Giulio Manzonetto

giulio.manzonetto@lipn.univ-parisl3.fr

Laboratoire d’'Informatique de Paris-Nord

Université Paris 13
20t September 2019




Introduced by Kleene in 1945 as a semantics of intuitionistic logic.

“To interpret every proposition as a set of programs (the realizers)
witnessing the corresponding proposition.”

S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of
Symbolic Logic, 10(4):109—-124, 1945.

G. Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. Constructivity in Mathematics, pp. 101-128, 1959.

W.W. Tait. A realizability interpretation of the theory of species. Logic Colloquium,
Lectures Notes in Mathematics, Vol. 453, pp 240-251, 1975.

J.-Y. Girard. Interprétation fonctionnelle et elimination des coupures de
I'arithmétique d’ordre supérieur, 1972.

W J.-L. Krivine. Lambda-Calculus, Types and Models, 1993.



Syntactic Results




The \-calculus
M, N = X | AXx.M| MN
(AX-M)N  —5  M[N/x]
with simple types
AB . = a|lA—>B
and inference rules

x:A-M:B
Fx Arx A FoxmM AL B Y

FM:A—-B TEN:A
[~ MN:B (=z)

is strongly normalizing.



Setting
@ SN = {M € A | M is strongly normalizing},
we want to prove

TFM:A — MecSN

The problem is in the application case:

rN-mMm:-A—-B TFN:A
- MN: B

(—e)

Indeed M, N € SN A MN € SN.




Setting
@ SN = {M € A | M is strongly normalizing},
we want to prove

TFM:A — MecSN

The problem is in the application case:

rN-mMm:-A—-B TFN:A
- MN: B

(—e)

Indeed M, N € SN A MN € SN.

Solution: Associate with each type A a set [A] € SN of \-terms of
that type, and show that M : Aimplies M € [A]. Important, define:

[A— B]l =[A] = [B] = {M < SN | VN < [A], MN € [B]}



The problem is now in the abstraction case:

x:A-M:B
-XAx.M:A— B

(—1)

Knowing M € [B] is not enough to conclude Ax.M € [A — B].




The problem is now in the abstraction case:

x:A-M:B
FEx M- ASB D

Knowing M € [B] is not enough to conclude Ax.M € [A — B].
It is sufficient to ensure that for Q strongly normalizing:
M[Q/x] e [B] = x.M)Q e [B]

This leads to the notion of saturated set.




o N C SNis saturated if (Vx € Var, Q, N € SN):

o xN ¢ N, B
o MQ/XINEN — (x.M)QNeN

@ SAT = {N C A | N is saturated }

Examples:

@ SN € SAT B
@ {MeN|M-—% xN} € SAT,




@ N C SNis saturated if (Vx € Var, Q, N ¢ SN):
o xN ¢ N, B
o MIQ/XINEN — (x.M)QN e N

@ SAT = {N C A | N is saturated }

Properties:

@ SN € SAT,

@ N € SAT — VarC N

@ Ny, N> ¢ SAT =— N; = N> c SAT,
@ For all types A, we have [A] € SAT.




Define:
[a] = SN [A— B] =[A] = [B]

If
Xy A1,....Xn : AnEM: B
thenVN; € |IA1]],...,Nn € |[An]|

M[N;/x1,...,Nn/xq] € [B]
In particular, M = M[xy /x1,...,Xn/Xn] € [B] € SN

The simply typed \-calculus enjoys SN.



Types2: A,B ::= --- | Va.A
Inference Rules:

[FM:A ozgél_(v) [FM:Va.A
r-M:vaA V"7  TEM:AB/d

(Ve)

What can we do more?
For instance, now we can type A = Ax.xx:

X VaaFXx:8—a X:VaabFXx:p
X :Va.al XX : «
X Va.a - XX : Va.a
FAx.xx : (Va.a) = (Va.a)

Pretty scary, because AA = Q2 (the paradigmatic unsolvable).



Given a collection {N;};c7 of saturated sets, we have:

(Vi € SAT

ieT

A SAT-valuation is any function p :Type Variables — SAT.

o [a],, = p(a),
o [A—B],=1[Al, = [B],.

o [Va.A] p = ﬂN’ESAT [A] PN /a]

For every A € Types2 and SAT-valuation p, we have [A] , € SAT.

Ifxy : Ay,....,xp: An =M : BthenVN; € |[A1]|p,...,Nn € |[An]|pthen
M[N;/x1,...,Nn/Xn] € |[B]]p



Given a collection {N;};c7 of saturated sets, we have:

() Vi € SAT

i€l

A SAT-valuation is any function p :Type Variables — SAT.

o [a],, = p(a),
o [A—B],=1[Al, = [B],.

