

Année universitaire 2019-2020

Site: 🛮 Luminy 🖾 St-Charles 🗆 St-Jérôme 🗆 Cht-Gombert 🖾 Aix-Montperrin 🗀 Aubagne-S	Site:	□ Luminy	\boxtimes St-Charles	\square St-Jérôme	\square Cht-Gombert	☐ Aix-Montperrin	☐ Aubagne-SA
--	-------	----------	------------------------	---------------------	-----------------------	------------------	--------------

Sujet de : \boxtimes 1 er semestre \square 2 ème semestre \square Session 2 Durée de l'épreuve : 2h

Examen de : L1 Nom du diplôme : Portail Descartes

Code du module : SPO1U03 Libellé du module : Langage Mathématique

Calculatrices autorisées : NON Documents autorisés : NON

Exercice 1 (Questions de cours)

Soient \mathbb{R} muni de la relation d'ordre usuelle \leq , A une partie de \mathbb{R} et m un nombre réel. Donner les définitions suivantes :

- 1. [0,5 pt] m est un majorant de A,
- 2. [0,5 pt] m est la borne supérieure de A,
- 3. [0,5 pt] m est le plus grand élément de A,
- 4. [0.5 pt] m est un élément maximal de A.

Exercice 2

Soit $E = \{1, 2, 3, 4, 5, 6\}$, et soit $f : E \to \mathscr{P}(E) \setminus \{\emptyset\}$ l'application donnée par $f(n) = \{k \in E \mid k \text{ divise } n\}$. Soit $g : \mathscr{P}(E) \setminus \{\emptyset\} \to E$ l'application donnée par $g(A) = \operatorname{card}(A)$.

- 1. [2 pt] Calculer f(4) et f(6). Également, calculer g(E) et $g(\{2,4,6\})$.
- 2. [2 pt] Donner l'ensemble image de f, puis justifier si elle est injective et/ou surjective.
- 3. [2 pt] Préciser $\operatorname{Im}(g \circ f)$. Montrer que $g \circ f$ n'est ni injective ni surjective.
- 4. [1 pt] Déterminer $f^{-1}(\{\{1,5\}\})$.

Exercice 3

Soit $a \in \mathbb{R}$, et soit $f_a : \mathbb{R} \to \mathbb{R}$ l'application définie par

$$f_a(x) := \begin{cases} 1 + \frac{1}{x} & \text{si} \quad x \neq 0 \\ a & \text{si} \quad x = 0. \end{cases}$$

- 1. [2 pt] Montrer que f_a est strictement décroissante sur $]-\infty,0[$ et sur $]0,+\infty[$. Est-ce que f_a est strictement décroissante sur \mathbb{R}^* ? Justifier votre réponse.
- 2. [2 pt] Montrer que f_a est majorée sur $]-\infty,0[$, et minorée sur $]0,+\infty[$. Préciser $\sup_{x\in]-\infty,0[}f_a(x)$ et $\inf_{x\in]0,+\infty[}f_a(x)$.
- 3. [2 pt] Préciser $f_a(]-\infty,0[)$ et $f_a(]0,+\infty[)$ en justifiant vos réponses.
- 4. [1 pt] En déduire l'ensemble image de f_a , puis déterminer $a \in \mathbb{R}$ tel que f_a soit surjective, en justifiant votre réponse.
- 5. [2 pt] Montrer que f_1 est bijective, et préciser l'application réciproque f_1^{-1} .

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = \cos(x)$.

- 1. [2 pt] Préciser les classes d'équivalence de 0 et $\frac{\pi}{3}$ par rapport à la relation d'équivalence \mathcal{R}_f associée à f.
- 2. [2 pt] Justifier précisément qu'il existe une bijection $\varphi : \mathbb{R}/\mathscr{R}_f \to [-1,1]$.

Exercice 5

Soient $E = \{3^n \mid n \in \mathbb{N}\}\$ et $F = \{5^n \mid n \in \mathbb{N}\}.$

1. [2 pt] Montrer que la relation ${\mathscr R}$ sur E

$$x \mathcal{R} y$$
 ssi x divise y

est une relation d'ordre sur E.

- 2. [1 pt] Montrer que cette relation est une relation d'ordre total sur E.
- 3. [1 pt] Montrer que la divisibilité définit une relation d'ordre partiel (c'est-à-dire non total) sur $E \cup F$. (On admettra que c'est une relation d'ordre sur $E \cup F$.)