Corrections

Planche 1

1 Logique

EXERCICE 1:

- 1. Il existe un lundi où je ne joue pas au foot.
- 2. Il existe un dimanche où il fait beau et où je ne fais pas de maths.
- 3. Il existe un lundi où il fait beau et où je fais des maths.

EXERCICE 2:

1. L'assertion est fausse. S'il existait un tel x alors on aurait :

$$\forall y \in \mathbb{R}, x + y > 0.$$

Or avec y = -x, on obtient x + y = 0.

La négation est :

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \le 0.$$

2. L'assertion est fausse. Pour le montrer, on peut prendre x=y=0. La négation est :

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 \le x.$$

3. L'assertion est vraie. Prenons x=-1, on a bien : $\forall x\in\mathbb{R},\ y^2>x.$ La négation est : $\forall x\in\mathbb{R},\ \exists y\in\mathbb{R},\ y^2\leq x.$

EXERCICE 3:

- 1. $\forall n \in \mathbb{N}, n \leq n^2$.
- 2. $\forall x, y \in \mathbb{R}, xy = 0 \Rightarrow ((x = 0) \lor (y = 0)).$
- 3. $\forall A \subset \mathbb{N}, A \neq \emptyset, \exists n_0 \in A, \forall n \in A, n_0 \leq n.$

EXERCICE 4:

Soient $x, y \in \mathbb{R}$ tels que $0 \le x \le y$.

D'une part $x \ge 0$, donc $0 \le x^2 \le xy$, d'autre part, $y \ge 0$ donc $0 \le xy \le y^2$.

Par transitivité, on obtient : $0 \le x^2 \le xy \le y^2$, d'où le résultat.

Pour la contraposée :

$$\begin{split} \left[\neg\left(0 \leq x^2 \leq y^2\right) \Rightarrow \neg(0 \leq x \leq y)\right] \\ \Leftrightarrow \left[\neg\left((0 \leq x^2) \land (x^2 \leq y^2)\right) \Rightarrow \neg\left((0 \leq x) \land (x \leq y)\right)\right] \\ \Leftrightarrow \left[\left((0 > x^2) \lor (x^2 > y^2)\right) \Rightarrow ((0 > x) \lor (x > y))\right] \end{split}$$

Or on sait que si A et B sont deux expressions et que A est fausse alors on a : $A \lor B = B$. En effet, d'une part si B est fausse alors $A \vee B$ est fausse, donc si B est fausse, $A \vee B = B$. D'autre part, si B est vraie alors $A \vee B$ est vraie, donc si B est vraie, $A \vee B = B$. Dans tous les cas $A \vee B = B$. Ainsi, avec ce résultat, puisque pour $x \in \mathbb{R}$, $(0 > x^2)$ est fausse, on a :

$$[\left((0>x^2)\vee(x^2>y^2)\right)\Rightarrow ((0>x)\vee(x>y))]$$

$$\Leftrightarrow [\left(x^2>y^2\right)\Rightarrow ((0>x)\vee(x>y))]$$

Cela signifie que si $x^2 > y^2$, alors soit x est strictement négatif, soit x est positif, et dans ce dernier cas, on a: x > y.

La réciproque s'écrit :

$$\left(0 \le x^2 \le y^2\right) \Rightarrow (0 \le x \le y),$$

bien sûr cette réciproque est fausse : prendre x = -1 et y = 2, par exemple.

EXERCICE 5:

On commence par une remarque : par convention la somme $1+2+\cdots+n$ vaut 0 lorsque n=0.

On va donc montrer : $\forall n \in \mathbb{N}^*, \ 1+2+\cdots+n=\frac{n(n+1)}{2}$. Initialisation : Pour n=1 l'indentité est vraie car $1=\frac{1+2}{2}$.

Héridité : Soit $n \ge 0$. On fait l'hypothèse d'hérédité suivante :

On a l'identité : $1+2+\cdots+n=\frac{n(n+1)}{2}$. Montrons que l'identité ci-dessus est vraie pour n+1,

c'est à dire, montrons que : $1 + 2 + \cdots + n + (n+1) = \frac{(n+1)(n+2)}{2}$.

Pour cela, en utilisant l'hypothèse d'hérédité, on écrit : $1+2+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)$. Donc : $1+2+\cdots+n+(n+1)=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+2)(n+1)}{2}$. Conclusion : La propriété est vraie au rang n=1, elle est héréditaire pour $n\geq 1$, donc elle est

vraie pour tout $n \in \mathbb{N}^*$.

EXERCICE 6:

On remarque tout d'abord que pour n=0, on a $1\geq 0$, donc la propriété est vraie pour n=0.

Pour n=1, on a bien $2 \ge 1$, donc la propriété est vraie pour n=1.

Pour n=2, on a bien 4 > 4, donc la propriété est vraie pour n=2.

Par contre pour n=3 la propriété est fausse car 8<9.

On va donc montrer que pour $n \ge 4$, on a $2^n \ge n^2$.

On procède de même par Initialisation/Hérédité/Conclusion :

La propriété est vraie pour n=4 donc l'initialisation est vraie.

Pour l'hérédité, soit $n \geq 4$ tel que $2^n \geq n^2$. On a $2^{n+1} = 2*2^n \geq 2n^2$, grâce à l'hypothèse d'hérédité.

Il reste donc à montrer que $2n^2 \ge (n+1)^2$. Or $2n^2 = n^2 + n^2 = n^2 + n * n \ge n^2 + 4n$, car $n \ge 4$. De plus $n^2 + 4n = n^2 + 2n + 2n \ge n^2 + 2n + 2 * 4$, toujours parce que $n \ge 4$.

Enfin $n^2 + 2n + 2 * 4 \ge n + 2 + 2n + 1 = (n+1)^2$, ce qui conclut.

On a donc $2^n \ge n^2$ pour tout $n \ge 4$ et même pour tout $n \in \mathbb{N} \setminus \{3\}$.

EXERCICE 7:

Soit a un réel. On considère l'implication $\forall \varepsilon > 0, \ a \le \varepsilon \Rightarrow a \le 0$. Pour montrer cette implication, il suffit de montrer sa contraposée, qui s'écrit : $a > 0 \Rightarrow \exists \varepsilon > 0, \ a > \varepsilon$.

