Higher order differentiation and Taylor expansion

Thomas Ehrhard and Laurent Regnier

Université Paris 7 - PPS and Université d'Aix-Marseille - IML

Linearity

▶ linearity = additivity: f(x + y) = f(x) + f(y)→ differential calculus (first order)

Linearity

- linearity = additivity: f(x + y) = f(x) + f(y)→ differential calculus (first order)
- ▶ linearity = consumption of resource (e.g. automaton) → linear logic (higher order)

Linearity

- ▶ linearity = additivity: f(x + y) = f(x) + f(y)→ differential calculus (first order)
- ▶ linearity = consumption of resource (e.g. automaton)
 → linear logic (higher order)

Needs an operational semantics for counting the uses of resources

Operational semantics

CBV

$$\begin{split} \overline{2}\left(I_1\,I_2\right)0 &\rightsquigarrow \overline{2}\,I_2\,0 &\rightsquigarrow I_2\left(I_2\,0\right) &\rightsquigarrow I_2\,0 &\rightsquigarrow 0 \\ &I_1 \text{ used once} \end{split}$$

Operational semantics

CBV

$$\begin{split} \overline{2}\left(I_1\,I_2\right)0 &\rightsquigarrow \overline{2}\,I_2\,0 &\rightsquigarrow I_2\left(I_2\,0\right) &\rightsquigarrow I_2\,0 &\rightsquigarrow 0 \\ I_1 \text{ used once} \end{split}$$

CBN

$$\frac{1}{2} \left(I_1 I_2 \right) 0 \rightsquigarrow \left(I_1 I_2 \right) \left(\left(I_1 I_2 \right) 0 \right) \rightsquigarrow \frac{1}{2} \left(\left(I_1 I_2 \right) 0 \right) \rightsquigarrow \left(I_1 I_2 \right) 0 \rightsquigarrow \frac{1}{2} 0 \rightsquigarrow 0$$

$$I_1 \text{ used twice}$$

Operational semantics

CBV

$$\begin{split} \overline{2}\left(\textbf{I}_{1}\,\textbf{I}_{2}\right)\textbf{0} &\rightsquigarrow \overline{\textbf{2}}\,\textbf{I}_{2}\,\textbf{0} &\rightsquigarrow \textbf{I}_{2}\left(\textbf{I}_{2}\,\textbf{0}\right) &\rightsquigarrow \textbf{I}_{2}\,\textbf{0} &\rightsquigarrow \textbf{0} \\ & \textbf{I}_{1} \text{ used once} \end{split}$$

CBN

$$\frac{1}{2}(I_1 I_2) 0 \rightsquigarrow (I_1 I_2)((I_1 I_2) 0) \rightsquigarrow I_2((I_1 I_2) 0) \rightsquigarrow (I_1 I_2) 0 \rightsquigarrow I_2 0 \rightsquigarrow 0$$

 I_1 used twice

We will stick to CBN (e.g., Krivine's machine)

$$X_1 + X_2 \rightsquigarrow X_i$$
$$P[X_1 + X_2] \sim P[X_i]$$

$$X_1 + X_2 \rightsquigarrow X_i$$

$$P[X_1 + X_2] \sim P[X_i]$$

P linear: has one (linear) occurrence of x

$$P\{(X_1 + X_2)/x\} = P[X_1 + X_2] \sim P[X_i]$$

$$P\{X_1/x\} + P\{X_2/x\} \sim P\{X_i/x\} = P[X_i]$$

$$X_1 + X_2 \rightsquigarrow X_i$$

 $P[X_1 + X_2] \sim P[X_i]$

P linear: has one (linear) occurrence of x

$$P\{(X_1 + X_2)/x\} = P[X_1 + X_2] \sim P[X_i]$$

$$P\{X_1/x\} + P\{X_2/x\} \sim P\{X_i/x\} = P[X_i]$$

P bilinear: has 2 (linear) occurrences of x

$$P\{(X_1 + X_2)/x\} \sim P[X_1 + X_2, X_1 + X_2] \sim P[X_i, X_j]$$

 $P\{X_1/x\} + P\{X_2/x\} \sim P\{X_i/x\} = P[X_i, X_i]$

Remark

Can keep sums without commiting choices, e.g. instead of

$$X_1 + X_2 \rightsquigarrow X_i$$

 $P[X_1 + X_2] \sim P[X_i]$

have

$$P[X_1 + X_2] \sim P[X_1] + P[X_2]$$

Linearity in lambda-calculus

Lambda-calculus application is not linear:

$$(P_1 + P_2)Q = P_1Q + P_2Q$$

but

$$P(Q_1+Q_2)\neq PQ_1+PQ_2$$

(e.g. composition $f \circ g$ in an additive category is only left linear)

▶ differentiation = approximation by linear map

- ▶ differentiation = approximation by linear map
- differentiation = forcing an input to be linear

- differentiation = approximation by linear map
- differentiation = forcing an input to be linear

Linear substitution

$$\frac{\partial P}{\partial x} \cdot Q = P$$
 in which Q is substituted *linearly* for X

- differentiation = approximation by linear map
- differentiation = forcing an input to be linear

Linear substitution

$$\frac{\partial P}{\partial x} \cdot Q = P$$
 in which Q is substituted *linearly* for X

Example:

if
$$P = x^2 = x.x$$
 then
$$\frac{\partial P}{\partial x} \cdot Q = Q.x + x.Q \quad (= 2x.Q)$$

Differential lambda-calculus

Syntax

$$T = x \mid \lambda x T \mid T_1 T_2 \mid 0 \mid T_1 + T_2 \mid DT_1 . T_2$$

Associativity, commutativity Linearity

$$\lambda x (P_1 + P_2) = \lambda x P_1 + \lambda x P_2$$
$$(P_1 + P_2)Q = P_1 Q + P_2 Q$$
$$D(P_1 + P_2) \cdot Q = DP_1 \cdot Q + DP_2 \cdot Q$$
$$DP \cdot (Q_1 + Q_2) = DP \cdot Q_1 + DP \cdot Q_2$$

▶ Differential calculus: if $f: \mathbb{R}^n \mapsto \mathbb{R}$ then $\mathrm{D} f(x): \mathbb{R}^n \mapsto \mathbb{R}$ linear

$$\mathrm{D} f: \mathbb{R}^n \to (\mathbb{R}^n \multimap \mathbb{R})$$

 $\mathrm{D} f(x).u = \mathrm{diff} \ \mathrm{of} \ f \ \mathrm{at} \ x \ \mathrm{in} \ \mathrm{direction} \ u$

▶ Differential calculus: if $f: \mathbb{R}^n \mapsto \mathbb{R}$ then $\mathrm{D} f(x): \mathbb{R}^n \mapsto \mathbb{R}$ linear

$$Df: \mathbb{R}^n \to (\mathbb{R}^n \multimap \mathbb{R}) \cong \mathbb{R}^n \multimap (\mathbb{R}^n \to \mathbb{R})$$
$$Df(x).u = \text{diff of } f \text{ at } x \text{ in direction } u$$

▶ Differential calculus: if $f: \mathbb{R}^n \mapsto \mathbb{R}$ then $\mathrm{D} f(x): \mathbb{R}^n \mapsto \mathbb{R}$ linear

$$Df: \mathbb{R}^n \to (\mathbb{R}^n \to \mathbb{R}) \cong \mathbb{R}^n \to (\mathbb{R}^n \to \mathbb{R})$$
$$Df(x).u = \text{diff of } f \text{ at } x \text{ in direction } u$$

▶ Differential lambda-calculus: if $P: E \rightarrow F$ then

$$\mathrm{D}P:E\multimap(E\to F)$$
 $(\mathrm{D}P:Q)X=\mathrm{diff}\ \mathrm{of}\ P\ \mathrm{in}\ \mathrm{direction}\ Q\ \mathrm{at}\ X$

