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Résumé

L’objet de cette thése est I’étude de la torsion de Reidemeister définie globalement
sur la variété des caractéres de variétés de dimension 3 a bord torique. Cette étude
se divise en deux parties, selon le complexe cohomologique que 1’on choisit d’associer
a une représentation du groupe fondamental de la variété M dans le groupe SLy(C).
Dans le premier cas, la torsion est définie comme une forme différentielle sur un
revétement double de la variété des caractéres, on montre que cette forme différen-
tielle n’a pas de poles, et on relie ’apparition de zéros a différentes propriétés de la
variété des caractéres, certaines de nature algébrique, d’autres de nature topologique.
Dans un deuxiéme temps on étudie le comportement asymptotique de la torsion,
qu’on relie & la topologie de surfaces incompressibles dans la variété M, construites
via la théorie de Culler-Shalen. On en déduit une relation entre la topologie de la
variété des caractéres et celle de ces surfaces.

Dans le deuxiéme cas, on introduit une fonction sur la variété des caractéres, qui
s’avére étre une spécialisation d’un polynéme d’Alexander tordu tres étudié. Sous
certaines conditions liées a 1’étude des surfaces précédentes, on prouve que cette
fonction admet des poles a l'infini, en particulier qu’elle est non constante, et que

ce polynome l’est aussi.

Mots-clés

Torsion de Reidemeister, variétés de caractéres, théorie de Culler-Shalen, théorie des

noeuds.



Abstract

In this PhD dissertation we study the Reidemeister torsion as a globally defined
invariant on character varieties of 3-manifolds with toral boundary. Given a repre-
sentation of the fundamental group of a 3-manifold M into the group SLy(C), two
cohomological complexes arise naturally from the action of 7 (M) either on sly(C)
or on C2. This choice divides this thesis in two parts.

In the first part, the torsion is defined as a rational differential form on a double
cover of the character variety. We show that this differential form has no poles, and
we study its zero locus. We relate it with algebraic and topological properties of the
character variety. Then we study the asymptotical behavior of the torsion, with the
help of some incompressible surfaces in M constructed by the Culler-Shalen theory.
We deduce a relation between the topology of the character variety and the topology
of those surfaces.

In the second part, we define a function on the character variety, that turns out
to be a specialization of a well-known twisted Alexander polynomial. Under some
conditions on the former incompressible surfaces, we prove that this regular function
has poles at infinity. In particular it implies that this function is non-constant, and

so is this Alexander polynomial.

Keywords

Reidemeister torsion, character varieties, Culler-Shalen theory, knot theory.
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Chapter O
Introduction

The Reidemeister torsion has been introduced as a topological invariant of homo-
logical complexes in 1935 by both Reidemeister (in |[Rei35]) and Franz (in [Era35l)
independently. It also appears in a more algebraic context in the seminal work of
Cayley (see |[GKZ94, Appendix B]) in 1848.

The Reidemeister torsion is a generalization of the notion of determinant: consider
an endomorphism d of a finite dimensional vector space V over a field k. Any choice
of bases e = {ey,eq,...,e,} and f = {f1, fa,..., fn} allows us to compute the
determinant of the linear map d in those bases, namely, this determinant det(d, e, f)
is the volume of the polytope d(e) with the normalization that turns the volume of
the polytope f equal to 1. Equivalently it is the determinant of the matrix whose
columns are the vectors of d(e) in the basis f. While det(d, e, f) depends on the map
d in a crucial way, it also depends on the bases e and f. Yet it would not be affected if
one would modify the basis e, for instance into the basis ¢/ = {\e;, A\"tes, e3,. .., e, }
for some \ € k*.

One could generalize this definition when the map d is no longer injective, it gives

rise to an exact sequence of k-vector spaces
1 d-1 0 do 1
0—-C" —C" —=C =0

with dim C~' =n_;,dim C° = ny, dim C! = n; = ny — n_;.

To do so, one has to fix some bases ¢ of the vector spaces C?, for i = —1,0, 1.
We define the torsion of this based exact sequence tor(C*, c¢*) to be the volume of
the polytope d_;(c7!),e" in C% with &' any lift to C° of the basis ¢!, and with
the normalization that turns the volume of the polytope given by ¢ equal to 1.

Equivalently, it is the determinant of the matrix d_;(c™!),¢" in the basis . One
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also has to check that this does not depend on the choice of a lift ¢°, which is routine
linear algebra. More interestingly, one could provide an alternative definition of
tor(C*, ¢*), in terms of the determinants of some restriction of the maps d_; and
do: let d_; be the map d_; co-restricted to the vector space €’ C C° generated by
the n_, first vectors of the basis . Up to a permutation of the vectors of the basis
®, one can assume that this new map d_; is an isomorphism. Since the sequence is
exact, the restriction dy of the map dy to the last nq vectors of the basis ¢ turns to
an isomorphism too, and the claim is that tor(C*, ¢*) = %.

It is important to remark that there is a sign indeterminacy in the second definition:
when permuting the basis vectors, the determinant could have been multiplied by
—1. In this thesis we will always consider the torsion to be defined up to sign,
and we will never try to solve this ambiguity, because we will study some vanishing
properties of this torsion.

The previous definition generalizes whenever the exact sequence is not a short exact
sequence any more: one can define the torsion tor(C*, ¢*) of a based exact complex
0 — CO' — ... — O™ with basis ¢, ..., ¢". A more complicated task is to generalize
this definition in cases where the complex C* is not an exact complex. It will depend
on a choice of bases of the complex, but also on bases of its cohomology groups
H'(C*). This is the core of Section [L.5|of this dissertation.

At this point, one should emphasize the fact that the torsion of a cohomological
complex carries much more informations than the cohomology of this complex, at
least it provides some topological information even when the complex is acyclic.
The definition of the torsion may seem rather involved, but it was motivated by the
fact that Reidemeister used it to distinguish non-homeomorphic lens spaces with
isomorphic fundamental groups. To be concise, lens spaces L, ), for p, q relatively
prime, are three-dimensional closed manifolds that are somewhat "simple" in 3-
dimensional topology: for instance they have rational homology of the 3-sphere,
and finite fundamental groups Z/pZ. In |[Rei35] it is shown that the computation
of the torsion of some acyclic homological complex of a lens space is a topological
invariant, and that it involves the second integer ¢ in a crucial way. This results
have prompted a vast increase in work and publications on torsion theory, notably
Whitehead torsion, Milnor torsion...