Cette implication se montre de la façon suivante : Si a>0, alors prenons $\varepsilon=\frac{a}{2}$. Ainsi, ε vérifie bien $\varepsilon>0$ et de plus, $a>\frac{a}{2}=\varepsilon$. Donc l'implication est vraie : on a bien exhibé un réel $\varepsilon>0$ qui vérifie la propriété : $a>\varepsilon$.

EXERCICE 8:

On montre que $\sqrt{2}$ est irrationnel par l'absurde.

On suppose donc qu'il existe p et q deux entiers non nuls premiers entre eux (c'est-à-dire que si un entier positif k divise à la fois p et q, alors k=1) tels que $\sqrt{2}=\frac{p}{q}$. En élevant au carré, on obtient : $2q^2=p^2$. Donc p^2 est pair.

Montrons que si p^2 est pair alors p est pair aussi. Pour cela, on suppose que p^2 est pair et que p est impair. Dans ce cas, p s'écrirait sous la forme p=2k+1 avec $k\in\mathbb{Z}$. Mais alors : $p^2=4k^2+4k+1$, donc p^2 est impair (c'est la somme d'un entier pair : $4k^2+4k$ et de 1). Or on avait supposé que p^2 était pair ! On a là une contradiction. Donc si p^2 est pair, alors p est pair, et donc p s'écrit p=2k, avec $k\in\mathbb{Z}$.

En repartant de $2q^2=p^2$, on obtient : $2q^2=(2k)^2=4k^2$, donc $q^2=2k^2$. Ainsi q^2 est pair ! Donc q est pair.

Finalement p et q sont tous les deux pairs, donc 2 divise à la fois p et q, ce qui le fait que p et q sont premiers entre eux.

Donc l'hypothèse de départ : " $\sqrt{2}$ est irrationnel" est fausse. Donc $\sqrt{2}$ est rationnel.

2 Ensembles

EXERCICE 9:

- 1. Montrons tout d'abord que $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Si $A \cup (B \cap C)$ est vide alors l'inclusion est vraie : l'ensemble vide est inclus dans n'importe quel autre ensemble ! Sinon, soit $x \in A \cup (B \cap C)$. Alors soit $x \in A$ et dans ce cas, $x \in A \cup B$ et $x \in A \cup C$. Cela signifie : $x \in (A \cup B) \cap (A \cup C)$. Soit $x \in B \cap C$ et dans ce cas, $x \in B$ et $x \in C$. Puisque $x \in B$, $x \in A \cup B$ et puisque $x \in C$, $x \in A \cup C$. Donc $x \in A \cup B$ et $x \in A \cup C$, ainsi $x \in (A \cup B) \cap (A \cup C)$ Dans tous les cas, $x \in (A \cup B) \cap (A \cup C)$, cela termine de montrer la première inclusion.
 - On peut aussi procéder autrement : $A \subset A \cup B$ et $A \subset A \cup C$, donc $A \subset (A \cup B) \cap (A \cup C)$. De même, $B \cap C \subset B$, donc $B \cap C \subset (A \cup B)$ et $B \cap C \subset C$, donc $B \cap C \subset (A \cup C)$. Ainsi $B \cap C \subset (A \cup B)$ et $B \cap C \subset (A \cup B)$ of $A \cup C$. Finalement $A \subset (A \cup B) \cap (A \cup C)$ et $A \cap C \subset (A \cup B) \cap (A \cup C)$, donc $A \cap C \subset (A \cup B) \cap (A \cup C)$. Montrons maintenant la seconde inclusion : $A \cap B \cap C \cap A \cup B \cap C$. Si $A \cap B \cap C \cap C$ est vide alors il n'y a rien à faire. Sinon on peut choisir un $A \cap C \cap C \cap C$ but $A \cap C \cap C \cap C \cap C$. Dans ce cas, $A \cap C \cap C \cap C \cap C \cap C \cap C$. Soit $A \cap C \cap C \cap C \cap C \cap C \cap C$ et calamontre la seconde inclusion.
- 2. On commence par montrer la première implication $A\subset B\Rightarrow B^c\subset A^c$. Pour cela, supposons $A\subset B$ et montrons par l'absurde que $B^c\subset A^c$. Si B^c est vide, alors l'inclusion est vraie. Sinon, soit $x\in B^c$ et supposons que $x\in A$. Alors puisque $A\subset B, x\in B$. Mais $x\in B^c$, on a donc une contradiction. Donc notre hypothèse $x\in A$ est fausse, c'est-à-dire : $x\in A^c$. On a donc montré $B^c\subset A^c$, la première implication est donc vraie.
 - Montrons maintenant la seconde implication : $B^c \subset A^c \Rightarrow A \subset B$. La première implication $A \subset B \Rightarrow B^c \subset A^c$, qui a été montrée ci-dessus, est vraie pour tout ensemble A et B. En

particulier, elle est vraie pour les ensembles A^c et B^c . Cela s'écrit donc : $A^c \subset B^c \Rightarrow (B^c)^c \subset (A^c)^c$. Remarquer maintenant que $(A^c)^c = A$ et que $(B^c)^c = B$. Cela donne donc : $A^c \subset B^c \Rightarrow B \subset A$. La deuxième implication est donc vraie.

3. On veut montrer que

$$(A \cap B)^c = A^c \cup B^c$$
.

- \star Montrons que $(A \cap B)^c \subset A^c \cup B^c$.
 - − Si $(A \cap B)^c$ est vide, alors l'assertion est vraie.
 - Si $(A \cap B)^c$ est non vide, on considère un élément $x \in (A \cap B)^c$.

$$(A\cap B)^c=\{y\in E:y\notin A\cap B\}.$$

donc

$$x \notin A \cap B$$
,

on en déduit que

$$x \notin A$$
 ou $x \notin B$

(sinon x appartient à la fois à A et à B et donc $x\in A\cap B$). d'où

$$x \in A^c$$
 ou $x \in B^c$

c'est-à-dire

$$x \in A^c \cup B^c$$
.