▶ Differential calculus: if $f: \mathbb{R}^n \mapsto \mathbb{R}$ then $\mathrm{D} f(x): \mathbb{R}^n \mapsto \mathbb{R}$ linear

$$Df: \mathbb{R}^n \to (\mathbb{R}^n \multimap \mathbb{R}) \cong \mathbb{R}^n \multimap (\mathbb{R}^n \to \mathbb{R})$$
$$Df(x).u = \text{diff of } f \text{ at } x \text{ in direction } u$$

▶ Differential lambda-calculus: if $P: E \rightarrow F$ then

$$\mathrm{D}P:E\multimap(E o F)$$
 $(\mathrm{D}P\:.\:Q)X=\mathsf{diff}$ of P in direction Q at X

 $\leadsto \mathrm{D}P$. Q as a linearization of PQ

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$
$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q =$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q = D\left(\frac{\partial P_1}{\partial x} \cdot Q\right) \cdot P_2 + DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q = D\left(\frac{\partial P_1}{\partial x} \cdot Q\right) \cdot P_2 + DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial P_1 P_2}{\partial x} \cdot Q =$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q = D\left(\frac{\partial P_1}{\partial x} \cdot Q\right) \cdot P_2 + DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial P_1 P_2}{\partial x} \cdot Q = \left(\frac{\partial P_1}{\partial x} \cdot Q\right) P_2 + Q$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q = D\left(\frac{\partial P_1}{\partial x} \cdot Q\right) \cdot P_2 + DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial P_1 P_2}{\partial x} \cdot Q = \left(\frac{\partial P_1}{\partial x} \cdot Q\right) P_2 + P_1 \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial x}{\partial x} \cdot Q = Q \qquad \qquad \frac{\partial y}{\partial x} \cdot Q = 0$$

$$\frac{\partial \lambda y \, P}{\partial x} \cdot Q = \lambda y \, \frac{\partial P}{\partial x} \cdot Q \qquad (x \neq y)$$

$$\frac{\partial DP_1 \cdot P_2}{\partial x} \cdot Q = D\left(\frac{\partial P_1}{\partial x} \cdot Q\right) \cdot P_2 + DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)$$

$$\frac{\partial P_1 P_2}{\partial x} \cdot Q = \left(\frac{\partial P_1}{\partial x} \cdot Q\right) P_2 + \left(DP_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q\right)\right) P_2$$

The chain rule

If $F: \mathbb{R}^p \mapsto \mathbb{R}$ and $U: \mathbb{R}^n \mapsto \mathbb{R}^p$ are differentiable then (with standard notations):

$$\frac{\partial F \circ U}{\partial x_i}(\vec{x}) = \mathrm{D}F(U(\vec{x})) \cdot \frac{\partial U}{\partial x_i}(\vec{x})$$

If P_1 doesn't depend on x so that $\frac{\partial P_1}{\partial x} \cdot Q = 0$ then (with I-diff notations):

$$\frac{\partial P_1 P_2}{\partial x} \cdot Q = \left(\mathrm{D} P_1 \cdot \left(\frac{\partial P_2}{\partial x} \cdot Q \right) \right) P_2$$

Dynamics

Reduction

$$(\lambda x P)Q \leadsto P\{Q/x\}$$
$$D\lambda x P \cdot Q \leadsto \lambda x \frac{\partial P}{\partial x} \cdot Q$$

Differential calculus

$$f(x) = \sum_{n \geq 0} \frac{1}{n!} D^n f(0) \cdot x^n$$

Differential calculus

$$f(x) = \sum_{n \ge 0} \frac{1}{n!} D^n f(0) \cdot x^n$$

Differential lambda-calculus

$$PQ = \sum_{n>0} \frac{1}{n!} \left(D^n P. Q^n \right) 0$$

Differential calculus

$$f(x) = \sum_{n>0} \frac{1}{n!} D^n f(0) \cdot x^n$$

Differential lambda-calculus

$$PQ = \sum_{n\geq 0} \frac{1}{n!} \left(D^n P. Q^n \right) 0$$

$$P\{Q/x\} = \sum_{n>0} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot Q^n \right) \{0/x\}$$