An very nice instance of a generalization of this invariant is the Ray-Singer ana-
lytic torsion. In the article "R-torsion and the Laplacian on Riemannian manifolds"
(JRS71]), D.B. Ray and I.M. Singer define a topological invariant in terms of the

action of the Laplacian on differential forms. Let us say a word about this construc-
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tion in the case of an acyclic complex C* = €0 % ¢ 4y 2l om T this case
the Reidemeister torsion is defined from a choice of bases ¢* of the C%’s that allows
us to write each C* as a direct sum C? = kerd; ® K;. Then we consider the restric-
tion maps d; : K; — im(d;) = ker(d;;;) and we compute the Reidemeister torsion
tor(C*, ¢*) = [[det(d;)"". An other way to do so is the following: consider the
adjoint maps df_, : C* — C*"! namely they are obtained by taking the transpose
of the matrices of each d; in the basis ¢, ¢'T!. We define on C? the natural scalar
product that turns the base ¢ into an orthogonal base, hence the orthogonal split-
ting C* = ker(d;) @+ im(d?). Now we can define the combinatorial Laplacians to be
the operators A, : C* — C" given by the formula A; = dfd; +d;_1d;_,, and a careful
examination shows that can express the torsion as tor(C*, ¢*) = [] det(A;)zD™"
Without more informations, it may seem to be just a more complicated way to
compute this invariant, but the striking point is that we can now define such an
invariant in terms of the metric Laplacian acting on the De Rham complex of a closed
manifold M: there is still a natural hermitian product and the formula above makes
sense. The Laplacian turns into an infinite dimensional self-adjojnt operator, and we
can define its determinant as the (infinite) product of its non-zero eigenvalues. This
product can be shown to be Well defined with the use of some zeta functions, and
this invariant Ty = [ det(A;)2D™" has been conjectured in [RS7I] to be equal
to the Reidemeister torsion. This has been proved independently by Jeff Cheeger
(ICheTT]) in 1977 and Werner Miiller (|[Mul78]) in 1978, then generalized by Muller
(IMul93|) and Bismut-Zhang ([BZ92]).

Assume that C* is a complex of modules over a PID R, such that this complex is
acyclic as a complex of vector spaces over the fraction field K = Frac(R). In other
words all the cohomology groups are torsion modules. Then the torsion tor(C* ®g
K) carries many informations about those cohomology modules. In particular, in
the case of Alexander modules of a 3-manifold M, Thang Le (|Lel4]) has proved
from this observation that the torsion of the homological complex of the maximal
abelian covering M (namely the Alexander polynomial) was somehow related with
the growth of the torsion part of the first homology groups of finite abelian covers
M, of M. We should mention the work of Nicolas Bergeron and Akshay Venkatesh
(IBV13]) where those relations are discussed in a much more general setting, and

explicitely expressed in terms of the Ray-Singer analytic torsion.

Notation. In this dissertation we are interested in the following situation: M is a 3-

manifold, compact, connected and orientable, with boundary M = S' x S! a torus.
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Although some of the results presented in this text do not need this assumption,
we assume that the first Betti number of M is 1. Given p : m (M) — SLy(C) a
representation, we construct two cohomological complexes, arising from the action
of p on C? (the standard action) or on sly(C) (the adjoint action).

More generally, we study twisted cohomology groups given by some representations
p:m (M) — SLy(K), where K is the function field of some variety defined over an
algebraically closed field k. We denote by O, C K valuation subrings of K with
k their residual field. The representation Ad will denote the adjoint representation
Ad : SLy(K) — Aut(sly(K)) induced by matrix conjugation. We use the following

notations:

1. By H*(M, Ad op) (respectively H*(M, p)), we denote the twisted cohomology
groups with 7y (M) acting on sly(K) through Adop (resp. on K? through p).

2. Whenever p : w1 (M) — SLy(0O,), we denote by H*(M, Ad op), (respectively
H*(M, p),,) the twisted groups with coefficients in sly(O,) (resp. O2).

3. In this case, we denote by p : m (M) — SLy(k) the composition of p with the
residual map O, — k, and by H*(M,Adop) (resp. H*(M,p)) the twisted
groups for the action of 71 (M) on sly(k) (resp. on k?).

4. For A : m (M) — k*, we denote by H*(M, \) the twisted cohomology groups
with action of A by multiplication on the field k. Of course, when \ is constant
equal to 1, we keep the notation H*(M, k).

The torsion of twisted cohomological complexes by a representation p : m (M) —
SLy(C) for M a hyperbolic 3-manifold has been studied for a long time. Let us
mention the seminal work of Joan Porti in his PhD dissertation [Por97| (see the
survey [Porl5| too) for the adjoint torsion, and of Teruaki Kitano [Kit94], Kit96]
for the acyclic torsion and the relation with the twisted Alexander polynomial.
Many other authors have substantially contributed to the topic in the past ten
years, including Jérome Dubois, Nathan Dunfield, Stefan Friedl, Takahiro Kitayama,
Yoshikazu Yamaguchi.

In the first chapter of this thesis, we give the main definitions that will be used in
the rest of this work. In particular we discuss various refinements of the character
varieties theory, its relations with incompressible surfaces in 3-manifolds via the
Culler-Shalen theory, and define the Reidemeister torsion in a general setting. In
the second chapter, we study the adjoint torsion on the character variety, we define it

as a rational differential form, and we study its poles and zeros. In the third chapter,
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we focus on the acyclic torsion function, and prove that under mild hypothesis on

M the torsion is not constant.

The adjoint torsion

In Chapter 2, we focus on the adjoint torsion, and present the results of the article
[Benl6].
The Reidemeister adjoint torsion is a topological invariant tor(M, Adop) that we

may interpret as a volume element in the twisted cohomology, that is an element in

3
Det(H*(M,Adop)) = ®Det(Hi(M, Adop))V',

=0

Moreover as soon as p and p’ are conjugated representations, there is a natural
isomorphism Det(H*(M, Adop)) ~ Det(H*(M,Adop’)) that preserves the torsion.
Hence it is natural to define the Reidemeister adjoint torsion as a section of some
line bundle over the character variety.

In his Phd thesis [Por97], Joan Porti defined the torsion as an analytic function on
a Zariski open subset of the character variety depending on a choice of a boundary
curve. Many computations have been performed by J. Dubois and al. [Dub06],
IDHY09] and the torsion has been extended to the whole character variety in [DG16].
We will follow in this article the approach of [Mar15|, where the Reidemeister torsion
of any 3-manifold with boundary is interpreted as a rational volume form on the
character variety. More precisely, if the boundary of M is a torus, the torsion is
a rational volume form on the augmented character variety which is the following

2-fold covering of the character variety:

X(M)={(p:m(M)— SLy(C),\ : m(OM) = C*), Tt playonr) = A+A"'}// SLo(C).