0 [Va.A] p ﬂNESAT [A] pIN /a]

For every A € Types2 and SAT-valuation p, we have [A] , € SAT.

System F is strongly normalizing.

Consistency of 2nd-order Peano arithmetic.




Saturated sets can be used to show, e.g.:

@ Simply Typed A-calculus: SN,
@ System F (2nd order): SN,
@ System F3 (3rd order): SN,

@ System Fn (order n): SN,

@ System Fw (limit): SN,

@ Intersection types (without w): SN,

@ Intersection types (with w): Head Normalization,
9o etc.




nice, nice, BUT ..
What does actually decrease?




“Are there combinatorial proofs of such results?”

s there a ‘natural’ assignment # : AST — Ordinals, satisfying

M—=s N — #M>#N7?

Is there a (less natural?) assignment for System F?

Is every A\-term typable in Fw, already typeable in F37




Semantic Results




The first model of A-calculus — Scott’'s D, (filter model).
Intersection types:

AB : =0|w|A—-B|AAB
Inference Rules:

[FM:A TFM:B [FM:A A<B
(v) reM AN V) rem.8 Y

r-m:w

where < is a subtyping relation satisfying moreover:
w—0<0 O<w-—0

The interpretation of a A\-term M
[M]={A|3r.r- M: A}

is a filter w.r.t. <.



@ The set A of finite approximants is generated by:
P,Q ::= Axy...Xp.yPy---Pg | L

where L C M for all A\-terms M.

@ Given a A-term M, define the set of its approximants as:
AM) ={P|M—5 NANPLC N}
@ The Béhm tree of M is given by taking:

BT(M)= \/ P
Pe A(M)




r-M:A < FJPc AM).TEP:A

Also here the problem is in the application:

r'-M:-A—B TFHFN:A
- MN: B

P e AM)and Q € AN) % PQ € A(PQ).

Q If[M] # {w} then M solvable.
Q IfDs =M = N then BT(M) = BT(N).
Q IfD, E M= N then M, N are observationally indistinguishable.



Realizability interpretation

Ara = {PcA|TFP:A
[0], = {M|VN.MN € Aro}

[A—=B], = {M]|VA,Ne[A]l,.MN <€ Arras}
|[A/\B]]r - |[A]],—ﬂ|[B]],—

|[A]] r S -AI';A-

X1 AL Xn AnE M B = YN, € [Al MIN/X] € [Blr n..nr

The Approximation Theorem.




How to get rid of Realizability?

Nota Bene. The purpose is to get rid of impredicativity.




Scott’s model a la sauce de Ehrhard.
Tensor Types:
AB 1= x|u—-A
v = 1|u®A
The tensor product is associative, commutative, has 1 as neutral

element A® 1 = A, itis not idempotent A® A # A.
ContextI' = X1 : f1,...,Xn : ln-

[ X:utEM:pu—B

X:AFx:A ([F-M:pu—-B
r-M:(A®---®A) —B AiFEN:A

®(®;A)F MN: B

[-M:A A~B
) —Frm (&9

(ax)

(—kE)

where ~ is generated by 1 — x ~ x. Types are otherwise unordered!
Interpretation of a A\-term: [M] = {(I',A) |[T - M : A}



A program M : (A; ® Ao ® A3) — B is able to produce a result of type
B by consuming 3 resources of type Ay, A, Az during its evaluation.

=xample. For all A, B, we have a proof 7 :=

X:A—oB Xx:A
x:(A—-B)® Ar-xx: B

FAXx.xx:(A—-B)®A) — B

For M: A® (A — B) we have (Ax.xx)M : B and (Ax.xx)M — 5 MM.

s
FAxxx (AR AR AY) oA FIAA o AA AR
F(Ax.xx)l:A— A

The contractum has a simpler proof:

1A o AA AR
FIl:A—A




Assume
M —>5 N

The tensor type systems satisfy the standard properties:

@ Subject Reduction. FT=M: AthenT - N : A
Q@ Subject Expansion. fT=N: Athenl - M : A.




Consider
(AX.M)N — 5 M[N/x]

The tensor type systems satisfy the standard properties:

@ Subject Reduction. fFT'H (Ax.M)N : Athen T - M[N/x] : A.
Q@ Subject Expansion. If T+ (Ax.M)N : Athen T - M[N/x] : A.




Consider
(AX.M)N — 5 M[N/x]

The tensor type systems satisfy the standard properties:

@ Subject Reduction. fFT'H (Ax.M)N : Athen T - M[N/x] : A.
Q Subject Expansion. f T+ (Ax.M)N : Athen T = M[N/x] : A.

but also more refined properties:

If 7 is a proof of
'E(AX.MN: A

the there exists a proof «’ of
FEM[N/x]: A

such that || < ||, where |r| := # rules (—f) in 7.