Conclusion : $(A \cap B)^c \subset A^c \cup B^c$.

- * Montrons que $A^c \cup B^c \subset (A \cap B)^c$.
 - − Si $A^c \cup B^c$ est vide, alors l'assertion est vraie.
 - Si $A^c \cup B^c$ est non vide, on considère un élément $x \in A^c \cup B^c$.
 - \to Supposons que $x \in A^c$, on a donc $x \notin A$ et comme $A \cap B \subset A$, $x \notin A \cap B$ c'est à dire

$$x \in (A \cap B)^c$$
.

 \to Supposons que $x\notin A^c$, alors $x\in B^c$ c'est-à-dire $x\notin B$ et comme $A\cap B\subset B$, $x\notin A\cap B$ c'est à dire

$$x \in (A \cap B)^c$$
.

Conclusion : $A^c \cup B^c \subset (A \cap B)^c$.

Finalement:

$$A^c \cup B^c = (A \cap B)^c.$$

4. On veut montrer que

$$(A \cup B)^c = A^c \cap B^c$$
.

- \star Montrons que $(A \cup B)^c \subset A^c \cap B^c$.
 - − Si $(A \cup B)^c$ est vide, alors l'assertion est vraie.
 - − Si $(A \cup B)^c$ est non vide, on considère un élément $x \in (A \cup B)^c$.

$$(A \cup B)^c = \{ y \in E : y \notin A \cup B \}.$$

donc

$$x \notin A \cup B$$
,

on en déduit que

$$x \notin A$$
 et $x \notin B$.

ďoù

$$x \in A^c$$
 et $x \in B^c$

c'est-à-dire

$$x \in A^c \cap B^c$$
.

Conclusion : $(A \cup B)^c \subset A^c \cap B^c$.

- \star Montrons que $A^c \cap B^c \subset (A \cup B)^c$.
 - − Si $A^c \cap B^c$ est vide, alors l'assertion est vraie.
 - − Si $A^c \cap B^c$ est non vide, on considère un élément $x \in A^c \cap B^c$. On a donc :

$$x \in A^c$$
 et $x \in B^c$

c'est-à-dire x n'appartient ni à A ni à B donc x n'appartient pas à la réunion des deux ensembles, $x^notinA \cup B$ c'est à dire

$$x \in (A \cup B)^c$$
.

Conclusion : $A^c \cap B^c \subset (A \cup B)^c$.

Finalement :

$$A^c \cap B^c = (A \cup B)^c.$$

5. On veut montrer que

$$A \cup B = B \iff A \cap B = A.$$

 \star Condition suffisante : montrons que $A \cup B = B \Longrightarrow A \cap B = A$.

Supposons que A et B soient deux ensembles tels que $A \cup B = B$. On a toujours $A \cap B \subset A$. Il suffit donc de montrer que $A \subset A \cap B$.

Par hypothèse, $A \cup B = B$ or $A \subset A \cup B$ donc $A \subset B$.

- si A est vide, on a toujours $A = \emptyset \subset A \cap B$;
- $-\,$ si A est non vide, on considère un élément $x\in A.$ On a vu que $A\subset B$ donc $x\in B.$ En résume :

$$x \in A$$
 et $x \in B$

donc $x \in A \cap B$.

Conclusion : $A \cap B = A$.

* Condition nécessaire : montrons que $A \cup B = B \iff A \cap B = A$.

Supposons que A et B soient deux ensembles tels que $A \cap B = A$. On a toujours $B \subset A \cup B$. Il suffit donc de montrer que $A \cup B \subset B$.

- si $A \cup B$ est vide, on a toujours $A \cup B = \emptyset \subset B$;
- si $A \cup B$ est non vide, on considère un élément $x \in A \cup B$. on a donc :

$$x \in A$$
 ou $x \in B$.

Si $x \in B$, il n'y a rien à démontrer. Si $x \in A$, par l'hypothèse $A = A \cap B$ donne $x \in B$.

Conclusion : $A \cup B = B$.

Finalement :

$$A \cup B = B \iff A \cap B = A$$

EXERCICE 10:

- Les sous ensembles de $\{1, 2, 3\}$ sont les ensembles suivants :

$$\emptyset$$
, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}.

il y en a 8.

- Avant de traiter cette récurrence, dénombrons les sous ensembles de l'ensemble {1, 2, 3, 4} :

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$

et

$${4}, {4,1}, {4,2}, {4,3}, {4,1,2}, {4,1,3}, {4,2,3}, {4,1,2,3}.$$

Remarquez que la deuxième liste est obtenue en ajoutant l'élément 4 à chacun des ensembles de la première liste. Il y a donc $8+8=2^3+2^3=2^4$ sous ensembles de $\{1,2,3,4\}$. Passons maintenant au cas général.

Pour n=0, l'assertion est vraie car l'ensemble vide possède $2^0=1$ seul sous ensemble : l'ensemble vide lui-même. Supposons la propriété vraie pour $n\geq 0$. On considère un ensemble X à n+1 éléments. Il est donc non vide car n+1>0. Soit donc $x\in X$. Les sous ensembles de X sont les sous ensembles de $X\backslash\{x\}$ et les sous ensembles de $X\backslash\{x\}$ auxquels on a rajouté l'élément x. En effet, soit Y un sous ensemble de X. Premier cas : $x\notin Y$, alors dans ce cas, Y est un sous ensemble de $X\backslash\{x\}$. Deuxième cas, $x\in Y$ et dans ce cas, Y est un sous ensemble de $X\backslash\{x\}$ auquel on a rajouté x car $Y=Y\backslash\{x\}\cup\{x\}$ et $Y\backslash\{x\}$ et $Y\backslash\{x\}$ est un sous ensemble de $Y\backslash\{x\}$. Donc le nombre de sous ensembles de $Y\backslash\{x\}$ (par hypothèse de récurrence, il Y en a Y0 plus le nombre de sous ensembles de Y1 auxquels on a rajouté Y2 (il Y3 en a autant que de sous ensembles de Y3. Il Y4 adonc en tout Y6 auxquels on a rajouté Y6 (il Y8 en a autant que de sous ensembles de Y3. Il Y4 adonc en tout Y6 et Y8 ensemble de Y8. Ce qui conclut la preuve.

