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“Classic” realizability?

Introduced by Kleene in 1945 as a semantics of intuitionistic logic.

“To interpret every proposition as a set of programs (the realizers)
witnessing the corresponding proposition.”

S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of
Symbolic Logic, 10(4):109–124, 1945.

G. Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. Constructivity in Mathematics, pp. 101–128, 1959.

W.W. Tait. A realizability interpretation of the theory of species. Logic Colloquium,
Lectures Notes in Mathematics, Vol. 453, pp 240–251, 1975.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur, 1972.

J.-L. Krivine. Lambda-Calculus, Types and Models, 1993.
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Syntactic Results
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Proofs of Strong Normalization

The �-calculus

M,N ::= x | �x .M | MN

(�x .M)N !� M[N/x ]

with simple types
A,B ::= ↵ | A ! B

and inference rules

�, x : A ` x : A

(var)
�, x : A ` M : B

� ` �x .M : A ! B

(!
I

)

� ` M : A ! B � ` N : A

� ` MN : B

(!
E

)

is strongly normalizing.
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Simple induction does not work

Setting
SN = {M 2 ⇤ | M is strongly normalizing},

we want to prove

� ` M : A =) M 2 SN

The problem is in the application case:

� ` M : A ! B � ` N : A

� ` MN : B

(!
E

)

Indeed M,N 2 SN 6) MN 2 SN.

Solution: Associate with each type A a set [[A]] ✓ SN of �-terms of
that type, and show that M : A implies M 2 [[A]]. Important, define:

[[A ! B]] = [[A]] ) [[B]] = {M 2 SN | 8N 2 [[A]],MN 2 [[B]]}
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Still, induction does not go through

The problem is now in the abstraction case:

�, x : A ` M : B

� ` �x .M : A ! B

(!
I

)

Knowing M 2 [[B]] is not enough to conclude �x .M 2 [[A ! B]].

It is sufficient to ensure that for Q strongly normalizing:

M[Q/x ] 2 [[B]] =) (�x .M)Q 2 [[B]]

This leads to the notion of saturated set.

Giulio Manzonetto Classic Realizability (and how to get rid of it)



Still, induction does not go through

The problem is now in the abstraction case:

�, x : A ` M : B

� ` �x .M : A ! B

(!
I

)

Knowing M 2 [[B]] is not enough to conclude �x .M 2 [[A ! B]].

It is sufficient to ensure that for Q strongly normalizing:

M[Q/x ] 2 [[B]] =) (�x .M)Q 2 [[B]]

This leads to the notion of saturated set.

Giulio Manzonetto Classic Realizability (and how to get rid of it)



Saturated sets

Saturated sets

N ✓ SN is saturated if (8x 2 Var,Q, ~N 2 SN):
x

~
N 2 N ,

M[Q/x ]~N 2 N =) (�x .M)Q~
N 2 N

SAT = {N ✓ ⇤ | N is saturated}

Examples:
SN 2 SAT
{M 2 ⇤ | M !⇤

� x

~
N} 2 SAT,
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Saturated sets

Saturated sets

N ✓ SN is saturated if (8x 2 Var,Q, ~N 2 SN):
x

~
N 2 N ,

M[Q/x ]~N 2 N =) (�x .M)Q~
N 2 N

SAT = {N ✓ ⇤ | N is saturated}

Properties:
SN 2 SAT,
N 2 SAT =) Var ✓ N
N1,N2 2 SAT =) N1 ) N2 2 SAT,
For all types A, we have [[A]] 2 SAT.
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The proof

Define:
[[↵]] = SN [[A ! B]] = [[A]] ) [[B]]

Theorem (Adequacy for ⇤ST )
If

x1 : A1, . . . , xn

: A

n

` M : B

then 8N1 2 [[A1]], . . . ,Nn

2 [[A
n

]]

M[N1/x1, . . . ,Nn

/x

n

] 2 [[B]]

In particular, M = M[x1/x1, . . . , xn

/x

n

] 2 [[B]] ✓ SN

Corollary
The simply typed �-calculus enjoys SN.
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System F - Second Order �-Calculus

Types2: A,B ::= · · · | 8↵.A

Inference Rules:

� ` M : A ↵ /2 �
� ` M : 8↵.A (8

I

) � ` M : 8↵.A
� ` M : A[B/↵]

(8
E

)

What can we do more?