In this thesis we assume that X (M) is 1-dimensional and reduced, in the sense of
schemes. The first assumption is guaranteed by the assumption that M is small,
that is without closed incompressible oriented surfaces not parallel to the boundary.
Let X be an irreducible component of X (M) containing the character of an irre-
ducible representation and let Y be its smooth projective model. It is a smooth
compact curve obtained from X by desingularizing and adding a finite number of
points at infinity: we call the latter points ideal points of Y and the others are finite

points. We denote by v an element of Y that can be viewed as a valuation on the
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function field C(Y') = C(X). Its local ring at v will be denoted by O,. The torsion
will be denoted by tor(M, Ad op) and seen as an element of Q¢(yy,c. The first result

is the following theorem:

Theorem (Theorem [2.0.1). Let v be a finite point of Y, then tor(M,Adop) has no

pole at v. More precisely

1. If v projects to an irreducible character in X (M), then the vanishing order of
tor(M, Ad op) at v is the length of the torsion part of the module Qcix)/c @O,.
This integer is an tnvariant of the local singularity which can be computed
explicitly. In particular if v projects to a smooth point of X (M) then the

torsion does not vanish at v.

2. Suppose that M is a knot complement and m is a meridian. If v projects to
a reducible character A+ \"1 in X (M) then A(m)? is a root of the Alexander
polynomial of M of order r > 1. Under some technical hypothesis detailed
in Section tor(M, Ad op) vanishes at v at order bounded by 2r — 2. In

particular it does not vanishes if \? is a simple root.

If v is an ideal point of Y, then the Culler-Shalen theory associates to v an action
of w1 (M) on the Bass-Serre tree of SLy(O,) which itself produces an incompressible

surface ¥ in M. We say that X is associated to the ideal point v.

Theorem (Theorem . Let v be an ideal point of Y and ¥ be an incompressible
non-Seifert surface associated to v. We suppose that ¥ is a union of parallel con-
nected copies 1 U ... %, and that both components of M \ 3; are handlebodies. Let
us also assume that'Y contains the character of a representation whose restriction
to X is irreducible. Then the torsion tor(M, Ad op) has vanishing order at v bounded
by —n(x(X) +1) if the ideal point does not correspond to the character of an abelian
representation of (%), and by —nx(X) — m else, where m depends only on the

restriction of p to m (2).

We say that a surface S C M is free if its complement is a union of handlebodies.
Many natural constructions yield such surfaces. For example, for a knot diagram and
consider the checkerboard surfaces (for an example of such a surface, see Figure
on the left). If one of them, say ¥, is an incompressible non orientable surface in M,
then the boundary of a neighborhood of ¥ is orientable, remains incrompressible
and does split M into two handlebodies, as can be easily seen (both part of its
complement retract onto a graph). In fact, it is the case for every incompressible

surfaces as soon as M is small. On the other hand, every incompressible suface
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whose class in Ho(M,9M) is non zero will be splitting M. The distinction with the
abelian case at the end of the theorem comes from the fact that this situation appears
naturally in basic examples as the figure eight knot. We deduce from this theorem
an unexpected relation between the genus of the character variety of M and the
genus of the incompressible surfaces in M. More precisely, suppose that M is a knot
complement whose character variety is one dimensional. Then, let us pick a smooth
component of the variety, and assume that each ideal point y € Y corresponds to an
incompressible surface X, that verifies the hypothesis of the theorem. Let us further

assume that the Alexander polynomial of M has only simple roots. Then
—x(Y) < Z —nyx(3y) —my
y

where m,, is defined as in Theorem In the simple case where the surfaces X

are connected, it turns into
—x(Y) <) (=x(Zy) - 1)
y

Example 0.0.1. We know from [HT85| that the knot 5.2 has two incompressible
surfaces in its complement: ¥; whose Euler characteristic is —4, and 5 whose Euler
characteristic is —2 (see figure [1).

The (geometric component of the) character variety has 3 ideal points, two of them
corresponding to Y, and the third to ;. The torsion vanishes at order 1 on the
Yy’s ideal points, and at order 3 at the other. Hence on the augmented variety Y,
one obtains —x(Y) =4 x 1 + 2 x 3 = 10. The covering map Y — X (M) ramifies

1

on six points, hence —x(X) = 5(—=x(Y) —6) = 2, and the genus of X is 2, as it can

be computed directly.
Question 0.0.2. Is the inequality of Theorem an equality?

In all the examples we have listed in Section for connected incompressible
surfaces, it happens to be an equality. A careful examination of the proof shows
that it has to be generically the case. The lack of equality should be interpreted as
a non-transversal situation.

Furthermore, it also seems reasonable that the vanishing order of the torsion is

always positive, and one may wonder:

Question 0.0.3. For which knot complements is the torsion a regular differential

form on a component of the character variety?
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Figure 1 — Incompressible surfaces in the complement of the knot 5.2. The surface ¥,
is the orientation covering of the non oriented surface here colored on the left, that
can be thought as the boundary of a tubular neighborhood of this non orientable
surface. The surface X5 is again the orientation covering of the surface colored on the
right, that can be obtained as follows: consider two parallel copies of each twisted
bands above and below the square in the middle, and plumb them along this square.
The result is connected because the bands below have an odd number of twists, and
this is our surface X

From Theorem [2.0.1] it is so on the affine part of X (M). Yet the torsion could have
a pole at infinity. In fact, examples of torus knots (p, ¢) provide such a situation:
each component of the character variety is isomorphic to C with an unique ideal
point, which corresponds to an essential annulus in the knot complement. Although
Theorem [2.0.2] cannot apply since the fundamental group of an annulus have no
non abelian representations, one can compute directly that the torsion has a pole of
order one at those points.

Further work could concern reducible characters that are limits of irreducible char-
acters, such as in Theorem [2.0.1] item 2. It is most likely that one could eventually
weaken the hypothesis of this theorem. But this requires a better understanding of
the relation between the first twisted cohomology group and the tangent space at

this point. This complex problem is partially answered in [F'K91, [HPSPOI].