Exercice 11:

$$A = \{1, 3, 5, 9, 15, 45\} \text{ et } B = \{1, 3, 5, 11, 15, 33, 55, 165\}.$$

$$A \cap B = \{1, 3, 5, 15\}, \ A \cup B = \{1, 3, 5, 9, 11, 15, 33, 45, 55, 165\}.$$

EXERCICE 12:

$$A \cup B = [1,6], A \cap B = [3,4], A \setminus D = [1,2[\cup]2,4].$$

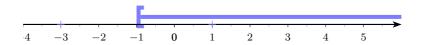
$$(A \cap B) \times A = [3,4] \times [1,4], B^c \times (A \cup C) = (]-\infty, 3[\cup]6, +\infty[) \times [1,5] \text{ et } (A \setminus D) \times D = [1,2[\cup]2,4] \times \{2\}.$$

EXERCICE 13:

1.
$$A = \{x \in \mathbb{R} : |x - 1| \le |x + 3|\}$$

HEURISTIQUE : Attention, ceci n'est pas une preuve, cela sert juste à avoir une idée de la solution!!

|x-1| représente, sur la droite réelle, la distance entre les nombres x et 1. De même |x+3| représente la distance entre x et -3. Dire $|x-1| \leq |x+3|$ c'est dire que x doit être plus proche de 1 que de -3 (ou à égale distance des deux). Représentons ça sur un dessin :



La demi-droite au-dessus de la droite réelle représente l'ensemble des points plus proches de 1 que de -3, c'est l'ensemble des éléments de A. On devine donc le résultat à obtenir : $A = [-1; +\infty[$.

Preuve

$$\begin{array}{l} x \in A \Longleftrightarrow |x-1| \leq |x+3| \\ \Longleftrightarrow -|x+3| \leq x-1 \leq |x+3| \\ \Longleftrightarrow -|x+3| \leq x-1 \\ \Longleftrightarrow \underbrace{|x+3| \geq 1-x}_{(a)} \end{array} \qquad \text{et} \qquad \underbrace{x-1 \leq |x+3|}_{(b)}$$

(a)

$$|x+3| \ge 1 - x \Leftrightarrow (x+3 \ge 0 \text{ et } x+3 \ge 1 - x) \quad \text{ou} \quad (x+3 \le 0 \text{ et } -(x+3) \ge 1 - x)$$

$$\Leftrightarrow \underbrace{(x \ge -3 \text{ et } x \ge -1)}_{\Leftrightarrow x \ge -1} \quad \text{ou} \quad (x \le -3 \text{ et } \underbrace{-3 \ge 1}_{\text{FAUX}})$$

$$\Leftrightarrow x > -1.$$

(b)

$$\begin{array}{lll} x-1 \leq |x+3| \Leftrightarrow (x+3 \geq 0 \text{ et } x+3 \geq x-1) & \text{ou} & (x+3 \leq 0 \text{ et } -(x+3) \geq x-1) \\ & \Leftrightarrow (x \geq -3 \text{ et } 3 \geq -1) & \text{ou} & (x \leq -3 \text{ et } x \leq -1) \\ & \Leftrightarrow x \geq -3 & \text{ou} & x \leq -1 \\ & x \in]-\infty \,; \, +\infty[. \end{array}$$

Finalement :

$$x \in A \iff x \ge -1$$
 et $x \in \mathbb{R}$ $\iff x \in [-1; +\infty[$.

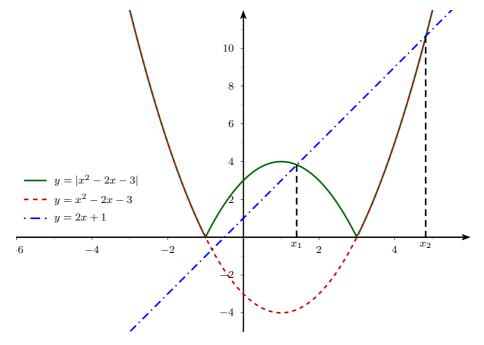
Conclusion:

$$A = [-1; +\infty[.$$

or

$$x+3 > x-1 \iff 3 < -1$$

2. $B = \{x \in \mathbb{R} : |x^2 - 2x - 3| \ge 2x + 1\}$ Heuristique :



Les courbes d'équations $y=|x^2-2x-3|$ et y=2x+1 se croisent en deux points dont les coordonnées sont difficiles à déterminer graphiquement. Notons x_1 et x_2 leurs abscisses respectives avec $x_1 < x_2$. Le graphique nous permet de "deviner" le résultat à obtenir :

$$B =]-\infty; x_1] \cup [x_2; +\infty[.$$

Le graphique ne nous permet pas de "deviner" les valeurs exactes de x_1 et x_2 . Preuve Pour simplifier les notations, on pose $f(x) = x^2 - 2x - 3$ pour $x \in \mathbb{R}$.

$$x \in B \Leftrightarrow |f(x)| \ge 2x + 1$$

 $\Leftrightarrow (f(x) \ge 0 \text{ et } x^2 - 2x - 3 \ge 2x + 1) \text{ ou } (f(x) \le 0 \text{ et } -x^2 + 2x + 3 \ge 2x + 1)$

On va d'abord déterminer le signe de $f(x)=x^2-2x-3$ suivant les valeurs de x: $\Delta=(-2)^2-4\times 1\times (-3)=16$ et donc $x'=\frac{2-4}{2}=-1$ et $x''=\frac{2+4}{2}=3$.

x	$-\infty$		-1		3		$+\infty$
f(x)		+	0	_	0	+	

Ainsi:

$$x \in B \Leftrightarrow (x \in]-\infty\,;\, -1] \cup [3\,;\, +\infty[\text{ et }x^2-4x-4 \geq 0) \ \text{ ou } \ (x \in [-1\,;\, 3] \text{ et }2 \geq x^2)$$

De même, on détermine le signe de x^2-4x-4 suivant les valeurs de x :

$$\Delta = (-4)^2 - 4 \times 1 \times (-4) = 32$$
 et donc $x' = \frac{4 - 4\sqrt{2}}{2} = 2 - 2\sqrt{2}$ et $x'' = 2 + 2\sqrt{2}$.

