Maths Discrètes 1; exos du chapitre « Arithmétique »

- **Exercice 1** Montrer que si $p \mid n$ alors $p \mid n + kp$ pour tout $k \in \mathbb{Z}$.
- **Exercice 2** Montrer que si $p \mid m$ et $p \mid n$ alors pour tous $u, v \in \mathbb{Z}$, $p \mid um + vn$.

Exercice 3 Soient m, n, u, v des entiers et d un entier positif. Montrer que si um + vn = d et d divise m et d divise n alors $d = m \wedge n$.

Exercice 4 Démontrer que la relation divise est une relation d'ordre. Qu'est ce qui devient faux si on considère non pas des entiers naturels mais des entiers?

Exercice 5 Soit n un entier naturel; montrer que n est premier ssi n n'admet aucun diviseur premier inférieur à \sqrt{n} .

Exercice 6 Soit m, n, p trois entiers et d leur PGCD, c'est à dire le plus grand diviseur de à la fois m, n, et p.

- i) Montrer que $d = (m \wedge n) \wedge p = m \wedge n \wedge p$.
- ii) Montrer qu'il existe des entiers u, v et w tels que um + vn + wp = d.
- iii) Énoncer et démontrer la généralisation des deux questions précédentes à un nombre quelconque d'entiers.
- **Exercice 7** Soient m, n et p des entiers. Montrer que $pm \wedge pn = p(m \wedge n)$.
- **Exercice 8** Montrer que $a \wedge b = a \wedge (b + ax)$ pour tous entiers a, b, x.
- **Exercice 9** Soient a, b et c trois entiers. Montrer que si $b \wedge c = 1$ alors $ab \wedge c = a \wedge c$.
- **Exercice 10** Soient m et n deux entiers; montrer que si u et v sont tels que $um + vn = m \wedge n$ alors u et v sont premiers entre eux.
- **Exercise 11** Montrer que si n > 4 alors n divise (n-1)! ssi n n'est pas premier.
- **Exercice 12** Construire la suite (n_k) de l'algorithme d'Euclide en partant de $n_0 = 55$ et $n_1 = 34$.
- Exercice 13 On dispose de deux bidons, l'un de 6 litres, l'autre de 11 litres, d'une bassine de plus de 50 litres et d'un robinet d'eau courante. Comment fait-on pour remplir la bassine avec exactement 13 litres d'eau?
- **Exercice 14** Appliquer l'algorithme d'Euclide pour trouver les coefficients de Bezout de 55 et 34. Faire de même avec 55 et 36, puis 54 et 35.

Exercice 15 Trouver des entiers x et y tels que :

- i) 283x + 1722y = 31;
- ii) 365x + 72y = 18;
- iii) 1111x + 2345y = 66.

Exercice 16 Calculer les 10 premiers termes de la suite de Fibonacci.

Exercice 17 On note $\varphi = (1 + \sqrt{5})/2$ et $\bar{\varphi} = (1 - \sqrt{5})/2$.

- i) Montrer que φ et $\bar{\varphi}$ sont les deux solutions de l'équation $x^2 = x + 1$.
- ii) Montrer que pour tout $n \in \mathbb{N}$ on a $F_n = (\varphi^{n+1} \bar{\varphi}^{n+1})/\sqrt{5}$.