vrla:= V]t [F]Fr
AtV.V T [F]F

AtF.t(a) t (AtV.V r{a := V]’ [F]lF)
ATF.F v (AqTE.[[p]l, [a := q] E)

Atv.v[qll, T [ElEe

A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] Jo)

Semantic artifacts

Small-step:

+ e | pa.cyr —
PIEY.T —
1 p (pa.c| Eypr —
(VIE),r —
+— E (Vlpglallal| F)yc)gr —
(VI F)et —
+V (a| Fyyrla:=pl" —
(V| F)yr -
1 F (vlg-E)pr — ...
1 v (lapllq-E),t — ...

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts

Classical call-by-need
[e]e]e] Jo)

Small-step:

T € (P " /ja-c>eT
PlE)t

. (uer.c | BNyt

(VIE),r

+ E (Vplalla| F)t")gr
(VI F)gt

+V (a| F)yrla:=p]r’
(V| Fyyr

+ F (vlg-E)pt

1 o (la.p|q-E),t

Etienne MIQUEY

A

1

Realizability:
(L c ?)
IAlle :==1{ €?
[Alp =1 p?
IAllg :=={ E?
[Aly ={ V?
|AllF = { F?

|A — Bl|, :={ Aa.p?

€ |Al,"}

€ [|Allz™)
€ [Aly)
€ lAllF}

€Al

q? € |Al;
= plq/a]? € |Bl;}

A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] Jo)

Semantic artifacts

Small-step: Realizability:
(1L C AXII X 1)
T € plpacyr — [Alle :=1{ e? € |Al,™)}
Pl E)et —
+ P (pa.c| E)yr — [Al, ={ p? € llAllg"}
(VIE),r —
— E (Viglallal| F)r)gr — IAllz = { E? € |Alv ")
(VI F)gt —
Vv alFyrla:=plr" — ... Aly ={ V? € |lAllF")
(V| Fyyr —
+— F (wlg-E)pr — ... lAllp =={ F? €|Al,™}
4 v (lapllq-E),t — ... |A— Bl, :={ Aa.p? : q? €Al
= plg/a]? € |Bl:}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] Jo)

Semantic artifacts

Small-step: Realizability:
(1L C AXII X 1)
T € plpacyr — 1Alle = {(elr) € |Al,™}
Pl E)et —
+— P (pa.c| E)yr — Al = {(plr) € llAllg™}
(VIE),r —
— E (Viglallal| F)r)gr — IAllg = {(El7) € |Aly"}
(VI F)gt —
+V (alFyrla:=plt" — [Aly = {(Vlr) € |AllF}
(V| Fyyr -
+— F (wlg-E)pr — ... IAllF = {(Fl7) € |Al, ™)
4 v (lapllq-E),t — ... |A — Bl|, = {(Aa.p@: (ql7’) € |Al;
= (plrr’[a = q]) € |Bl:}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
O000e

Realizability interpretation

A few novelties:

@ Term-in-store (t|7):

FV(t) € dom(r), r closed

@ Pole : set of closures 1L which is:
e saturated:

c’t"ell and c¢r —c't’ implies cre

e closed by store extension:

ct€ll and 77" implies cr’€ L

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
O000e

Realizability interpretation

A few novelties:

@ Term-in-store (t|7):

FV(t) € dom(r), 7 closed

@ Pole : set of closures 1L which is:
e saturated:

c’t"ell and c¢r —c't’ implies cre
e closed by store extension:
ct€ll and 77" implies cr’€ L

@ Orthogonality :

(tIr)dL(e|r’) & 1,7’ compatible A (t| eyrr’ € .

@ Realizers: definitions derived from the small-step rules!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
O000e

Realizability interpretation

Adequacy

Forall 1L,ifrIFT and I +, ¢, then ¢t € 1L.

Normalization

If +; ¢t then ¢t normalizes.

Proof: The set 1Ly = {ct € Cp : ct normalizes } is a pole.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
O000e

Realizability interpretation

Adequacy

Forall 1L,ifrIFT and I +, ¢, then ¢t € 1L.

Normalization

If ; ¢t then ¢t normalizes.

Proof: The set 1Ly = {ct € Cp : ct normalizes } is a pole.