x	$-\infty$		$2-2\sqrt{2}$		$2 + 2\sqrt{2}$		$+\infty$
$x^2 - 4x - 4$		+	0	_	0	+	

D'où,

$$\begin{split} (x \in]-\infty\,;\,-1] \cup [3\,;\,+\infty[\text{ et }x^2-4x-4 \geq 0) \\ \Leftrightarrow x \in]-\infty\,;\,-1] \cup [3\,;\,+\infty[\text{ et }x \in]-\infty\,;\,2-2\sqrt{2}] \cup [2+2\sqrt{2}\,;\,+\infty[\\ \Leftrightarrow x \in]-\infty\,;\,-1] \cup [2+2\sqrt{2}\,;\,+\infty[\end{split}$$

car
$$2 - 2\sqrt{2} > -1$$
 et $3 > 2 + 2\sqrt{2}$.

De plus, soit en utilisant le discriminant, soit directement, on obtient $x^2 \le 2 \Leftrightarrow x \in [-\sqrt{2}; \sqrt{2}]$. Donc

$$(x \in [-1; 3] \text{ et } 2 \ge x^2) \Leftrightarrow x \in [-1; 3] \text{ et } x \in [-\sqrt{2}, ; \sqrt{2}]$$

 $\Leftrightarrow x \in [-1; \sqrt{2}].$

Finalement, on a:

$$\begin{aligned} x \in B &\Leftrightarrow x \in]-\infty\,;\, -1] \cup [2+2\sqrt{2}\,;\, +\infty[\text{ et }x \in [-1\,;\, \sqrt{2}]\\ &\Leftrightarrow x \in]-\infty\,;\, \sqrt{2}] \cup [2+2\sqrt{2}\,;\, +\infty[.\end{aligned}$$

Et donc:

$$B =]-\infty; \sqrt{2}] \cup [2 + 2\sqrt{2}; +\infty[.$$

3.
$$C = \{x \in \mathbb{R} : |x - |x + 1|| < 2\}.$$

$$\begin{split} x \in C &\iff |x - |x + 1|| < 2 \\ &\iff -2 < x - |x + 1| < 2 \\ &\iff x - 2 < |x + 1| < x + 2 \\ &\iff (x + 1 \ge 0 \text{ et } x - 2 < x + 1 < x + 2) \quad \text{ou } (x + 1 \le 0 \text{ et } x - 2 < -x - 1 < x + 2) \\ &\iff (x \ge -1 \text{ et } -2 < 1 < 2) \quad \text{ou } (x \le -1 \text{ et } -\frac{3}{2} < x < \frac{1}{2}) \\ &\iff x \ge -1 \quad \text{ou } -\frac{3}{2} < x \le -1 \\ &\iff x > -\frac{3}{2}. \end{split}$$

Finalement:

$$C = \left[-\frac{3}{2}; +\infty \right[.$$

Exercice 14:

 $A=\mathbb{R}$. En effet, d'une part $A\subset\mathbb{R}$, d'autre part, si $x\in\mathbb{R}$, alors $x\in[x,\infty[$, donc $x\in A$. Donc $\mathbb{R}\subset A$. Finalement $A=\mathbb{R}$.

 $B=\emptyset$. En effet, supposons (par l'absurde) qu'il existe $x\in B$. Alors $x\notin [x+1,\infty[$. Donc $x\notin B$. Contradiction.

3 Applications

Exercice 15:

	$f(\{a,b,c\})$	$f^{-1}(\{1,3\})$
1	$\{1, 2, 3, 4\}$	$\{a,b\}$
2	$\{2, 3\}$	$\{c,d\}$
3	{2}	Ø

Exercice 16:

1. Soit $y \in F$. On a la suite d'équivalences suivante :

$$y \in f(A \cap B)$$

$$\Leftrightarrow \exists x \in A \cup B, \ f(x) = y$$

$$\Leftrightarrow \exists x \in E, \ x \in A \cup B \ \text{et} \ f(x) = y$$

$$\Leftrightarrow \exists x \in E, \ (x \in A \ \text{ou} \ x \in B) \ \text{et} \ f(x) = y$$

$$\Leftrightarrow \exists x \in E, \ [(x \in A \ \text{et} \ f(x) = y) \ \text{ou} \ (x \in B \ \text{et} \ f(x) = y)]$$

$$\Leftrightarrow (\exists x \in E, \ x \in A \ \text{et} \ f(x) = y) \ \text{ou} \ (\exists x \in E, \ x \in B \ \text{et} \ f(x) = y)$$

$$\Leftrightarrow y \in f(A) \ \text{ou} \ y \in f(B)$$

$$\Leftrightarrow y \in f(A) \cup f(B).$$

Ainsi, $f(A \cup B) = f(A) \cup f(B)$.

2. On utilise le résultat du cours suivant :

Si E_1 et E_2 sont des parties de E telles que $E_1 \subset E_2$, alors $f(E_1) \subset f(E_2)$.

On applique ce résultat intermédiaire à $E_1 = A \cap B$ et $E_2 = A$: on a $A \cap B \subset A$, donc on en déduit $f(A \cap B) \subset f(A)$. De même, comme $A \cap B \subset B$, on a $f(A \cap B) \subset f(B)$. Donc $f(A \cap B)$ est inclus à la fois dans f(A) et dans f(B), ce qui prouve que $f(A \cap B) \subset f(A) \cap f(B)$.

On peut trouver facilement des contre-exemples à l'égalité : il suffit par exemple de prendre

$$E = \{0, 1\}, F = \{a\},\$$

et $f: E \longrightarrow F$ telle que f(0) = f(1) = a. On pose $A = \{0\}$ et $B = \{1\}$. On a alors $A \cap B = \emptyset$, donc $f(A \cap B) = \emptyset$, et $f(A) = \{a\} = f(B)$, donc $f(A) \cap f(B) = \{a\}$. Donc $f(A \cap B) \neq f(A) \cap f(B)$ dans ce cas.