The acyclic torsion

In Chapter 3, we focus on the acyclic torsion, and present the results of the article

[Ben17|. The acyclic torsion tor(M, p) is defined as a non zero rational function on
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the character variety. More precisely, we take X to be a one-dimensional component
of the character variety, and the torsion function is seen as an element of the function
field k(X )*. While it is not usually defined in the way it is here, the torsion function
has been long established as such. The question of how to compute this function
and whether or not it vanishes is still under investigation. It is known to be a
constant function on the character varieties of torus knots. The first non constant
computation was done by Kitano in [Kit94] on the geometric component of the
figure eight knot’s character variety . Since then, because of its proximity with the
twisted Alexander polynomial, there has been many more studies of this torsion. In
[DEJI12|, the authors address several questions on the twisted Alexander polynomial.
The acyclic torsion is the evaluation at ¢ = 1 of this polynomial. As an application
of our techniques, we prove that under some mild hypothesis, this torsion is non-
constant on the geometric component of the character variety. In particular the
twisted Alexander polynomial is non constant. The first result of this chapter is the

following;:

Theorem (Theorem|(3.0.1)). Let X be a geometric component of the character variety
X (M) of a hyperbolic manifold M. Then tor(M, p) is a reqular function on X, that
vanishes at a character x if and only if the vector space H'(M,p) is non trivial,

where p is a representation p : m (M) — SLy(C) whose character is x.

The fact that the torsion has no poles on X was expected. Yet, to our knowledge,
there has been no such formal statement to date, and it is interesting in and by itself.
The characterization in terms of jump of dimension of the vector space H'(M, p)
is also notalbe, because it relates the torsion with the deformation theory of semi-
simple representations in SL3(C). We provide more detailed explanations about this
at the beginning of Chapter 3. Similarly to Chapter 2, we treat separately the case
of ideal points in X. When saying that a curve v € m1(X) has trivial eigenvalue, we
will mean that the representation of the fundamental group of the incompressible
surface X corresponding to the ideal point maps ~ on a matrix with eigenvalues

equal to 1.

Theorem (Theorem . Let z € X be an ideal point in the smooth projective
model of X, and assume that an associated incompressible surface ¥ is a union of
parallel homeomorphic copies 3; such that M \ ¥; is a (union of ) handlebodie(s).
If the curve v = 9% € m (M) has trivial eigenvalues, then the torsion function

tor(M, p) has a pole at x.
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We deduce the following corollary:

Corollary 0.0.4. Let M be a hyperbolic manifold and X be a geometric component
of its SLa(C) character variety. Assume that an ideal point of X detects an incom-
pressible surface which is connected or union of parallel free copies, and such that
the eigenvalue of its boundary curve is 1. Then the torsion function is not constant

on the component X.

Here again, the hypothesis that the complement of any connected component of 3
is union of handlebodies is automatically satisfied if the manifold M is small. If M
is a complement of a knot in an homology sphere, the hypothesis on the eigenvalue
of the boundary curve is automatically satisfied for ¥ a Seifert surface (a surface
that bounds the knot), and we discuss it more generally in Chapter 3.

Since we expect the torsion to be non constant on the geometric component of any

small hyperbolic three manifold, we adress the following question:

Question 0.0.5. Is it true that a geometric component of a small hyperbolic three
manifold detects necessarily an incompressible surface whose boundary curve has

eigenvalue 17

Two-bridge knots are known to have non-Seifert incompressible surfaces with only
2 boundary components, in case which the eigenvalue of the boundary curve is £1.
Yet, as mentioned above, any Seifert surface’s boundary curve has eigenvalue 1. It

thus seems reasonable to consider this question.
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Chapter 1

Character varieties and Reidemeister

torsion

In this first chapter we introduce the main objects that will be studied in this thesis.
The first section deals with the theory of character varieties, the second section is a
review about twisted cohomology, the third section is a short overview of the Culler-
Shalen theory, and provides the tools that will be used in the upcoming chapters, the
fourth section gives an insight on the Alexander module theory and its relation with
the character varieties, and we the fifth section is an introduction to the Reidemeister

torsion.

1.1 Character varieties

In this section we furnish the definitions relative to character varieties of a finitely
generated group, we first compare the classical definition coming from Geometric
Invariants Theory with the "trace functions" definition, then we state a theorem of
Kyoji Saito. We use this theorem to define the tautological representation. We end

this section with examples.

1.1.1 Representation variety

Let I" be a finitely generated group, with .S = {v,...,7,} a system of generators of

I', and k be an algebraically closed field of characteristic zero.

Definition 1.1.1. A representation is a group homomorphism p : I' — SLy (k). We
define the representation variety R(I') = Hom(T',SLy(k)) = {p : I' — SLa(k)}. It
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is an affine algebraic variety defined over k (and even over Q). For any choice of S

there is an embedding;:

ts : R(T) — SLa(k)™ — K*"
p = (p(1)s -5 p()

that does not depend on S in the following way: for any other S" = {+],...,7.},
there is a group isomorphism fgg : I' — I' that turns the generators ~; into words
wi(Yy, -+ ,7h,). It induces an algebraic map Fg g : k*" — k*™ such that Fgg o015 =
tgr and the restriction of Fgg : tg(R(I")) = ts/(R(I")) is an isomorphism.

The algebra of functions of the representation variety is

k[R(G)] = k[Xj;% 1 S Z)] S 2a’y S F]/(Xe - Ide’YX5 - X’Y5a7a5 € F)

1,1 1,2
where for any v € I', X, denotes the 4-tuple (igl §§,2 ) and the multiplication is in-
Yy vy

duced by the two-by-two matrices multiplication. This algebra is finitely generated,

any choice of S provides a finite set of generators.

The group SLo(k) acts by conjugation on the representation variety R(I'), but the
topological quotient is not an algebraic variety in general, nor even a Hausdorff

space, as is emphasized in the following example.

Example 1.1.2. Let I' = Z. The representation variety R(Z) is isomorphic to
SLs(k) via p — p(1). The one-parameter subgroup {M; = ({ 1) }tek* acts on R(I)

by conjugation, in particular M, (§ 1) M; " = (} 1*), hence the whole family given
by {pi: 1+ (} tf)}tek* lies in the same SLy(k)-orbit. In particular po: 1 — ({9) €
SLa(k) - p1, despite py and p; are not conjugated. In this exaple, the topological
quotient R(Z)/SLq(k) is not Hausdorff. The following section explains how to solve

this issue.

1.1.2 Algebro-geometric quotient

The action of the group SLs(k) on R(I') induces a natural action on its algebra
of functions k[R(I")] by pre-composition. The sub-algebra of invariant functions
K[R(T)]3"2 is known to be finitely generated, although this is a delicate problem
first answered by Hilbert in the late nineteenth century. There is an amount of good
references on the topic, let us just mention [MFK93| and [KP96].
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Recall that any finitely generated k-algebra A is the quotient of a polynomial algebra,
in other words there is an exact sequence 0 — I — k[Xy,...,X,] = A — 0. By
Hilbert’s basis theorem, the ideal [ is finitely generated, hence A defines an algebraic
set V(1) C k™, namely the zero-locus of any generating set of polynomials for 7. Up
to isomorphism, this set does not depend on the presentation of A, hence we denote
by Spec(A) the affine algebraic variety defined by A.