Initial questions:
% Does it normalize? Yes!
% Can the CPS be typed? Yes! (but it is complicated...)
% Can we define a realizability interpretation? Yes!/

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A sequent calculus with dependent types

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
€000000000

Reminder

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

. J

 typing/reduction preservation
Y

dLPA®?
—+ sequent calculus , :
dL? — dependent types F------- Subject reduction
+ co-fixpoints
+ sharing & laziness

(& J

. CPS-translation?
\
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0®00000000

A classical sequent calculus with dependent types

Can this work?
tp g e

F,a:AI—ﬁ:B[a]lA I‘I—q;AIA FIe:B[q]I—A qEV()
TrAap:ga).BlA T|q-e:TMga).BFA :
(Cur)

Aaplq-e): (Tr D)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0®00000000

A classical sequent calculus with dependent types

Can this work?
tp g e

F,a:AI—ﬁ:B[a]lA I‘I—q;AIA FIe:B[q]I—A qEV()
TrAap:ga).BlA T|q-e:TMga).BFA :

Aaplq-e): (Tr D)

(Cur)

—

Ha la:Arp:Bla]|A T,a:Ale:Blq]+A

pley: (T,a:ArA)
(A1)

(Cur)

Mismatch

Fl—q§A|A I'| palple):ArA
(ql paiple): (TFA)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0®00000000

A classical sequent calculus with dependent types

Can this work? v
tp g e

F,a:AI—ﬁ:B[a]lA I‘I—q;AIA FIe:B[q]I—A qEV()
TrAap:ga).BlA T|q-e:TMga).BFA :

Aaplq-e): (Tr D)

(Cur)

—

M, La:Arp:Bla]|A Ta:Ale:Blglr AllpHalg}

: (pley:T,a: A+ A;{alg}
F'Fg:A|A I'| palple): A A;{lqg)
(ql paiple): (TFA);L{]]

(A)
(Cur)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000000

Apji-calculus + dependent types with:
@ a list of dependencies:

F'rp:A|lAN;0 Tle: A rAollp} A €A,
(pley: (TrA;0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction
@ normalization
@ consistency as a logic
@ suitable for CPS translation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000000

Apji-calculus + dependent types with:
@ a list of dependencies:

F'rp:A|lAN;0 Tle: A rAollp} A €A,
(pley: (TrA;0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction v*
@ normalization v’
@ consistency as a logic v’
@ suitable for CPS translation X

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000000

Apji-calculus + dependent types with:
@ a list of dependencies:

F'rp:A|lAN;0 Tle: A rAollp} A €A,
(pley: (TrA;0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction v*
@ normalization v’
@ consistency as a logic v’
@ suitable for CPS translation X

lq ia-p1e)] = a] Ga. [p] [e])
-4 —=B(a) —=B(q)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000®000000

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
Y we need to do this already in the calculus!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000®000000

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
Y we need to do this already in the calculus!

Who’s guilty ?
[<q 1 ia-Cplen] = 4] (a.[p]]e])

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000®000000

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
Y we need to do this already in the calculus!

Who’s guilty ?
[<q 1 ia-Cplen] = 4] (a.[p]]e])

Motto: [p] shouldn’t be applied to [[e] before [q] has reduced

(Lg] (Aa-[p]))[e]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000®000000

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
Y we need to do this already in the calculus!

Who’s guilty ?
[<q 1 ia-Cplen] = 4] (a.[p]]e])

Motto: [p] shouldn’t be applied to [[e] before [q] has reduced

(Lg] (Aa-[p]))[e]

So, we’re looking for:

(Aaplq-e) = (p? Lqlpalpl ?))]e)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000®000000

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
Y we need to do this already in the calculus!

Who’s guilty ?
[<q 1 ia-Cplen] = 4] (a.[p]]e])

Motto: [p] shouldn’t be applied to [[e] before [q] has reduced

(Lg] (Aa-[p]))[e]

So, we’re looking for:

(Aa.p | q-ey — (utpLq |l falp | tp)) | e)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ?
@ Is this typable ?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ?

@ If g eventually gives a value V:

(lq] (a.[p])]e] = ((Aa.[pD[VD) el = [p][[V]/alle] = [plV/allle]l v

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ?

