

Année universitaire 2018-2019

Site : \boxtimes Luminy \boxtimes St-Charles \square St-Jérôme \square Cht-Gombert \boxtimes Aix-Montperrin \square Aubagne-SATIS

Sujet de : \boxtimes 1 er semestre \square 2 ème semestre \square Session 2 Durée de l'épreuve : 2h

Examen de : L1 Nom du diplôme : Portail Descartes

Code du module : SPO1U3 Libellé du module : Langage Mathématique

Calculatrices autorisées : NON Documents autorisés : NON

Toutes les réponses doivent être soigneusement justifiées.

Exercice 1

Pour toute application f de $]0, +\infty[$ dans \mathbb{R} , on note A(f) le sous-ensemble de \mathbb{R} suivant (appelé l'ensemble des points fixes de f):

$$A(f) = \{x \in]0, +\infty[, f(x) = x\}.$$

On considère la relation $\mathscr R$ sur l'ensemble des applications de $]0,+\infty[$ dans $\mathbb R$ suivante : $f \mathscr R g$ ssi A(f)=A(g).

- 1. Soit $n \in \mathbb{N}$. On note i_n l'application de $]0, +\infty[$ dans \mathbb{R} , définie par $i_n(x) = x^n$.
- 1.1. [1 pt] Montrer que $A(i_1) =]0, +\infty[$. En déduire toutes les applications g de $]0, +\infty[$ dans \mathbb{R} telles que $i_1 \mathcal{R} g$.
- 1.2. [1 pt] Montrer que $A(i_2) = A(i_n)$, pour tout entier $n \ge 2$.
- 2. [1,5 pt] Montrer que $\mathcal R$ définit une relation d'équivalence.
- 3. [1 pt] Soit (P) l'assertion : $f \mathcal{R} g \Rightarrow g(A(f)) = A(f)$. Écrire sa contraposée et sa réciproque.
- 4. [1 pt] Montrer que (P) est vraie.
- 5. [1 pt] Calculer $i_1(A(i_0))$. En déduire que la réciproque de (P) est fausse.

Exercice 2

- 2. [1 pt] Soient f et g deux bijections de $\mathbb R$ dans $\mathbb R$. Montrer que $g \circ f$ est bijective et que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ une application, et soient (X) et (Y) les assertions suivantes :

$$(X):\,\forall y\in\mathbb{R},\,\exists x\in\mathbb{R},\,(y=f(x)\text{ et }\forall z\in\mathbb{R},z\neq x\Rightarrow y\neq f(z)).$$

$$(Y):\,\forall (x,y)\in\mathbb{R}^2,\,f(x)=f(y)\Longleftrightarrow x=y.$$

- 3.1. [1 pt] Écrire la négation de (X).
- 3.2. [1 pt] Parmi (X) et (Y) laquelle est équivalente à « f bijective »? Justifier.

Exercice 3

Soit f la fonction de $]0, +\infty[$ dans \mathbb{R} définie par $f(x) = \ln(1/x)$.

- 1. [2 pt] Montrer que f est bijective et donner sa fonction réciproque.
- 2. Soient les sous-ensembles de \mathbb{R} suivants : $I = f(\mathbb{N}^*)$ et $J = \{1/n; n \in \mathbb{N}^*\}$.
- 2.1. [1 pt] Donner l'ensemble de leurs minorants, et de leurs majorants dans \mathbb{R} ; justifier.
- 2.2. [1 pt] Donner leurs bornes supérieure et inférieure dans \mathbb{R} , si elles existent; justifier.

Exercice 4

Soient $A = \{1, 2, 3\}$ que l'on considère ordonné par l'ordre usuel et $P = \mathscr{P}(A) \setminus \{\emptyset\}$.

- 1. [0.5 pt] Donner la liste des éléments de P.
- 2. [0,5 pt] Soit B une partie de A et $b \in A$; rappeler la définition mathématique de : « b est le maximum de B ».
- 3. [0.5 pt] Soit l'ensemble $G = \{(B, b) \in P \times A \mid b \in B \text{ et } \forall x \in B, x \leq b\}$. Donner la liste des éléments de G.
- 4. [1 pt] Soient $B \in P$ et $b_1, b_2 \in A$. Montrer que si $(B, b_1) \in G$ et $(B, b_2) \in G$ alors $b_1 = b_2$.
- 5. [1 pt] En déduire explicitement une application $f: P \to A$.
- 6. [1 pt] Calculer l'image f(P) de P par f; puis les images réciproques $f^{-1}(\{1\})$ et $f^{-1}(\{3\})$.
- 7. [0,5 pt] Donner la définition de la relation d'équivalence \mathcal{R}_f associée à l'application f.
- 8. [1 pt] En déduire la classe d'équivalence de $\{3\}$ pour la relation \mathcal{R}_f et l'exprimer à l'aide de f. Justifier.