Consider
(AX.M)N — 5 M[N/x]

The tensor type systems satisfy the standard properties:

@ Subject Reduction. fFT'H (Ax.M)N : Athen T - M[N/x] : A.
Q Subject Expansion. f T+ (Ax.M)N : Athen T = M[N/x] : A.

but also more refined properties:

If 7 is a proof of
EM[N/x]: A

the there exists a proof «’ of
'E(AXX.M)N: A

such that || < ||, where |r| := # rules (—f) in 7.



This property is preserved under “head” context (oh, joy!):

AX.(Ay.P)QN =4 AX.Ply/QIN

@ v proof m of I - AX.(Ay.P)QN : A
Q Jproof 7’ of [ = AX.P[Q/y]N : A

[M] # 0 <= M has a head normal form

Proof. (<) Easy.
(=) Assume ' - M : A, then:

M—)h M1 —h Mg—)h M3—>h
mf < m| < fmef < msl <

Impossible to have an infinite chain, the head reduction must
terminate. [J



This does not work in general:
AX. X — 5 AX.x82

and this term is typeable:

X:w-—oAFX:w—0A
X:w—oAFXQ:A
FAXXQ:(w—oA)—A




The counterexample generalizes:
AX.X(C100l) = Ax.x(I---1) 100 times

these terms are typeable in the same way:

X:w—oAFX:w-—oA
Xiw—OA|—X(C-|00|)ZA
|—)\X.X(C1oo|)2(w—OA)—OA




The counterexample generalizes:
AX.X(C100l) = Ax.x(I---1) 100 times

these terms are typeable in the same way:

X:w—oAFX:w—A
X:w—oAFX(---1):A
FAxx(l-- 1) (w—oA) - A

and we cannot do better.

Nothing has decreased




Given a type derivation for M:
[EAXXQ: (w—oA) —o A

we can substitue the contracted redex with L, and obtain a term M’

X:w—oAFX:w—o0A
X:w—oAFXQ:A
FAX.xL:(w—oA)—A

typeable with 7/, morally the “same” derivation .

We get:
0 [m| = |l

@ # [-redexes in M < # (-redexes in M’
. CuloMawoneto  ClassicReaizabiiy andhowtogetridofiy



TFM:A < JPec AM).TEFP: L

(«) Easy.
(=) Start from a derivation = of

Fr=M: A

Proceed by induction on the pair (|r|, #5-redexes). At every step
M = C[(Ax.N)Q] — 5 C[N[Q/x]], we get:
@ Either 3 a derivation of C[N[Q/x]] having smaller “weight”,

@ or J a derivation of M having the same “weight”, that also works
for M’ = C[L] (having less redexes than M).

This cannot go on forever! At the end, we get the approximant P. [



Well,

A magician never reveals his tricks (Magician’s code)




Well,

A magician never reveals his tricks (Magician’s code)

From the hat of
Differential Linear Logic!




Qualitative methods Quantitative methods

@ [M] = cont. function A — B

o [M] =V ac app(m) [A] Appr.
Thm.

AX.YA1 -+ - Ap (finite tree)

BT(M)= ] P
Pe A(M)




Qualitative methods Quantitative methods
@ [M] = cont. function A — B @ [M] = relation C M((A) x B
o [M] =V ac app(m) [A] Appr.
Thm.

AX.YA1 -+ - Ap (finite tree)

BT(M)= ] P
Pe A(M)




Qualitative methods Quantitative methods
@ [M] = cont. function A — B @ [M] = relation C M((A) x B
o [M] =V ac app(m) [A] Appr.
Thm.

n . .
AX.YA - A, (finite tree) (D"(s) - (t1,...,t))0 (linear term)

BT(M)= ] P
Pc A(M)




Qualitative methods Quantitative methods
@ [M] = cont. function A — B @ [M] = relation C M((A) x B
e [[I'A:]] =V acaop(my [Al Appr. o [M] = Userm [t] Appr. Thm.
m.

n
AX.YA;---A,  (finite tree) (D"(s) - (t, ..., t))O (linear term)

t
PeA(M) te Ases(M) m(?)