@ If g eventually gives a value V:

(lq] (a.[p])]e] = ((Aa.[pD[VD) el = [p][[V]/alle] = [plV/allle]l v

@ If [q] — A_.t and drops its continuation (meaning ¢ : L):

(la] (Aa.[p]))]e] — ((A-t)Aa.[p])[e] — te] X

A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ? ~~> q € NEF

@ If g eventually gives a value V:

(lq] (a.[p])]e] = ((Aa.[pD[VD) el = [p][[V]/alle] = [plV/allle]l v

@ If [q] — A_.t and drops its continuation (meaning ¢ : L):

(la] (Aa.[p]))]e] — ((A-t)Aa.[p])[e] — te] X

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ? ~~> q € NEF
@ Is this typable ?

Naive attempt:

(l4] (Aafp])) el
— —— ——
(A>1)—> L H(a:A)—I—IB(a) —-Bl[q]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ? ~~> q € NEF
@ Is this typable ?

Naive attempt:

([] (Aafp]) le]

S~ ~—— S~

. (A—>7?7)—>? I1(4.4)~—B(a) } —B[q]
—|—|\r(q)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ? ~~> q € NEF
@ Is this typable ?

Friedman’s trick:

([] (Aafp]) le]
N—— —— N——
VR.(A>R?)—>R? IT(g.4)——B(a) ~B[q]
e

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000800000

Toward a CPS translation (2/2)

[Aa.plg-e)] — ([q] (Aa.[p]))[e]

@ Is any g compatible with such a reduction ? ~~> q € NEF
@ Is this typable ? ~~> parametric return-type
Better:
(L] (Aalp]) el
—— N—— —
VR.(IL(a:a)R(a))—=R(q) Il(a:ay—B(a) ~B|q]
—=B(q)

(Remark: not possible without q € NEF)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000080000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000080000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Reduction rules:

(utp-p I tp) ey = (ple))
¢ —c" = (utp.cle) — (utp.c’| e)

(Aa.plq-e) — (utpLql fialp] tp)) I e) (q € NEF)
(Aaplq-e) = (qljialple) A (q & NEF)
(prfple) — (utp.{p | jialprfaltp)) | e)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000080000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:Arg Atp:Biof|p)

pley:TFHA (p||e>:I‘I—dA,tAp:B;G

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000080000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:Ary Atp:Biof[p)

pley:TFHA (p||e>:I‘I—dA,tAp:B;G

Use of o limited to tp:

C:GFdAﬁﬂAﬂ+DtA Be A, g
TFoutpc:A|A Pr r|$:Ahw&¢:&a{m}pE

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000080000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:Ary Atp:Biof[p)

pley:TFHA (p||e>:I‘I—dA,tAp:B;G

Use of o limited to tp:

C:GFdAﬁﬂAﬂ+DtA Be A, g
TFoutpc:A|A Pr r|$:AhﬂL¢:&a{m}pE

c:CFA) A ¢ > (¢ = ¢ :(TrA)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000008000

Typed CPS translation

Target language:
TlL|t=u|VxNA| INA| 0B | VX.A
Normalization:
If [c] normalizes so does c.
Proof. Thorough analysis of the several reduction rules. O
Types-preserving:

The translation is well-typed.

Proof. Using parametric return types for terms and NEF proofs. O
Consistency:

Fp:l.
Proof. [1L] = (L — 1) —> L. O

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000800

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Regular mode Dependent mode
© Trp:A|A Tle:ArA |Trp:A|A Tle:Arg Atp:Biol|p)
Ple:TFA (plle):TI—dA,tb:B;G
@ delimited scope of dependencies:
c:(Ckry A,tAp:A;{-|-}) . Be A, .
Tt tp; - - tpg
Futp.c: A A I|tp:Arg Atp: Byo{-|p}

@ Mission accomplished?

e subject reduction

e normalization

e consistency as a logic
e CPS translation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000800

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Regular mode Dependent mode
© Trp:A|A Tle:ArA |Trp:A|A Tle:ArgAtp:Bolp)
Ple:TFA ({ple):Try Atp:B;o
@ delimited scope of dependencies:
c:(Ckry A,tAp:A;{-|-}) . Be A, .
Tt tp; - - tpg
Futp.c: A A I|tp:Arg Atp: Byo{-|p}
@ Mission accomplishedv
e subject reduction v’ e (Bonus) embedding into
e normalization v/ Rodolphe’s calculus v/
e consistency as a logic v/ % realizability
o CPS translation v/ interpretation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000080

Rodolphe’s calculus in a nutshell

Recipe:
@ Call-by-value evaluation
@ Classical language (ua.t control operator)
@ Second-order logic, with encoding of dependent product:

I(4.4)B = Ya(a € A — B)