Remark 1.1.3. In general, the use of the term variety is reserved to irreducible
and reduced algebraic sets. An irreducible set is a set which is not a reunion of two
proper closed subsets. An irreducible component is a maximal irreducible subset.
Given a ring R, Spec(R) is said to be reduced if R does not contain any nilpotent
element. In particular, by mean of an irreducible component we will assume it to be
reduced. We will call many algebraic objects varieties despite they have no reason

to be irreducible, nor reduced.

Definition 1.1.4. We define the character variety X (I') = R(I")// SLy(k) as the
spectrum Spec(k[R(T)]32) of the sub-algebra of invariants.

It is usually called the algebro-geometric quotient of R(I') by SLa(k), let us list
without proof some of its properties:

— It comes with a projection map 7 : R(I') — X (I') that satisfies the following
universal property: for any SLp-invariant morphism f : R(I') — Y, with Y an
algebraic variety, there is an unique map f’': X(I') — Y such that f = f'or.

— The k-points of this quotient are in bijection with the closed orbits of SLy(k)
acting on R(T"), or with conjugacy classes of semi-simple (or completely re-
ducible) representations of I' into SLy (k). In other words, orbits whose closure
intersect in R(I") are identified in X (T").

— It is the biggest Hausdorff quotient of the topological quotient R(I")/ SLq (k).

Example 1.1.5. Back to I' = Z, recall that the SLy(k)-orbit of p; : 1 — (§1)
contains the trivial representation py in its closure. We are going to see how the
theory of algebraic quotients solves this problem.

Since the variety R(Z) is isomorphic to SLo(k), what we want is to compute the
subalgebra of invariant of the algebra k[SLy| = kX" X2 X2 X22]/(x11 522 x12x21 1),
Assume f € k[SLy] is an invariant. Then for any diagonalizable A € SLy(k), there
is some A € k* and g € SLy(k) such that A = g () 2.)g~" hence f(A) = p()\)
for some polynomial p € k[t,t!] that does not depend on A. Moreover, the matrix

(6\ /\0—1) is conjugated to ( % ' ?\) hence p € k[t+t7!]. Since diagonalizable matrices
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form a dense subset of SLy(k), we conclude that f € kIX"'+X*%]/(x11x22_1) that is
f € k[Tr]. Reciprocally, it is clear that the trace function is an invariant, hence the
algebra of invariant is isomorphic to k[Tr].

0 an) for
A € k*, such that A + A™1 = Tr(p(1)). In particular {p;}scx+ and po are identified in
X(Z), which is isomorphic to k.

In other words, any representation p : Z — SLy(k) is equivalent to 1 — (

It should be clear from this example that the computation of the algebra of invariants
is in general somewhat difficult, on the other hand it provides a motivation to pay
attention on a particular kind of functions, namely trace functions, which will play

a key role in the next paragraph, and in the rest of this thesis.

Notation. When I' is the fundamental group of a manifold M, its character variety
will be denoted by X (M) instead of X (I").

1.1.3 Traces and skein algebra

Definition 1.1.6. For any v € I', we define the trace function t, : R(I') — k by
t(p) = Tr(p(7)). Those functions are invariant under the action of SLy, thus they
define functions on the quotient X (I'), that we still denote by ¢,.

The following lemma is straightforward, but crucial:
Lemma 1.1.7. For any 7,6 € I, the identity t,ts = t.5 + t,s-1 holds on R(I).

Proof. For any A € SLy(k), the Cayley-Hamilton theorem gives A2 —Tr A- A+1d =
0. After right-multiplying by A™'B and taking the trace, one obtains Tr(AB) —
Tr(A) Tr(B) + Tr(A™1) Tr(B) = 0, and the result follows. O

Theorem 1.1.8 (|[Pro87|). The algebra given by B]I'] = k[Y,,v € I']/(Ye —2,Y,Y; —
Y.s =Y.

v — Yos-1,7,0 € I') is isomorphic to the algebra of invariants k[ X (I')].

The proof of this theorem is rather abstract, one can see [PS00, Mar15] for instance.
On the other hand, it is enlightening to convince oneself that those algebras define
the same points as an algebraic set, that is conjugacy-class of semi-simple repre-
sentations are fully determined by their traces. But the algebras can hold more
information than the algebraic sets they define, for instance if they contain nilpo-
tent elements. Despite we will not give a proof of this theorem, we shall state and

prove the following proposition:

24



Proposition 1.1.9. [CS83] Let I' be a finitely generated group, then the algebra
BIT'] is finitely generated.

Proof. Let v1,...,7, be a set of generators of I', we define the sub-algebra By =

EIY, ik € {1,... 0}, # 4] C B[l']. We want to prove that By = BII'].
— Consider the case when Y, € B[I'] is of the form v = ™" ...~/"" with the
i’s distincts. Define K; = —m; if m; <0, and K; = m; — 1 it m; > 0. We

T
prove that Y, € By by induction on v = ) Kj.
j=1

If v = 0, then the m;’s all lie in {0,1}, hence Y, € By by definition. If
v >0, as Y,; = Y;,, we can assume that m, # 0. Moreover, conjugation by
i, leaves v invariant, hence we assume that m, ¢ {0,1}, and then the trace
formula allows us to write Y, as a sum of two terms with strictly smaller v’s,
and we conclude by induction.

— If not all 7;’s are distincts, again we can assume that i, = i, for some s < r.
Then we cut Y, with o = 4" ... 4" and f = " ... 4" by writing
Y, =Y,Y3—Y,5-1, and step by step, we decrease v to fall in the former case.

O

Another motivation to introduce the algebra B[I'] is its relation with the so-called

skein algebra.

Definition 1.1.10. Let M be a compact three-manifold. A framed link in M is a
smooth embedding of several copies of an annulus 7 : S x [0, 1]U. . .US* x [0, 1] < M.
Two links are equivalent if they are isotopic in M. The Kauffman skein module
Sa(M) is the quotient of the k[A, A~']-module generated by isotopy classes [L] of
framed links in M, up to the so-called Kauffman relations depicted in Figure [I.1]

The following is well-known to specialists:

Proposition 1.1.11. If M is a 3-manifold, and T' = w1 (M), then the morphism of
k-algebras B[T] ~ So(M) ®@gqaa-1 HAA"Y(at1) that maps Yy to —[4] is an isomor-

phism.