For instance, now we can type � = �x .xx :

x : 8↵.↵ ` x : � ! ↵ x : 8↵.↵ ` x : �
x : 8↵.↵ ` xx : ↵

x : 8↵.↵ ` xx : 8↵.↵
` �x .xx : (8↵.↵) ! (8↵.↵)

Pretty scary, because �� = ⌦ (the paradigmatic unsolvable).
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System F — Reducibility Candidates
Given a collection {N

i

}
i2I of saturated sets, we have:

\

i2I
N

i

2 SAT

Definition
A SAT-valuation is any function ⇢ :Type Variables ! SAT.

[[↵]]⇢ = ⇢(↵),
[[A ! B]]⇢ = [[A]]⇢ ) [[B]]⇢,
[[8↵.A]]⇢ =

T

N2SAT [[A]]⇢[N/↵]

For every A 2 Types2 and SAT-valuation ⇢, we have [[A]]⇢ 2 SAT.

Theorem (Adequacy)
If x1 : A1, . . . , xn

: A

n

` M : B then 8N1 2 [[A1]]⇢, . . . ,Nn

2 [[A
n

]]⇢then

M[N1/x1, . . . ,Nn

/x

n

] 2 [[B]]⇢
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System F — Reducibility Candidates
Given a collection {N

i

}
i2I of saturated sets, we have:

\

i2I
N

i

2 SAT

Definition
A SAT-valuation is any function ⇢ :Type Variables ! SAT.

[[↵]]⇢ = ⇢(↵),
[[A ! B]]⇢ = [[A]]⇢ ) [[B]]⇢,
[[8↵.A]]⇢ =

T

N2SAT [[A]]⇢[N/↵]

For every A 2 Types2 and SAT-valuation ⇢, we have [[A]]⇢ 2 SAT.

Corollary
System F is strongly normalizing.

Corollary
Consistency of 2nd-order Peano arithmetic.
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Advantage — A versatile approach

Saturated sets can be used to show, e.g.:
Simply Typed �-calculus: SN,
System F (2nd order): SN,
System F3 (3rd order): SN,

...
System Fn (order n): SN,
System F! (limit): SN,
Intersection types (without !): SN,
Intersection types (with !): Head Normalization,
etc.
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Disadvantage — An impredicative approach

nice, nice, BUT. . .
What does actually decrease?
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Some open problems

“Are there combinatorial proofs of such results?”

Gödel’s koan (TLCA list, Problem 26)

Is there a ‘natural’ assignment # : ⇤ST ! Ordinals, satisfying

M !� N =) #M > #N ?

Lévy’s koan
Is there a (less natural?) assignment for System F?

About F!
Is every �-term typable in F!, already typeable in F3?
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Semantic Results
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Denotational Semantics

The first model of �-calculus — Scott’s D1 (filter model).

Intersection types:

A,B ::= 0 | ! | A ! B | A ^ B

Inference Rules:

� ` M : !
(U) � ` M : A � ` M : B

� ` M : A ^ B

(^
I

)
� ` M : A A  B

� ` M : B

(^
I

)

where  is a subtyping relation satisfying moreover:

! ! 0  0 0  ! ! 0

The interpretation of a �-term M

[[M]] = {A | 9� . � ` M : A}

is a filter w.r.t. .
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Syntactic Approximants

The set A of finite approximants is generated by:

P,Q ::= �x1 . . . xn

.yP1 · · ·Pk

| ?

where ? v M for all �-terms M.

