Corrigé TD 1

J.-B. Angelelli

8 novembre 2006

Définitions

- Soit (X, \leq) un ensemble ordonné et $(x, y, z) \in X$. On a z = sup(x, y) si et seulement si les 3 propriétés suivantes sont vérifiées :
- 1. $x \leq z$
- $2. y \leq z$
- 3. Soit $z' \in X$ tel que $x \leq z'$ et $y \leq z'$, alors on a $z \leq z'$
- Soit (X, \leq) un ensemble ordonné et $(x, y, z) \in X$. On a z = inf(x, y) si et seulement si les 3 propriétés suivantes sont vérifiées :
- $1. \ z \leq x$
- $2. z \leq y$
- 3. Soit $z' \in X$ tel que $z' \le x$ et $z' \le y$, alors on a $z' \le z$

Exercice 7

On se place dans un treillis T.

Démontrer que \vee est associative¹

Il s'agit de démontrer que :

$$\forall (x, y, z) \in T, (x \lor y) \lor z = x \lor (y \lor z)$$

Démonstration

On note $s_1 = (x \vee y) \vee z$ et $s_2 = x \vee (y \vee z)$. On va démontrer dans un premier temps que $s_1 \leq s_2$ puis que $s_2 \leq s_1$.

- On a $x \leq s_2$ (1) (propriété 1. du sup)
- On a $y \le y \lor z$ et $z \le y \lor z$ (propriété 1. du sup) or $y \lor z \le s_2$, ce qui fait que $y \le s_2$ (2) et $z \le s_2$ (3) (par transitivité de \le)
- D'après (1) et (2), on a $x \leq s_2$ et $y \leq s_2$, d'où $x \vee y \leq s_2$ (4) (propriété 3. du sup)
- D'après (4) et (3), on a $x \vee y \leq s_2$ et $z \leq s_2$, d'où $(x \vee y) \vee z \leq s_2$ (propriété 3. du sup), c'est-à-dire $s_1 \leq s_2$.

On démontre de même que $s_2 \leq s_1$ et on a $s_1 = s_2$ et l'associativité est démontrée.

 $^{^{1}}$ à ne pas confondre avec la distributivité

Démontrer que pour tous x et y dans T, on a $x \wedge (x \vee y) = x$

Il s'agit ici d'une démonstration de borne inférieure, il faut démontrer que x vérifie les 3 propriétés de la définition de la borne inf vis-à-vis de x et $x \lor y$.

Démonstration

- 1. on a $x \leq x$ (évident, réflexivité de \leq)
- 2. on a $x \leq x \vee y$ (propriété 1. du sup)
- 3. Considérons $z' \in T$ tel que $z' \le x$ et $z' \le x \lor y$, on a alors $z' \le x$ (immédiat, pas d'étape intermédiaire)

On a démontré que $x = \inf(x, x \vee y)$, c'est-à-dire $x \wedge (x \vee y) = x$.

Démontrer que pour tous x de T, on a $x \lor \top = \top$

Il s'agit ici d'une démonstration de borne supérieure, il faut démontrer que \top vérifie les 3 propriétés de la borne sup vis-à-vis de x et \top .

Démonstration

- 1. on a $x \leq T$ (d'après la définition de T)
- 2. on a $\top \leq \top$ (évident, réflexivité de \leq)
- 3. Considérons $z' \in T$ tel que $T \leq z'$ et $x \leq z'$, on a alors $T \leq z'$ (immédiat, pas d'étape intermédiaire)

On a démontré que $x \vee \top = \top$.

Exercice 10

Montrer que tout élément d'un treillis booléen admet un unique complément

Considérons $x \in T$, on va démontrer que le complément de x existe et est unique.

Existence

Le treillis booléen est en particulier complémenté, ce qui fait que x admet au moins un complément².

Unicité

Le treillis booléen est en particulier distributif, nous allons voir que la distributivité du treillis implique l'unicité du complément³. Comme souvent dans les démonstration d'unicité, on suppose que x admet deux compléments y et z et on montre qu'on a alors y=z.

On a
$$x \vee y = \top(1), x \vee z = \top(2), x \wedge y = \bot(3), x \wedge z = \bot(4).$$

Considérons la quantité $y \vee (x \wedge z)$. On a, d'après la distributivité du treillis,

$$y \lor (x \land z) = (y \lor x) \land (y \lor z)$$

d'où

$$y \lor \bot = \top \land (y \lor z)$$

d'où

$$y = y \lor z$$

 $^{^2\,\}mathrm{non}$ unique si le treillis est seulement complémenté

³ si il existe, ce qui n'est pas toujours le cas si le treillis est seulement distributif

Considérons la quantité $z \vee (x \wedge y)$. On a, d'après la distributivité du treillis,

$$z \vee (x \wedge y) = (z \vee x) \wedge (z \vee y)$$

d'où

$$z \lor \bot = \top \land (z \lor y)$$

d'où

$$z = z \vee y$$

Vu que $z\vee y=y\vee z,$ on a y=z, et l'unicité est démontrée.

Remarque

Cette démonstration donne un outil très utile pour démontrer qu'un treillis N'EST PAS distributif, il suffit de trouver un élément qui admet deux compléments DISTINCTS.