Proof. We denote the latter by S_1(M), note that the algebra structure is induced
by disjoint union of links, and is well-defined since the relation A = A~! = —1
implies that crossings above or below are equivalent. Then the following pictures
(Figure show that the trace relation and the relation induced by the Kauffman
relations on the algebra structure of S;(M) are equivalent, hence those reciprocal

maps are well-defined. n
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N = A +A—1\/
/7 \
S

Figure 1.1 — Kauffman skein relations. The indicated moves are performed locally,
the rest of the link remains unchanged. The strands depict bands of the framed
links.

1.1.4 Characters, reducibility and irreducibility

From the previous definition of the character variety through trace functions, we
have the following definition of points of the character variety, which enlightens on

the terminology.

Definition 1.1.12. A k-character is a k-point of the character variety in the sense
of algebraic geometry, that means a morphism y : B[['] — k. Any representation
p: I' = SLy(k) induces a character x, : B[I'] = k that sends Y, to Tr(p(v)).

Remark 1.1.13. This definition generalizes to R-characters for any k-algebra R.

Definition 1.1.14. A representation p : I' — SLy(k) is reducible if there exists an

invariant line in k2, and irreducible if not.

The following standard lemma tells us that this notion can be defined directly on

characters. For any elements o, 3 € ', we will denote the commutator afSa~1371
by [a, B].

Lemma 1.1.15. Let k C K be a field extension (we take K to be either k, either
a transcendental extension of k). A representation p : I' — SLo(K) is absolutely

irreducible (irreducible in an algebraic closure) iff there exists o, 3 € T such that

Tr(p(afa™'B71)) # 2.
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Proof. If p is reducible on K, then one can write p as a subgroup of SLy(K) with
every element of I' mapped to an upper-triangular matrix. It is clear thus that
the commutator of any two elements have trace equal to 2. Conversely, if any
commutator’s trace is 2, then any commutator fixes a non trivial subspace of K2.
Assume [a, 8] and [4, 7] have two distinct fixed lines, they provide a basis of K? such
that p([o, 8]) = (§%) and p([0,7]) = (;7) for some non-zero z,y € K. Now we
compute Tr(p([[, 8], [6,7]])) = 2 + (zy)?, a contradiction. Hence the image of the
commutator subgroup has an invariant subspace in K?. We prove that it implies
that p is reducible ; denote by F' the invariant subspace of [[',I'], let « € I' \ [I', T']
and 3 € [[',T'] with p(8) # Id. Then [p(8)~!, p(a)].F = F and p(B).F = F, hence
p(B) stabilizes p(a).F, and p(a).F = F. O

Definition 1.1.16.

— For any a, 8 € T, we denote by A, s € B[I'] the function Y2 + Y7 + Y2, —
Y. YsYos—4 = Y|o 5 —2. For any k-algebra R, we will say that an R-character
X is irreducible if there exists a, € I" such that (A, g) # 0. If not, we say
that it is reducible. A character x will be said central if x(Y,)? = 4 for any
vel.

— Since being reducible is a Zariski closed condition, any irreducible component
X C X(I') that contains only reducible characters will be said of reducible
type. A component that contains an irreducible character (equivalently, a

dense open subset of irreducible characters) will be said of irreducible type.
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1.1.5 Saito’s Theorem and some consequences

From the equivalence of the two definitions of the character variety, we know that
any character y € X(I') is the character of a representation p : I' — SLy(k).
The following theorem of Kyoji Saito [Sai94] generalizes this fact and has crucial
applications for us. We detail the proof in Appendix [A] because it is not available

in the literature.

Theorem 1.1.17. Let R be a k-algebra, and x : B[I'] = R an R-character. Assume
that x(Aa p)ts invertible for some o, 5 € I', and let A, B € SLy(R) such that Tr A =
X(Ya), Tr B = x(Y3), Tr AB = x(Yag). Then there exists a unique representation
p: I' = SLo(R) whose character is x and such that p(a) = A and p(B) = B.

As a application of this theorem, one can deduce the following proposition, see
[Mar15].

Proposition 1.1.18. Let K be either an algebraically closed field or a degree one ex-
tension of an algebraically closed field . Then the K-irreducible characters correspond

bijectively to Glig-conjugacy classes of irreducible representations p : I' — SLy(K).

Idea of the proof. Given an irreducible character y : B[] — K, we fix o, € T
such that x(A,) is invertible and in order to use Saito’s Theorem, we produce
A= (X(f/f) (1)) and B = (2 sz%a )) for some u in an at most quadratic extension K
of K such that u +u~' = x(Y,5). Then we obtain a representation p : I' = SLy(K)
whose character is x, and general considerations about Brauer groups implies that
p could have been picked, in fact, in SLy(K).

The converse map is given by x(Y,) = Tr(p(v)). O

Remark 1.1.19. This proposition enlightens about the quotient map 7 : R(I') —
X(T). Tt says that, given an irreducible k-character x € X (I'), all representations in
its fiber 771{x} are pairwise conjugated, hence the fiber is isomorphic to the whole
group PSLy(k). It is often summarized saying that on the irreducible open subset
of the character variety, the algebraic quotient is a principal PSLy(k) bundle. On
the other hand, both statement are false outside of the irreducible locus of X (I'):
in Example we have seen that the fiber of a central character contains non
trivial representations, and the fibers of the map 7 are 2-dimensional, hence are not
isomorphic to PSLy(k).
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1.1.6 The augmented variety

In this subsection we define a two-fold cover of the character variety when T' is
the fundamental group of a 3-manifold with boundary a single torus, which has
been previously considered by several authors, see for instance [DG16]. Both the
definition and the motivation arise from the following case. This augmented variety

will be used in Chapter 2.
Definition 1.1.20 (The character variety X (0M) = X (Z?)). Let x € X(0M) be

a k-character, it is the character of a semi-simple representation p : Z? — SLy(k).
Since Z? is abelian, it can be written p(y) = (’\(07) /\,?(7) ), and x(Y,) = AX(7)+A" ()
for some A € H'(OM,k*). Moreover, there is an involution o of H'(OM,k*) that
sends A to A™!, and clearly what we have just described is a morphism X (9M) —
HY(OM,k*)/o ~ (k*)?/o that turns out to be an isomorphism.

On the functions algebra side, there is a map from B[Z?] into the algebra C[Z?] =
k|Z.,,~v € Z*/(Z,Zs — Z.s), the latter being isomorphic to k[X, X1, Y, Y], that
sends Y, — Z,+Z,-1. Its image lies in the o-invariant part C[Z%7 ~ k[X+X 1 Y+
YL XY+ (XY)!], foro: Z, — Z,-1 and we get an isomorphism B[Z?] ~ C[Z*]°.
The double cover we are going to define is H'(OM, k*) in this example, it corresponds

to a choice of an eigenvalue function Z, for v € M a boundary curve.