@ Semantical value restriction
@ Soundness and type safety proved by a realizability model:

'rt:A = plkl = t[p]ellAlle

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000080

Rodolphe’s calculus in a nutshell

Recipe:
@ Call-by-value evaluation
@ Classical language (ua.t control operator)
@ Second-order logic, with encoding of dependent product:

I(4.4)B = Ya(a € A — B)

@ Semantical value restriction
@ Soundness and type safety proved by a realizability model:

'rt:A = plkl = t[p]e||A||;L

Semantical value restriction:

@ observational equivalence: t = u
@ u € Arestricted to values

@ typing rules up to this equivalence (hence undecidable!)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000000e

Embedding

Easy check:

NEF C semantical values

We define an embedding of proofs and types that:

@ is correct with respect to typing

Trp:A|A = TUA)*F[ply: A

@ is adequate with his realizability model

FT'tp:A|A A olF (T UA) = [plpo € Al

@ allows to transfer Rodolphe’s safety results

Fp:l

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dLPA®

dLPA®: a sequent calculus with dependent
types for classical arithmetic

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A classical sequent calculus with:
@ stratified dependent types :

e terms: t,u = ...|witp
o formulas: A,B:=..|VxT.A|3IxTA| IMga.Blt=u
@ proofs: p.qu=...| Ax.p | (t,p) | Aa.p

@ arestriction to the NEF fragment
@ arithmetical terms:

tbuz=..]0]S() | recfcy[to |ts] | Ax.t | tu

@ stores:

tu=¢|tla:=p;] | t[a = €]

@ inductive and coinductive constructions:
p.q == ... | fix; [plp] | cofix] p

@ a call-by-value reduction and lazy evaluation of cofix

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

End of the

dPA“

+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

I
|
| ?
1
Y

dLPA®?

+ sequent calculus . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

I
1
L ?
1
Y
[?—calculus]- ------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

End of the

dPA“

+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

. J

' macros v’
Y

dLPA®V

+ sequent calculus . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

- > Normalization
realizability

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions

© derive the realizability interpretation

Resembles i[lm*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus

@ co-inductive formulas

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions
@ derive the realizability interpretation

Resembles i[lm*]-interpretation, plus:
@ dependent types from Rodolphe’s calculus:

Mga).B = Va.(a€A— B)

@ co-inductive formulas

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions
@ derive the realizability interpretation

Resembles i[lm*]-interpretation, plus:
@ dependent types from Rodolphe’s calculus
@ co-inductive formulas: by finite approximations

Vi Alls = Unen IF} Ir

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dLPA®
00®00

Realizability interpretation

Same methodology:
@ small-step reductions

@ derive the realizability interpretation

Resembles I[lm*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus

@ co-inductive formulas: by finite approximations

Consequences of adequacy:

Normalization

If T s c, then c is normalizable.

¥arpae p i L

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Conclusion

What did we learn?

@ classical call-by-need:

e realizability interpretation

e typed continuation-and-store-passing style translation
@ dependent classical sequent calculus:

o list of dependencies
e use of delimited continuations for soundness
e dependently-typed continuation-passing style translation

@ dLPA%:

e soundness and normalization,
o realizability interpretation of co-fixpoints

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:

e typing the CPS with Kripke forcing
tp*
e Connection with:

@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

o Dependent types & effects:

[A-calculus | embed. | Aufi-calculus | cps
CbN CbN

A

Y
y

> A-calculus

A-calculus embed. Apji-calculus CPS
CbV ChbV

Y

A-calculus

Y

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

Etienne MIQUEY

e Conn
(*]

ection with:
Pédrot-Tabareau’s Baclofen Type Theory?

@ Vakar’s categorical presentation?

Bowman et. al. CPS for CC?

o Dependent types & effects:

A-calculus

CbN

embed.

A-calculus

CbV

T Auji-calculus CPS
A-calculus

+ polarities

embed.

A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

o Dependent types & effects:

[MLTT(CbN) |

| MLTT (CbY)]m'

CPS

MLTT]

Y
)

Lep? }

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

o Dependent types & effects:

[MLTT(CbN) |

| MLTT (CbY)]m'

© Realizability:
e Connection with realizer for DC using bar recursion?
e Algebraic counterpart of side-effects in realizability structures?

CPS

MLTT]

Y
)

Lep? }

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Thank you for you attention.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