3. On suppose maintenant f injective. Rappelons que cela signifie que l'assertion suivante est vraie :

$$\forall x \in E, \ \forall x' \in E, \ (f(x) = f(x')) \Rightarrow (x = x'),$$

ou encore, de manière équivalente, par contraposée :

$$\forall x \in E, \ \forall x' \in E, \ (x \neq x') \Rightarrow (f(x) \neq f(x')).$$

Pour montrer que $f(A \cap B) = f(A) \cap f(B)$, il suffit de montrer les deux implications réciproques suivantes :

- $-f(A\cap B)\subset f(A)\cap f(B)$: cela a été vu dans la question 2.
- $f(A) \cap f(B) \subset f(A \cap B)$:

Soit $y \in f(A) \cap f(B)$. Alors, $y \in f(A)$ et $y \in f(B)$. Par définition de f(A), il existe $x_A \in A$ tel que $f(x_A) = y$. De même, il existe $x_B \in B$ tel que $f(x_B) = y$. Alors, puisque f est injective, et que $f(x_A) = f(x_B)$, on a $x_A = x_B$. Donc $x_A \in A$ et $x_A \in B$, ce qui signifie que $x_A \in A \cap B$. En outre, $f(x_A) = y$, donc $y \in f(A \cap B)$. On en déduit donc que $f(A) \cap f(B) \subset f(A \cap B)$. Ainsi, on a $f(A \cap B) = f(A) \cap f(B)$.

Exercice 17:

1. Soit $x \in E$. La suite d'équivalences suivante est vraie :

$$x \in f^{-1}(C \cup D)$$

$$\Leftrightarrow f(x) \in C \cup D$$

$$\Leftrightarrow f(x) \in C \text{ ou } f(x) \in D$$

$$\Leftrightarrow x \in f^{-1}(C) \text{ ou } x \in f^{-1}(D)$$

$$\Leftrightarrow x \in f^{-1}(C) \cup f^{-1}(D).$$

Ainsi, on a $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

2. Soit $x \in E$. La suite d'équivalences suivante est vraie :

$$x \in f^{-1}(C \cap D)$$

$$\Leftrightarrow f(x) \in C \cap D$$

$$\Leftrightarrow f(x) \in C \text{ et } f(x) \in D$$

$$\Leftrightarrow x \in f^{-1}(C) \text{ et } x \in f^{-1}(D)$$

$$\Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D).$$

Ainsi, on a $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

EXERCICE 18:

Remarque 3.0.1 — Rappelons que le schéma de démonstration standard pour montrer une injectivité est le suivant : pour montrer qu'une application $f: E \longrightarrow F$ est injective, on écrit :

```
« Soient x, x' \in E. Supposons f(x) = f(x').
(On fait alors un raisonnement pour en déduire que x = x').
Donc x = x'. On en déduit que f est injective. »
```

— De même, pour montrer qu'une application $f: E \longrightarrow F$ est surjective, le schéma de démonstration standard est le suivant :

```
« Soit y \in F.
```

(On fait alors un raisonnement dans lequel on prouve qu'il existe un élément $x \in E$ tel que f(x) = y.)

Donc $x \in E$ est tel que f(x) = y. On en déduit que f est surjective ».

1. On suppose f et g injectives. Soient $x, x' \in E$ tels que $(g \circ f)(x) = (g \circ f)(x')$. Alors, par définition de $g \circ f$, on a

$$g(f(x)) = g(f(x')).$$

Or, g est injective, donc f(x) = f(x'). Mais f est aussi injective. Ainsi, on a x = x'. On en déduit que $g \circ f$ est injective.

- 2. On suppose f et g surjectives. Soit $z \in G$. Puisque $g: F \longrightarrow G$ est surjective, il existe $y \in F$ tel que g(y) = z. Cependant, $f: E \longrightarrow F$ est surjective. Ainsi, il existe $x \in E$ tel que f(x) = y. Donc $(g \circ f)(x) = g(f(x)) = g(y) = z$. Donc l'élément $x \in E$ est tel que $(g \circ f)(x) = z$. On en déduit que $g \circ f$ est surjective.
 - On peut aussi dire f(E)=F car f est surjective donc $g\circ f(E)=g(F)$. Or g(F)=G car g surjective. Finalement $g\circ f(E)=G$.
- 3. On suppose maintenant $g\circ f$ surjective. Soit $z\in G$. Puisque $g\circ f$ est surjective, il existe $x\in E$ tel que $(g\circ f)(x)=z$. Par définition de $g\circ f$, cela signifie que g(f(x))=z. Posons y=f(x). Alors $y\in F$, et g(y)=z. Ceci prouve que g est surjective.

On peut aussi dire $f(E)\subset F$ donc $g\circ f(E)\subset g(F)$, mais $g\circ f$ est surjective donc $g\circ f(E)=G$ donc $G\subset g(F)$ or $g(F)\subset G$ donc g(F)=G et ainsi g est surjective. Même si $g\circ f$ est surjective, f n'est pas nécessairement surjective. On peut trouver facilement des contre-exemples : prenons $E=\{0\}$, $F=\{0,1\}$ et $G=\{a\}$. Alors si $f:E\longrightarrow F,g:F\longrightarrow G$ sont définies par f(0)=0 et g(0)=g(1)=a, on voit que $(g\circ f)(0)=a$, donc $g\circ f$ est surjective, mais f n'est pas surjective, puisque 1 n'a pas

4. On suppose $g \circ f$ injective. Soient $x, x' \in E$ tels que f(x) = f(x'). Alors g(f(x)) = g(f(x')), ce qui s'écrit aussi $(g \circ f)(x) = (g \circ f)(x')$. Or, $g \circ f$ est injective, donc x = x'. Ceci prouve que f est injective.

Remarque 3.0.2 Le contre-exemple vu dans l'exercice précédent est lié à deux exemples de fonctions injectives et surjectives, qu'il est intéressant d'avoir en tête :

Si $E=\{a\}$ est un singleton, et si F est un autre ensemble non vide, toute application $f:E\longrightarrow F$ est nécessairement injective, puisque E ne peut pas contenir deux éléments distincts qui auraient la même image.