Definition 1.1.21. We define the augmented representation variety R(M) to be the
subvariety of R(M) x H*(OM, k*) given by the pairs {(p, \), p : (M) — SLa(k), X :
T (OM) — E* M) + M(y) ™ = Trp(y) Vy € m (OM)}.

Again SLy(k) acts on R(M), trivially on the second factor, thus we define the aug-
mented character variety to be the quotient X (M) = R(M)// SLy(k).

The advantage of this two-fold covering is the following: on one hand the functions
of X(M) are trace functions, on the other hand on X (M) we have at our disposal,
for any v € m(0M), two eigenvalue functions Z.+1 that maps the pair (p, A) to an
eigenvalue A(y) for p(v).

The following definition provides a direct description of the algebraic quotient.

Definition 1.1.22. Recall that the algebra C(m(0M) is defined by k[Z,,v €
m(0M))/(Z,Zs — Z~vZ6). Denote by B[I'] = B[I] ®pjm, ar) Clr1(0M)] and we

define the augmented character variety as the fibered product:
X (M) = X (M) x (o H'(OM, k")
that is, X (M) = Spec B[['].
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1.1.7 The tautological representation

Let X be an irreducible component of X (M) of irreducible type (in the sense of
Definition [1.1.16]).

The component X corresponds to a minimal prime ideal p of B[I'] such that k[X] =
BII']/p is the function algebra of X. Denote by k(X)) the fraction field of k[ X], and by
X x the composition B[['] — k[X] — k(X), it is irreducible as a k(X )-character. The
following is an immediate consequence of Proposition [I.1.18] since one-dimensional

varieties over k have a function field which has transcendance degree 1 over k.

Proposition 1.1.23. Let X be a one-dimensional component of irreducible type of
X(M). Then there is a representation px : I' — SLa(k(X)), called the tautological

representation, defined up to conjugation, whose character is xx.

Remark 1.1.24. The whole paragraph above can be rephrased in terms of the aug-
mented character variety, with X a one-dimensional component of irreducible type of
X(M) and pg : T — SLy(k(X)) the tautological representation. The component X
is said of irreducible type if it projects on a component of irreducible type of X (M).
The striking point of the augmented construction is that the restricted tautological

representation py : m (OM) — m (M) — SLo(k(X)) is now diagonalizable.

1.1.8 Examples
The character variety of ' = Z

We already computed the character variety X (Z) ~ k with parameter t = Tr p(1),
it has a double cover similar to the augmented variety which is £* with parameter
u, where v+ u~! = t. The tautological representation is p : Z — SLy(k(u)) defined
by p(1) = (4 2.). Remark that, as predicted by Proposition , the tautolog-

ical exists in SLy(k(t)) too, one can see it by sending 1 to (f; {), but this is less

convenient for computations.

The free group with two generators I' = (o, )

Using the trace formula, it is clear that the algebra B[I'] is generated by Y,, Y3, Yas.
Moreover, those functions form a basis: given a relator P(Y,,Ys,Yas) = 0, one
proves that P = 0 by setting p(e) = (X §) and p(8) = (3% "). One gets
P(X,Y,Z + Z7') = 0, hence P is trivial in k(X,Y, 7). The function ring is then

k[X,Y,Z + Z71], and the character variety is isomorphic to k3. The representation
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p defined below is the tautological representation in SLo(k(X,Y, Z)) and there is no
reason that it exists in SLy(k(X,Y, Z+ Z 1)), because the Brauer group of this field

is not trivial.

The trefoil knot

Here M is the exterior of the trefoil knot in S?, 7 (M) = (a, b| a* = b*). Denote by
z = a® = b3, it generates the center of I'. Hence any irreducible representation p

needs to map z onto +1d. If p(z) = Id, then p(a) = —Id and necessarily p becomes
0] -2 )"
still conjugate p by diagonals matrices without modifying p(b), thus one can fix the

abelian, thus we fix p(z) = —Id. Up to conjugacy, we fix p(b) = < One can
right-upper entry of p(a) to be equal to 1 ; and as p(a)? = — Id, the Cayley-Hamilton
theorem implies that Tr p(a) = 0, hence p(a) = (_(tztﬂ) _1t), for some t € k. As
(7 — j*)t = Tr(ab™ '), the function field of the component of irreducible type X is
k(t) ; and X ~ k. The latter representation p is the tautological representation.
The augmented character variety is obtained by picking an eigenvalue of any bound-
ary curve. Consider the meridian ab™!, its trace is (j — j°)t, hence the field extension
u+u~t = (j — j%)t provides a double covering X — X, that ramifies twice, when
(7 — 7%)*? = 4. Note that X is isomorphic to k*.

The figure-eight knot

Here M denotes the exterior of the figure-eight knot in S?, 7y (M) = (u, v| vw = wu)
with w = [u,v71]. Note that the meridians v and v are conjugated, hence they
define the same trace functions. Denote by x = Y, =Y, and by y = Y,,, then
Blmi(M)] = k[z,y]/(P) where P(z,y) = (2*—y—2)(22*+y*—z*y—y—1) is obtained
by expanding the relation Trvw = Trwu with the help of the trace relation. The
first factor of P is the equation of the component of reducible type, and we denote
by X the curve defined by the second factor of P. It is a smooth plane curve of
degree 3, and the Pliicker formula implies that its compactification has genus 1. The
augmented variety X — X is described as follows: add the equation o + o' = z,
one obtain a curve in k3, that ramifies at four points {2 = 4,y*> — 5y + 7 = 0} on
X, hence the compactification of X has genus 3 by the Riemann-Hurwitz formula.

The tautological representation p : I' — k(X) can be defined by



1.2 Twisted cohomology

In this section we recall the basics of twisted cohomology that we will use in the
sequel of the manuscript. Given a group I', we will denote by Z[I'] the group ring of

I', whose elements are formal sums ) __n,e,,n, € Z with multiplication e es = e4s

yel’
extended by linearity.

We fix an abelian group A together with a left-action I' x A — A, (y,a) — v-a. It
induces a right-action by a -y =71 -a. It turns A into a Z[I']-module.