Qualitative methods Quantitative methods
@ [M] = cont. function A — B @ [M] = relation C M((A) x B
e [[I'A:]] =V acaop(my [Al Appr. o [M] = Userm [t] Appr. Thm.
m.

n
AX.YA;---A,  (finite tree) (D"(s) - (t, ..., t))O (linear term)

T(BT(M)) = NFsT(M)



Back to Syntax




Resource approximants:

I o= X | Ax.t |tb
b = [t1,. .., ] where n >0




Resource approximants:

I = x |Xxt|tb
b = [t, ..., 1] where n> 0

Terms




Resource approximants:

I o= X | Ax.t |tb
b = [t1,. .., ] where n >0




Resource approximants:

I = x |Xxt|th
b = [ti, ..., ] where n> 0

Bags




Resource approximants:

I = x |Xxt|th
b = [t, ..., 1] where n> 0

(Axy.t)[s:, 502, 5] [5:1]

.
x —0-0-0—)| X

y ——0—) y

\. J




Resource approximants:

I = x |Xxt|th
b = [t, ..., 1] where n> 0

(Axy.t)[si1, Sie, Sia[521]

W\/v




Resource approximants:

I o= X | Ax.t |tb
b = [t1,. .., ] where n >0

Reduction:
If the number of occurrences of x in t equals k

()\X.t)[S1,. ce Sk] — B Z t{Sp(1)/X1,. ce Sp(k)/xk}
pPESk

Otherwise:
()\X.t)[S1,...,Sk] —>5@




Resource approximants:

I o= X | Ax.t |tb
b = [t1,. .., ] where n >0

Reduction:
If the number of occurrences of x in t equals k

()\X.t)[S1,. ce Sk] — B Z t{Sp(1)/X1,. ce Sp(k)/xk}
pPESk

Otherwise:
(Ax.t)[s1,...,8k —p0

Linear & Confluent & Strongly Normalizable



T : A-terms —  (infinite) series of resource approximants

MN — 220 AMIN,...,N]
N——

k times




T : A-terms —  (infinite) series of resource approximants

MN — 220 AMIN,...,N]
N——

Kk times
T(x)=x T(Ax.M) = Z AX.t
teT (M)
T(MN) = > t[s1, ..., Sk

kGN,tET(M),S1 ,...,SkET(N)




T : A-terms —  (infinite) series of resource approximants

MN — 220 AMIN,...,N]
N——

Kk times
T(x)=x T(Ax.M) = Z AX.t
teT (M)
T(MN) = > t[s1, ..., Sk

kEN,tET(M),S1 )))) SKGT(N)

Notice that t € 7 (M) probably goes to 0.




Thanks to SN,
NFsT (M) = J{nf(t) | t € T(M)}
always exists (it can be empty).

Thanks to the Commutation Theorem we have

BT(M) = BT(N) <= NF3(T(M)) = NFz(T(N))




So we can (re)prove properties of B6hm trees:

BT(M)=BT(N) = VCJ].BT(C[M])= BT(C|[N])




So we can (re)prove properties of B6hm trees:
BT(M)=BT(N) = VC|].BT(C[M])= BT(C[N])

by structural induction on C|].

Proof. Assume NFg(T(M)) = NFs(T(N)). Consider C[| = C4[]C2]].
Take t € NF3T(C1[M]Cz[M]). Then 3t' € T(C1[M]Cz[M]) such that

t' = ci[br](ca[b2]) = t+ T
with ¢1[] € T(Cq]]), c2[] € T(C2[]) and b; € M¢(T(M)). By confluence
t'" — ci[nf(by)](ca[nf(b2)]) = t+ T # ()

Therefore 3b/, b, € T(N) s.t. ¢1[b}](c2[b5]) generates t. [



Together with Davide Barbarossa, we had some fun:

If C[€2] has a S-normal form then VN € A . C[N] =5 C[].

For all P € A(C[M)]), there exists Q € A(M) such that P < BT(C[Q)).

Let C[—1,...,—p]. Foralli € Z, take ) # X; C A and M; € A. Assume,
forall i € Z, that & T and A(M;) = X then

A(C[My, ..., Mp]) = inf{C[Ns,...,Ny] |VieZ.N; e X}
| GuoMaometo | CiassicRealzabily @ndhowtogetridor)



Letn>0,Z=1{1,...,n}, C[—1,...,—n] be a n-context, (M) yezxz
and (N;);cz be sequences of A-terms. Assume that

( C[Z, My, ...... Ml = N
CIMoy,Z,........ Mop] = No
VZ € N< _ ..

. C[Mn17---7Mn(n—1)az] = N,
thenVZy,...,2Z, € A, C[Z1,...,Zn] =Ny =---=N,.
Proof. Claim + confluence + strong normalization.
Claim. For all c € T(Cl[&q, ..., &n]), if ¢ 4, 0 then ¢ cannot contain
any hole.




Taylor Expansion, and how to get
rid of other proof-technigues




