
1/18

A Practical Framework for Curry-Style Languages

(Inspired by realizability semantics)

Rodolphe Lepigre

2/18

Context: using realizability for programming languages

Last year’s talk was about the PML language:

I
A simple but powerful mechanism for program certification

I
It is embedded in a (fairly standard) ML-style language

I
Everything is backed by a (classical) realizability semantics

I
Property: v 2 �??) v 2 � for all � closed under (⌘)

Today’s talk is about making Curry-style quantifiers practical:

I
They are essential for PML (polymorphism, dependent types)

I
But pose a practical issue due to non-syntax-directed rules

I
Restricting quantifiers (prenex polymorphism) is not an option

I
Contribution: a solution with subtyping inspired by semantics

In this talk we will stick to System F for simplicity

3/18

Quick reminder: Church-style versus Curry-style

Church-style System F:

�, x : A ` x : A

�, x : A ` t : B

� ` �x : A .t : A) B

� ` t : A) B � ` u : A

� ` t u : B

� ` t : A X /2 �
� ` ⇤X . t : 8X .A

� ` t : 8X .A

� ` t B : A[X := B]

Curry-style System F is obtained by removing the highlighted parts

4/18

A natural idea: using subtyping

We define a relation (✓) on types and use rule:

� ` t : A A ✓ B

� ` t : B

This does help a bit already:

A ✓ C

�, x : A ` x : C

A) B ✓ C �, x : A ` t : B

� ` �x .t : C

� ` t : A) B � ` u : A

� ` t u : B

Ideally we would want quantifiers to be handled by subtyping

5/18

Containment system [Mitchell]

Is standard containment enough?

{Y1, . . . ,Ym

} \ FV (8X1 . . . 8Xn

.A) = ?
8X1 . . . 8Xn

.A ✓ 8Y1 . . . 8Ym

.A[X1 := B1, . . . ,Xn

:= B

n

]

8X1 . . . 8Xn

.A) B ✓ (8X1 . . . 8Xn

.A)) (8X1 . . . 8Xn

.B)

A2 ✓ A1 B1 ✓ B2

A1) B1 ✓ A2) B2

A ✓ B B ✓ C

A ✓ C

A ✓ B

8X .A ✓ 8X .B

6/18

Can we derive the quantifier rules?

Yes we can derive the elimination rule:

� ` t : 8X .A

� ` t : A[X := B]

, � ` t : 8X .A

? \ FV (8X .A) = ?
8X .A ✓ A[X := B]

� ` t : A[X := B]

No we cannot derive the introduction rule:

� ` t : A X /2 �
� ` t : 8X .A

,
� ` t : A

???

A ✓ 8X .A

� ` t : 8X .A

7/18

Let us take a step back...

All we want is adequacy:

I
If ` t : A is derivable then t 2 JAK

I
If A ✓ B then JAK ✓ JBK

The subtyping part is not as fine-grained as it could be:

` t : A A ✓ B

` t : B

can be replaced by

` t : A ` t : A ✓ B

` t : B

Local subtyping is interpreted as an implication

8/18

Approach 1

(inspired by semantics)

9/18

Main idea of the approach

Based on a fine-grained semantic analysis we:

I
Get rid of context and only work with closed terms

I
To this aim terms are extended with choice operators

I
The same kind of trick is used for quantifiers in types

Theorem (Adequacy)

I
If t : A is derivable then JtK 2 JAK

I
If t : A ✓ B is derivable and JtK 2 JAK then JtK 2 JBK

Terms are interpreted using “pure terms”

(satisfying the intended semantic property)

10/18

Typing and subtyping rules

Syntax-directed typing rules:

"
x2A(t /2 B) : A ✓ C

"
x2A(t /2 B) : C

t : A) B u : A

t u : B

�x .t : A) B ✓ C t[x := "
x2A(t /2 B)] : B

�x .t : C

Syntax-directed (local) subtyping rules:

t : A ✓ A

t : A[X := C] ✓ B

t : 8X .A ✓ B

t : A ✓ B[X := "
X

(t /2 B)]

t : A ✓ 8X .B

"
x2A2(t x /2 B2) : A2 ✓ A1 t "

x2A2(t x /2 B2) : B1 ✓ B2

t : A1) B1 ✓ A2) B2

11/18

Interpretation of terms and types

We interpret terms using “pure terms“ (without choice operators)

JxK = x J�x .tK = �x .JtK Jt uK = JtK JuK

J"
x2A(t

⇤ /2 B)K =
(
u 2 JAK s.t. Jt[x := u]K /2 JBK if it exists

any t 2 N0 otherwise

We interpret types as (saturated) sets of normalizing terms

J�K = � JA) BK = JAK) JBK J8X .AK = \�2FJA[X := �]K

J"
X

(t /2 A)K =
(
� 2 F such that JtK /2 JA[X := �]K if it exists

N0 otherwise

�) = {t | 8u 2 �, t u 2 }

12/18

Let us look at one case of the adequacy lemma

�x .t : A) B ✓ C t[x := "
x2A(t /2 B)] : B

�x .t : C

J"
x2A(t

⇤ /2 B)K =
(
u 2 JAK s.t. Jt[x := u]K /2 JBK if it exists

any t 2 N0 otherwise

13/18

Approach 2

(using syntactic translations)

14/18

A more standard type system

Syntax-directed typing rules:

�, x : A ` x : A ✓ C

�, x : A ` x : C

� ` t : A) B � ` u : A

� ` t u : B

� ` �x .t : A) B ✓ C �, x : A ` t : B

� ` �x .t : C

Syntax-directed (local) subtyping rules:

� ` t : A ✓ A

� ` t : A[X := C] ✓ B

� ` t : 8X .A ✓ B

� ` t : A ✓ B X /2 �
� ` t : A ✓ 8X .B

�, x : A2 ` x : A2 ✓ A1 �, x : A2 ` t x : B1 ✓ B2

� ` t : A1) B1 ✓ A2) B2

15/18

Elimination of subtyping: translation to System F+⌘
System F+⌘ is obtained by adding the rule:

� ` �x .t x : A) B x /2 t

� ` t : A) B

Theorem (Translation to F+⌘)

I
If � ` t : A is derivable then it is also derivable in System F+⌘

I
If � ` t : A ✓ B is derivable then � ` t : B is derivable in System F+⌘ given a

derivation of � ` t : A

Translation of subtyping leads to a “piece of proof”:

If � ` t : A ✓ B is derivable then we get

� ` t : A

.

.

.

.

⇧

� ` t : B

16/18

The most interesting case (arrow subtyping rule)

�, x : A2 ` x : A2 ✓ A1 �, x : A2 ` t x : B1 ✓ B2

� ` t : A1) B1 ✓ A2) B2

� ` t : A1) B1
x fresh

�, x : A2 ` t : A1) B1

�, x : A2 ` x : A2
.

.

.

.

.

⇧1

�, x : A2 ` x : A1

�, x : A2 ` t x : B1
.

.

.

.

.

⇧2

�, x : A2 ` t x : B2

� ` �x .t x : A2) B2 x /2 t

� ` t : A2) B2

17/18

Translation from System F+⌘

Given the subsumption rule the translation is immediate

� ` t : A � ` t : A ✓ B

� ` t : B

A couple of remarks:

I
We conjecture that subsumption is admissible

I
The rule is useful anyway for ascription (rule below)

I
(Remember that type-checking remains undecidable here)

� ` t : A � ` t : A ✓ B

� ` (t : A) : B

18/18

Thanks! Questions?

@ https://lepigre.fr

B lepigre@mpi-sws.org