Si maintenant on prend un ensemble de départ non vide E, et $F=\{a\}$ un singleton, toute application $f:E\longrightarrow F$ est nécessairement surjective, puisque pour tout $x\in E$, on doit avoir f(x)=a.

Exercice 19:

d'antécédent par f.

1. Pour déterminer les réponses à ces questions, on peut s'aider d'un graphique de la fonction $f:x\mapsto x^2$. Il faut en suite écrire une démonstration rigoureuse des résultats que l'on avance. On va ici procéder par inclusions réciproques.

(i) f([-1,1]) = [0,1]. En effet $f([-1,1]) \subset [0,1]$ puisque si $y \in f([-1,1])$, il existe $x \in [-1,1]$ avec $y = x^2$. Ainsi, $0 \le |x| \le 1$ et donc on a $0 \le |x|^2 \le 1$ (cf. exercice 4). Or $y = |x|^2$, donc $y \in [0,1]$.

Réciproquement, on a $[0,1] \subset f([-1,1])$, puisque si $y \in [0,1]$, on a $0 \le \sqrt{y} \le 1$ (la fonction $x \mapsto \sqrt{x}$ est en effet croissante sur \mathbb{R}_+). Ainsi, $y = f(\sqrt{y})$ avec $\sqrt{y} \in [-1,1]$, donc $y \in f([-1,1])$.

- (ii) $\operatorname{Im}(f)=\mathbb{R}_+$. En effet, si $x\in\mathbb{R},\,x^2\geq 0$, donc $\operatorname{Im}(f)=f(\mathbb{R})$ est inclus dans \mathbb{R}_+ . Réciproquement, si $y\in\mathbb{R}_+$, alors $\sqrt{y}\in\mathbb{R}$ est tel que $f(\sqrt{y})=y$. Donc $y\in f(\mathbb{R})$, ce qui prouve que $\mathbb{R}_+\subset\operatorname{Im}(f)$.
- (iii) $f^{-1}([0,1]) = [-1,1]$. En effet, on a vu a la question (i) que $f([-1,1]) \subset [0,1]$, ce qui prouve que $[-1,1] \subset f^{-1}([0,1])$. Réciproquement, si $x \in f^{-1}([0,1])$, si on pose y = f(x), on a $y \in [0,1]$. Ainsi, puisque la fonction racine carrée est croissante, on a $0 \le \sqrt{y} \le 1$. Or $\sqrt{y} = \sqrt{x^2} = |x|$, donc $0 \le |x| \le 1$, ce qui montre que $x \in [-1,1]$. Donc $f^{-1}([0,1]) \subset [-1,1]$.
- (iv) $f^{-1}(]-\infty,0])=\{0\}$. En effet, on $f(0)=0\in]-\infty,0]$, donc $\{0\}\subset f^{-1}(]-\infty,0]$). Réciproquement, si $x\in f^{-1}(]-\infty,0]$), on a $x^2\leq 0$. Un carré de nombre réel ne pouvant pas être strictement négatif, on doit avoir $x^2=0$, soit x=0, donc $f^{-1}(]-\infty,0])\subset \{0\}$.
- 2. L'application f n'est pas injective, puisque, par exemple, f(-1) = f(1). Elle n'est pas surjective, puisque $Im(f) \neq \mathbb{R} : -1$ n'a pas d'antécédent par f, par exemple. A fortiori, f n'est pas bijective.

EXERCICE 20:

On va montrer que l'application f est bijective, et donc surjective et injective. Pour cela, on va montrer qu'elle admet une application réciproque. Soit $g: \mathbb{R}^2 \to \mathbb{R}^2$, définie par :

$$g(x', y') = (\frac{x' + y'}{2}, \frac{x' - y'}{2}).$$

On vérifie que $f \circ g = g \circ f = \mathrm{Id}_{\dot{\mathbb{R}}^2}$. Commençons par montrer que $g \circ f = \mathrm{Id}_{\dot{\mathbb{R}}^2}$. Soient $(x,y) \in \dot{\mathbb{R}}^2$. Posons (x',y') = f(x,y). Alors on a :

$$(g \circ f)(x,y) = g(x',y') = \left(\frac{x'+y'}{2}, \frac{x'-y'}{2}\right),$$

et, par définition de (x', y'), on a

$$\left(\frac{x'+y'}{2}, \frac{x'-y'}{2}\right) = \left(\frac{(x+y)+(x-y)}{2}, \frac{(x+y)-(x-y)}{2}\right) = (x,y),$$

donc $(g \circ f)(x,y) = (x,y)$, ce qui prouve que $g \circ f = \mathrm{Id}_{\mathbb{R}^2}$.

De même, on montre que $f \circ g = \mathrm{Id}_{\mathbb{R}^2}$. Soit $(x',y') \in \mathbb{R}^2$, et posons (x,y) = g(x',y'). Alors

$$(f \circ g)(x', y') = f(x, y) = (x + y, x - y).$$

Par définition de (x, y), on a

$$(f \circ g)(x',y') = (\frac{x'+y'}{2} + \frac{x'-y'}{2}, \frac{x'+y'}{2} - \frac{x'-y'}{2}) = (x',y').$$

Ceci prouve que $f \circ g = \mathrm{I} d_{\mathbb{R}^2}$. Ainsi, f et g sont réciproques l'une de l'autre, donc f est bijective.

Exercice 21:

1. On définit une application $u: [0, +\infty[\longrightarrow [-1, +\infty[\text{ par } u(x) = \sqrt{x} - 1. \text{ On voit facilement que cette application est bien définie puisque } x \mapsto \sqrt{x} \text{ est définie de } [0, +\infty[\text{ dans } [0, +\infty[.$

On vérifie que $u \circ f = \mathrm{Id}_{[-1,+\infty[}$. En effet, si $x \in [-1,+\infty[$, on a :

$$(u \circ f)(x) = u(f(x)) = \sqrt{(f(x))} - 1$$

$$= \sqrt{f(x)} - 1$$

$$= \sqrt{(x+1)^2} - 1$$

$$= x + 1 - 1$$

$$= x$$

De même, on vérifie que $f\circ u=\mathrm{Id}_{[0,+\infty[}.$ En effet, si $x\in[0,+\infty[$, on a :

$$(f \circ u)(x) = f(u(x)) = (u(x) + 1)^{2}$$
$$= (\sqrt{x} - 1 + 1)^{2}$$
$$= (\sqrt{x})^{2}$$
$$= x$$

Ainsi, f est bijective, de réciproque g.