Differential calculus

$$f(x) = \sum_{n>0} \frac{1}{n!} D^n f(0) \cdot x^n$$

Differential lambda-calculus

$$PQ = \sum_{n\geq 0} \frac{1}{n!} \left(D^n P. Q^n \right) 0$$

$$P\{Q/x\} = \sum_{n>0} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot Q^n \right) \{0/x\}$$

And now let's move to the full Taylor expansion

Resource calculus

Syntax

$$s = x \mid \lambda x s \mid \langle s \rangle B$$

 $B = 1 \mid s_1 \dots s_n$

+ linearity conditions

Resource calculus

Syntax

$$s = x \mid \lambda x s \mid \langle s \rangle B$$

 $B = 1 \mid s_1 \dots s_n$

+ linearity conditions

Remark

$$\langle s \rangle \, B = (\mathrm{D}^n s \, . \, B) 0 \quad \text{where } \deg(B) = n$$

Linear substitution

$$\frac{\partial x}{\partial x} \cdot t = t \qquad \frac{\partial y}{\partial x} \cdot t = 0$$

$$\frac{\partial \lambda y \, s}{\partial x} \cdot t = \lambda y \, \frac{\partial s}{\partial x} \cdot t$$

$$\frac{\partial \langle s \rangle \, B}{\partial x} \cdot t = \left\langle \frac{\partial s}{\partial x} \cdot t \right\rangle B + \left\langle s \right\rangle \frac{\partial B}{\partial x} \cdot t$$

$$\frac{\partial s_1 \dots s_n}{\partial x} \cdot t = \sum_{i=1}^n s_1 \dots \left(\frac{\partial s_i}{\partial x} \cdot t \right) \dots s_n$$

Reduction

$$\langle \lambda x \, s \rangle \, s_1 \dots s_n \leadsto 0$$
 if $\deg_x(s) \neq n$

$$\leadsto \frac{\partial^n s}{\partial x^n} \cdot s_1 \dots s_n = \sum_{\sigma \in \mathfrak{S}_n} s[s_{\sigma 1} \dots s_{\sigma n}]$$

Uniformity

Uniform resource term = lambda-term approximant Approximations

$$\lambda x \times x \rightsquigarrow \lambda x \langle x \rangle x^{n}$$

$$\lambda f f (\lambda g g \lambda z z) \rightsquigarrow \lambda f \langle f \rangle 1$$

$$\rightsquigarrow \lambda f \langle f \rangle \lambda g \langle g \rangle 1$$

$$\rightsquigarrow \lambda f \langle f \rangle \lambda g \langle g \rangle 1 . \lambda g \langle g \rangle \lambda zz$$

$$\rightsquigarrow \lambda f \langle f \rangle \lambda g \langle g \rangle 1 . \lambda g \langle g \rangle \lambda z z . \lambda g \langle g \rangle (\lambda z z)^{2}$$

Reduction vs beta-reduction

Theorem

If $S \to_{\beta} S_0$ (normal form) and $s_0 \in \mathcal{T}(S_0)$ then there is a unique $s \in \mathcal{T}(S)$ s.t. $s \leadsto s_0$.

Full Taylor expansion

Let S be a lambda-term;

$$S^* = \sum_{s \in \mathcal{T}(S)} \frac{1}{m(s)} s$$

m(s) is the multiplicity coefficient of s:

Full Taylor expansion

Let S be a lambda-term;

$$S^* = \sum_{s \in \mathcal{T}(S)} \frac{1}{m(s)} s$$

m(s) is the multiplicity coefficient of s:

Theorem

$$(PQ)^* = \sum_{n>0} \frac{1}{n!} \langle P^* \rangle Q^{*n}$$