Given a �-term M, define the set of its approximants as:

A(M) = {P | M !⇤
� N ^ P v N}

The Böhm tree of M is given by taking:

BT (M) =
_

P2A(M)

P
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Approximation Theorem

Theorem (Approximation Theorem)

� ` M : A () 9P 2 A(M) . � ` P : A

Also here the problem is in the application:

� ` M : A ! B � ` N : A

� ` MN : B

P 2 A(M) and Q 2 A(N) 6) PQ 2 A(PQ).

Corollary
1

If [[M]] 6= {!} then M solvable.

2
If D1 |= M = N then BT (M) = BT (N).

3
If D1 |= M = N then M,N are observationally indistinguishable.
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Approximation Theorem via Realizability

Realizability interpretation

A�;A = {P 2 A | � ` P : A}
[[0]]� = {M | 8~N .M ~

N 2 A�;0}
[[A ! B]]� = {M | 8�, ~N 2 [[A]]� .M ~

N 2 A�^�;B}
[[A ^ B]]� = [[A]]� \ [[B]]�

Lemma
[[A]]� ✓ A�;A.

Proposition

x1 : A1, . . . , xn

: A

n

` M : B ) 8N

i

2 [[A
i

]]�
i

,M[~N/~x ] 2 [[B]]�1^···^�
n

Corollary
The Approximation Theorem.
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How to get rid of Realizability?

Nota Bene. The purpose is to get rid of impredicativity.
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An Answer: Using Linear Logic

Scott’s model à la sauce de Ehrhard.

Tensor Types:
A,B ::= ? | µ ( A

µ, ⌫ ::= 1 | µ⌦ A

The tensor product is associative, commutative, has 1 as neutral
element A ⌦ 1 = A, it is not idempotent A ⌦ A 6= A.
Context � = x1 : µ1, . . . , xn

: µ
n

.

x : A ` x : A

(ax)
�, x : µ ` M : µ ( B

� ` M : µ ( B

((
I

) � ` M : A A ' B

� ` M : B

(eq)

� ` M : (A1 ⌦ · · ·⌦ A

n

) ( B �
i

` N : A

i

�⌦ (⌦
i

�
i

) ` MN : B

((
E

)

where ' is generated by 1 ! ? ' ?. Types are otherwise unordered!

Interpretation of a �-term: [[M]] = {(�,A) | � ` M : A}
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Resource Sensitiveness

A program M : (A1 ⌦ A2 ⌦ A3) ! B is able to produce a result of type
B by consuming 3 resources of type A1,A2,A3 during its evaluation.

Example. For all A,B, we have a proof ⇡ :=

x : A ( B x : A

x : (A ( B)⌦ A ` xx : B

` �x .xx : ((A ( B)⌦ A) ( B

For M : A ⌦ (A ( B) we have (�x .xx)M : B and (�x .xx)M !� MM.

⇡
` �x .xx : ((AA ( A

A)⌦ A

A) ( A

A ` I : A

A ( A

A ` I : A

A

` (�x .xx)I : A ( A

The contractum has a simpler proof:

` I : A

A ( A

A ` I : A

A

` I I : A ( A
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Qualitative Properties

Assume
M !� N

The tensor type systems satisfy the standard properties:
1 Subject Reduction. If � ` M : A then � ` N : A.
2 Subject Expansion. If � ` N : A then � ` M : A.
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Quantitative Properties

Consider
(�x .M)N !� M[N/x ]

The tensor type systems satisfy the standard properties:
1 Subject Reduction. If � ` (�x .M)N : A then � ` M[N/x ] : A.
2 Subject Expansion. If � ` (�x .M)N : A then � ` M[N/x ] : A.
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Quantitative Properties

Consider
(�x .M)N !� M[N/x ]

The tensor type systems satisfy the standard properties:
1 Subject Reduction. If � ` (�x .M)N : A then � ` M[N/x ] : A.
2 Subject Expansion. If � ` (�x .M)N : A then � ` M[N/x ] : A.