2. On vérifie que $g \circ g = \mathrm{Id}_{\mathbb{R} \setminus \{1\}}$. En effet, si $x \in \mathbb{R} \setminus \{1\}$, si $y \in \mathbb{R} \setminus \{1\}$, on a la suite d'équivalences suivante :

$$y = g(x) \Leftrightarrow y = \frac{x+1}{x-1}$$

$$\Leftrightarrow (x-1)y = x+1 \text{ puisque } x-1 \neq 0$$

$$\Leftrightarrow x(y-1) = y+1$$

$$\Leftrightarrow x = \frac{y+1}{y-1} \text{ puisque } y-1 \neq 0$$

$$\Leftrightarrow x = g(y).$$

Ainsi, si $x \in \mathbb{R} \setminus \{1\}$, si on pose y = g(x), on a :

$$g \circ g(x) = g(y) = x$$

puisque g(x)=y. Ainsi, on trouve $g\circ g=\mathrm{Id}_{\mathbb{R}\backslash\{1\}}$, donc g est bijective, et est sa propre réciproque.

3. L'application h n'est pas injective, puisque h(0) = h(-2) = 0. Elle n'est pas surjective, puisque pour tout $x \in \mathbb{R}$, on peut écrire le polynome $x^2 + 2x$ sous forme canonique pour trouver :

$$h(x) = x^2 + 2x = (x+1)^2 - 1 \ge -1.$$

Ainsi, $h(\mathbb{R}) \subset [-1, +\infty[$, donc h n'est pas surjective.

On vérifie que $\tilde{h}:[-1,+\infty[$ $\longrightarrow [-1,+\infty[$ est bijective, de réciproque $v:y\mapsto \sqrt{y+1}-1.$ L'application v est bien définie sur $[-1,+\infty[$, puisque que pour tout $y\in[-1,+\infty[$, on $y+1\geq 0.$

Il faut commencer par vérifier qu'on a bien \tilde{h} $([-1,+\infty[)\subset [-1,+\infty[$. Cela provient du fait que si $x\in [-1,+\infty[$, $\tilde{h}(x)=(x+1)^2-1\geq -1$. De même, on vérifie que $v([-1,+\infty[)\subset [-1,+\infty[$.

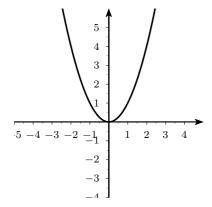
Si $x,y\in [-1,+\infty[,$ on a la suite d'équivalences suivante :

$$\begin{split} y &= \tilde{h}(x) &\Leftrightarrow y = x^2 + 2x \\ &\Leftrightarrow y = (x+1)^2 - 1 \\ &\Leftrightarrow y+1 = (x+1)^2 \\ &\Leftrightarrow x+1 = \sqrt{y+1} \text{ puisque } y+1 \geq 0 \\ &\Leftrightarrow x = \sqrt{y+1} - 1 \\ &\Leftrightarrow x = v(y). \end{split}$$

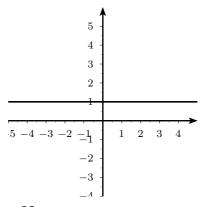
Ainsi, si $x\in [-1,+\infty[$, si on pose $y=\tilde{h}(x)$, on a $v(\tilde{h}(x))=v(y)=x$. De même, si on pose y'=v(x), on a $\tilde{h}(v(x))=\tilde{h}(y')=x$. Ceci montre que $\tilde{h}\circ v=v\circ \tilde{h}=\mathrm{Id}_{[-1,+\infty[},\mathrm{donc}\;h\;\mathrm{et}\;v\;\mathrm{sont}\;\mathrm{r\acute{e}ciproques}\;\mathrm{l'une}\;\mathrm{de}\;\mathrm{l'autre}.$

EXERCICE 22:

1. $\exists x \in \mathbb{R} : f(x) = 1 : f : x \mapsto x$ convient, puisqu'on a alors f(1) = 1.



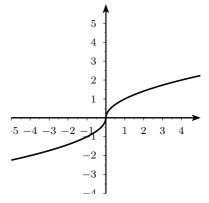
2. $\forall x \in \mathbb{R} : f(x) = 1 : f : x \mapsto 1$ est la seule application satisfaisant cette assertion.



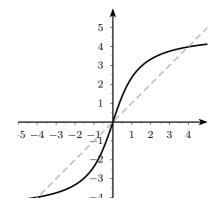
Exercice 23:

- 1. $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$.
- 2. $\exists M \in \mathbb{R}, \exists m \in \mathbb{R}, \forall x \in \mathbb{R}, m \leq f(x) \leq M$.

3. $\forall x, y \in \mathbb{R} : x < y \Longrightarrow f(x) < f(y) : f : x \mapsto x \text{ convient.}$



4. $\exists x \in \mathbb{R} : x < f(x) : f : x \mapsto 2x$ convient, puisqu'on a alors 1 < f(1).



- 3. $\forall x \in \mathbb{R}, f(x) \neq 0$.
- 4. $\forall x, y \in \mathbb{R} : x \le y \Leftarrow f(x) \le f(y)$.

EXERCICE 24:

Soit f une application de $\mathbb R$ dans $\mathbb R$.

- 1. Il existe $x \in \mathbb{R}$, f(x) > 1.
- 2. f n'est pas croissante (il existe $x \in \mathbb{R}$ et $y \in \mathbb{R}$ tels que $x \leq y$ et f(x) > f(y)).
- 3. f n'est pas croissante ou pas positive ($\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \leq y \text{ et } f(x) > f(y) \text{ ou } \exists x \in \mathbb{R}, f(x) < 0$).
- 4. $\forall x \in [0; +\infty[, f(x) > 0.$
- 5. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ tel que } x < y \text{ et } f(x) \le f(y).$