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» linearity = consumption of resource (e.g. automaton)
— linear logic (higher order)

Needs an operational semantics for counting the uses of
resources
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Operational semantics

CBvV

2(1112) 0~ 2150 ~ I (I;0) ~ 1,0 ~ 0
I; used once

CBN
Q(Il 12)0 ~ (Il Ig) ((Il 12)0) ~ 12 ((Il 12)0) ~ (Il 12)0 ~ 12 0~0

I; used twice

We will stick to CBN (e.g., Krivine’s machine)
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Sum as non deterministic choice

X1+ Xo ~ X
P[X1 + X2] ~ P[X,']

P linear: has one (linear) occurence of x

P{(X1 + X2)/x} = P[X1 + Xa] ~ P[Xi]
P{X1/x} + P{Xa/x} ~ P{X;/x} = P[X]]

P bilinear: has 2 (linear) occurrences of x

P{(Xl —l—XQ)/X} ~ P[X1 + X5, X1 +X2] ~ P[X,‘,Xj]
P{Xl/X} + P{XQ/X} ~ P{X,'/X} = P[X,‘,X,']



Sum as non deterministic choice

Remark
Can keep sums without commiting choices, e.g. instead of

X1+ Xy ~ X
P[X1 + X2] ~ P[X,']

have
P[X1 + X2] ~ P[Xl] + P[Xz]



Linearity in lambda-calculus

Lambda-calculus application is not linear:
(PL+P)Q=PiQ+ PQ

but
P(Q1 + Q) # PQ1 + PQ>

(e.g. composition f o g in an additive category is only left linear)
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Differentiation

» differentiation = approximation by linear map

» differentiation = forcing an input to be linear

Linear substitution

(;P - Q ="P in which Q is substituted linearly for x"
X

Example:

if P = x? = x.x then

op R=Qx+x.Q (=2x.Q)

Ix



Differential lambda-calculus

Syntax
T:X|)\XT‘ T1T2’0| T1+T2|DT1.T2

Associativity, commutativity

Linearity

A (P1+ P2) = Ax Py + Ax P,

(PL+P2)Q=P1Q+ PQ
D(Pi+ P;).Q@=DP,.Q+DP,.Q
DP.(Qi+ @)=DP.Q1 +DP. @
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Notation

» Differential calculus: if f : R" — R then Df(x) : R" — R
linear

Df :R" - (R” — R) 2 R" — (R" — R)
Df(x).u = diff of f at x in direction u

» Differential fambda-calculus: if P : E — F then
DP:E —o(E—F)
(DP. Q)X = diff of P in direction Q at X

~~ DP . Q as a linearization of PQ



Partial derivative = linear substitution

ox B oy
Ox @R=Q ox
OAy P oP

YT Q=5 Q




Partial derivative = linear substitution

155 B 8y.

Ix Q=@ Ix Q=0

oAy P _ oP

Ox Q=2 Ox Q (x #y)
6DP1.P2'Q_



Partial derivative = linear substitution
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Partial derivative = linear substitution

155 B @
Ix RQ=Q Ox R=0
oAy P B oP
Ix ‘Q—)\y§'Q (x#y)
. P
M.Q:D @.Q P, +DP; .
ox Ox

OP1 P> _
ox

0P,

Ox



Partial derivative = linear substitution

Ox B dy B

ax 979 ax 90

DyP . OP

Ix ‘Q—)\y§'Q (x#y)
oDP . P, (0P oP,
ax'Q—D<aX‘Q>’P2+DP1'<aX‘Q>

OPLP, (0P
ox 'Q—<ax‘0>’°2+



Partial derivative = linear substitution

Ox B dy B

ax 979 ax 90

DyP . OP

Ix ‘Q—)\y§'Q (x#y)
oDP . P, (0P oP,
ax'Q—D<aX‘Q>’P2+DP1'<aX'Q>

PP, (8P OP;
o 0= (Gee)rrr (G o)



Partial derivative = linear substitution

Ox B dy B

ax 979 ax 90

DyP . OP

Ix ‘Q—)\y§'Q (x#y)
oDP . P, (0P oP,
ax'Q—D<aX‘Q>’P2+DP1'<aX'Q>

0P P, B 0P 0P5
Ox Q= <8X‘Q>P2+ (DP1-<8X‘Q>>P2



The chain rule

If F:RP— R and U:R"— RP are differentiable then (with
standard notations):

OF o U .
22 (%) = DF(UR) - 5 (%)

If P, doesn’t depend on x so that 8P1 - Q = 0 then (with I-diff

notations):
OP,P oP
(o (3-0))

Ox Ox



Dynamics

Reduction

(Ax P)Q ~ P{Q/x}

D)\XP.QW)\Xa—P-Q
Ox
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Taylor expansion

Differential calculus

Differential lambda-calculus

PQ=3" 1 (D"P.Q")0

n>0

prafd =Y o (G @) 10/

n>0

And now let's move to the full Taylor expansion
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Resource calculus

Syntax
s=x|Axs|(s)B
B=1]|s...s,
+ linearity conditions
Remark

(s) B=(D"s.B)0 where deg(B) =n



Linear substitution




Reduction

(Axs)sp...sp~ 0 if deg, (s) # n

0"s
waxn-sl...s,,: E S[So1 - Son]

ceG,




Uniformity

Uniform resource term = lambda-term approximant

Approximations



Reduction vs beta-reduction

Theorem
If S —3 So (normal form) and sp € T(So) then
there is a unique s € T(S) s.t. s~ sp.

S seT(S)
d
So Sp € T(S{))
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Full Taylor expansion

Let S be a lambda-term;

. 1
5 = Z m(s)s
seT(S)

m(s) is the multiplicity coefficient of s:

Theorem

n>0
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