but also more refined properties:

If ⇡ is a proof of
� ` (�x .M)N : A

the there exists a proof ⇡0 of

� ` M[N/x ] : A

such that |⇡| < |⇡0|, where |⇡| := # rules ((
E

) in ⇡.
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Quantitative Results
This property is preserved under “head” context (oh, joy!):

�~x .(�y .P)Q~
N !

h

�~x .P[y/Q]~N

1 8 proof ⇡ of � ` �~x .(�y .P)Q~
N : A

2 9 proof ⇡0 of � ` �~x .P[Q/y ]~N : A

Corollary - The model is sensible

[[M]] 6= ; () M has a head normal form

Proof. (() Easy.
()) Assume � ` M : A, then:

M !
h

M1 !
h

M2 !
h

M3 !
h

· · ·
|⇡| < |⇡1| < |⇡2| < |⇡3| < · · ·

Impossible to have an infinite chain, the head reduction must
terminate. ⇤
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Unfortunately. . .

This does not work in general:

�x .x⌦ !� �x .x⌦

and this term is typeable:

x : ! ( A ` x : ! ( A

x : ! ( A ` x⌦ : A

` �x .x⌦ : (! ( A) ( A
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Deep in the Desperation Pit. . .

The counterexample generalizes:

�x .x(c100I) !� �x .x(I · · · I) 100 times

these terms are typeable in the same way:

x : ! ( A ` x : ! ( A

x : ! ( A ` x(c100I) : A

` �x .x(c100I) : (! ( A) ( A

and we cannot do better.

Nothing has decreased
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I only want to construct an approximant of that type!

Given a type derivation for M:

� ` �x .x⌦ : (! ( A) ( A

we can substitue the contracted redex with ?, and obtain a term M

0

x : ! ( A ` x : ! ( A

x : ! ( A ` x⌦ : A

` �x .x? : (! ( A) ( A

typeable with ⇡0, morally the “same” derivation ⇡.

We get:
|⇡| = |⇡0|,
# �-redexes in M < # �-redexes in M

0
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Approximation Theorem — Quantitative Proof

Approximation Theorem

� ` M : A () 9P 2 A(M) . � ` P : ?

Proof.
(() Easy.
()) Start from a derivation ⇡ of

� ` M : A

Proceed by induction on the pair (|⇡|,#�-redexes). At every step
M = C[(�x .N)Q] !� C[N[Q/x ]], we get:

Either 9 a derivation of C[N[Q/x ]] having smaller “weight”,
or 9 a derivation of M having the same “weight”, that also works
for M

0 = C[?] (having less redexes than M).
This cannot go on forever! At the end, we get the approximant P.
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Where does the magic come from?

Well,

A magician never reveals his tricks (Magician’s code)

From the hat of
Differential Linear Logic!
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Idea: Replace qualitative with quantitative methods

Qualitative methods

Continuous semantics
[[M]] = cont. function A ! B

[[M]] =
W

A2App(M) [[A]] Appr.
Thm.

Böhm’s approximants

�~x .yA1 · · ·An

(finite tree)

Böhm trees

BT(M) =
[

P2A(M)

P

Quantitative methods

Relational Semantics
[[M]] = relation ✓ M

f

(A)⇥ B

[[M]] =
S

t2T (M) [[t ]] Appr. Thm.

Resource approximants
(Dn(s) · (t1, . . . , tn))0 (linear term)

Taylor Expansion

T (M) =
X

t2A
res

(M)

1
m(t)

t

Ehrhard & Regnier’s Commutation Theorem

T (BT(M)) = NF�T (M)
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Back to Syntax
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The Resource Calculus

Resource approximants:

t ::= x | �x .t | t b

b ::= [t1, . . . , tn] where n � 0

Reduction:
If the number of occurrences of x in t equals k

(�x .t)[s1, . . . , sk

] !�

X

p2S
k

t

n

s

p(1)/x1, . . . , s
p(k)/x

k

o

Otherwise:
(�x .t)[s1, . . . , sk

] !� ;

Linear & Confluent & Strongly Normalizable
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The Resource Calculus
Resource approximants:

t ::= x | �x .t | t b

b ::= [t1, . . . , tn] where n � 0

Terms

Reduction:
If the number of occurrences of x in t equals k

(�x .t)[s1, . . . , sk

] !�

X

p2S
k

t

n

s

p(1)/x1, . . . , s
p(k)/x

k

o

Otherwise:
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Taylor Expansion

T : �-terms ! (infinite) series of resource approximants

MN 7!
P1

k=0
1
k!M[N, . . . ,N

| {z }

k times

]

Definition (Taylor expansion)
T (x) = x T (�x .M) =

X

t2T (M)

�x .t

T (MN) =
X

k2N,t2T (M),s1,...,sk

2T (N)

t

⇥

s1, . . . , sk

⇤

Notice that t 2 T (M) probably goes to ;.
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Dynamics of Taylor Expansion

Thanks to SN,

NF�T (M) =
[

{nf (t) | t 2 T (M)}

always exists (it can be empty).

Thanks to the Commutation Theorem we have

BT(M) = BT(N) () NF�(T (M)) = NF�(T (N))
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A proof of context closure via Taylor Expansion

So we can (re)prove properties of Böhm trees:

BT (M) = BT (N) =) 8C[] . BT (C[M]) = BT (C[N])

by structural induction on C[].

Proof. Assume NF�(T (M)) = NF�(T (N)). Consider C[] = C1[]C2[].
Take t 2 NF�T (C1[M]C2[M]). Then 9t

0 2 T (C1[M]C2[M]) such that

t

0 = c1[b1](c2[b2]) ⇣ t + T

with c1[] 2 T (C1[]), c2[] 2 T (C2[]) and b

i

2 M
f

(T (M)). By confluence

t

0 ⇣ c1[nf (b1)](c2[nf (b2)]) ⇣ t + T 6= ;

Therefore 9b

0
1, b

0
2 2 T (N) s.t. c1[b0

1](c2[b0
2]) generates t . ⇤
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Old Results with Simpler Proofs

Together with Davide Barbarossa, we had some fun:

Genericity Lemma
If C[⌦] has a �-normal form then 8N 2 ⇤ . C[N] =� C[⌦].

Scott’s continuity
For all P 2 A(C[M]), there exists Q 2 A(M) such that P  BT(C[Q]).

Berry’s stability
Let C[�1, . . . ,�n

]. For all i 2 I, take ; 6= X
i

✓ ⇤ and M

i

2 ⇤. Assume,
for all i 2 I, that X

i

" and A(M
i

) = X
i

then

A(C[M1, . . . ,Mn

]) = inf{C[N1, . . . ,Nn

] | 8i 2 I . N

i

2 X
i

}
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The Perpendicular Lines Lemma

Let n � 0, I = {1, . . . , n}, C[�1, . . . ,�n

] be a n-context, (M
ij

)(i,j)2I⇥I
and (N

i

)
i2I be sequences of �-terms. Assume that

8Z 2 ⇤

8

>

>

>

<

>

>

>

:

C[Z , M12, . . . . . . ,M1n

] = N1
C[M21,Z , . . .. . . . . . ,M2n

] = N2
. . .

...
...

C[M
n1, . . . ,M

n(n�1),Z ] = N

n

then 8Z1, . . . ,Zn

2 ⇤, C[Z1, . . . ,Zn

] = N1 = · · · = N

n

.

Proof. Claim + confluence + strong normalization.

Claim. For all c 2 T (C[⇠1, . . . , ⇠n

]), if c 6⇣
r

0 then c cannot contain
any hole.
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Taylor Expansion, and how to get
rid of other proof-techniques
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