Definition 1.2.1 (Group homology and cohomology). Let ET be the full simplex
set over I, that is, the vertices of ET" are in bijection with I', and any finite part of
I' of cardinal n defines an n — 1 simplex in ET'. This space is contractile, and the

natural transitive action of I' on itself by left multiplication induces an action on
ET, denote by BI' = ET'/T.
Define the complez of twisted chains as the Z[I']-modules:

Ok<F,A) = A®Z[p] Ok(EF)
={a®[Mo,..,m Vv eEl,a-v® [0, .-, =a® [yY0, -, Y W]}

and the complex of twisted co-chains as the Z[I']-modules:

C*(T', A) = Homgr)(Cy(ET), A)
={f:T"" = A: f(r0,- . vm) =7 f(0s- - 7) }

with boundary maps given by d(a ® [vo,...,%]) = Y_.,(=1)'"a® [0, - - -, Yir - -, k) €
Ck—1<r7 A) and df(’yov s a7/€+1) = Zz(_l)zf(/yoa B 7’3/1" s 77k+1) S CkJrl(F? A) Re-
call that the hat notation means that the term with a hat does not appear.

As usual we denote by
Z1 (D, A) = ker 9 : Oy(T, A) = Cy_1, Z¥(T, A) = kerd : C*(T', A) — C**1(T, A)
and
Bi(T,A) =imd: Cpyry(T, A) — Ci(T', A), B¥(, A) = imd : C* (", A) — C¥(T", A)
We define the twisted homology Z-modules as
Hy(T. A) = Zi(T, 4)/ B(T". 4)
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and the twisted cohomology Z-modules as
H (D, A) = Z4(D, A)/BH(T, A)

Remark 1.2.2. When A = 7Z and I' acts trivially, then what we defined is the
homology (resp cohomology) of the space BI'. We will generalize this observation

later.

Remark 1.2.3. For computation, we will use the following non homogeneous con-

vention for the group homology and cohomology: the homological complex will be
Ci(T,A)={a®[y,...,7] |a€ Ay €T}
with boundary

S(a@y, ) = am®@Me, v —a@[iyes ]+ (D) a® [y, Vi)
and the cohomological complex will be

C(T,A)={f:G" — A}
with boundary

df (v, %) = f %) — Fnvzs o) + -+ (D) (s vie1)

It is a straightforward computation to show that those conventions define isomorphic

complexes, hence the same homology.

In the sequel we fix a finite connected CW-complex K with universal cover K, which
will be in general a cell decomposition of a compact manifold M and we denote by
I' = m (M) its fundamental group. If {ef,... ek } is the family of k-dimensional
cells of K, we denote by {&¥,...,é" } a choice of lifts in K, it provides a Z[[']-basis
of the Z[I']-module Cy(M).

Again we fix an abelian group A, and a left-action of I' on A.

Definition 1.2.4 (Twisted homology and cohomology). We define the homological

and cohomological twisted complexes
Ci(M, A) = A @gr) Cr(M) and C*(M, A) = Homyr) (Cy (M), A)
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with boundary maps 9(a @ ef) = a ® def and df (ef) = (—1)"f(deF). Finally, the
twisted homology and cohomology of M are the Z-modules Hy (M, A) and H*(M, A).

This definitions extend naturally to relative homology and cohomology in the case

when M has a non-empty boundary 0M.

Remark 1.2.5. The generalization of Remark is that the homology (resp.
cohomology) H,(T', A) of the group T is the twisted homology (resp. cohomology)
H,.(BT, A) of the space BI.

A classical fact, that is a consequence of this remark, is the following theorem, see

for instance [Bro82].

Theorem 1.2.6. IfM 1s contractible, then we have the natural isomorphisms
Hy(M, A) ~ H,(T', A) and H*(M, A) ~ H*(T, A)

Moreover, without hypothesis on M, the following is proved in [Por97, Lemma 0.6].

Proposition 1.2.7. For 1= 0,1, we have the natural isomorphisms:
H;(M,A) ~ H;(T',A) and H'(M, A) ~ H(T, A)

We will be interested in the case when A is a free module of finite type (or a vector
space) V over a k-algebra R, together with a bilinear non-degenerate invariant form
B :V xV — R, hence we can define the following operation in homology and
cohomology:

— The Kronecker product

<.7.> : Hk<M,V) X Hk(Mav) — R
(fiv®el) = B(v, f(ef))

— The Universal Coefficient Theorems, here V, V' are assumed to be modules
over a PID R :

0— Hy(M,V)®@r V' — Hy(M,V @ V') = Tor(Hp_1(M,V),V') = 0

0— HYM,V)®r V' — H*(M,V @ V') — Tor(H*™ (M, V), V') = 0
0 — Ext(Hy_1(M,V), V') = H*(M, V') = Hompg(H,(M,V),V') = 0

0 — Ext(H* (M, V), V') = Hy(M, V') = Homgr(H*(M,V), V') = 0
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— The Poincaré-Lefschetz duality H;(M,0M,V) ~ H,_;(M,V)* ~ H*(M,V)
where n = dim M

— The cup-product:
“U-: H(T,V) x H/(T',V) — H™(T, R)

(f7 g) = ((717 coes Vi Vit - - 7’7i+j) = <_1)UB<f(/717 R 771)7g(ryi+17 s 7’7i+j)))

1.3 Culler-Shalen theory, group acting on trees and

incompressible surfaces

In this section we partially describe the so-called Culler-Shalen theory. In seminal
articles |[CS83| [CS84]|, Marc Culler and Peter Shalen managed to use both tree-
theoretical techniques introduced by Hyman Bass and Jean-Pierre Serre in [SB77|
and character varieties to study the topology of 3-manifolds. In Subsections 1,2,3
we describe the Bass-Serre tree together with its natural SLy action, in Subsection

4 we explain how to use this theory in the context of character varieties.

1.3.1 The tree

Let K be an extension of k, we define a k-discrete valuation as a surjective map
v: K — Z U {oo} such that

— v(0) = 400

— v(z +y) = min(v(z),v(y))

— v(zy) =v(@) +v(y)

— Vz € k,v(z) =0 and k is maximal for this property.
We call O, = {z € K : v(x) > 0} the valuation ring, and we pick ¢ € O, an
element of valuation 1, that we call a uniformizing parameter. The group of invertible
elements O} is the group of elements whose valuation is zero, (¢) is the unique
maximal ideal of O,, O,/(t) ~ k is the residual field. Remark that every ideal is
of the form ("), for some n € N. The main exemple to have in mind here is the
valuation ring C[[¢]] of formal series in ¢, with the valuation v : C((¢))* — Z, P
ord;(P) given by the vanishing order at ¢ = 0. The uniformizing element is ¢ and
the residual field is C.
A lattice L in a two dimensional K-vector space V is a free O,-module of rank two

that spans V' as a vector space. The group K* acts on the set of lattices in V' by
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homothety . We denote by T the set of equivalence classes, that is L ~ L’ iff there
exists € K* such that I/ = zL.

We are going to define an integer-valued distance on 7. We fix a lattice L together
with a basis of L, say {e, f}. For any class [L'] € T one can express a basis of L' € [L']
as {ae + bf,ce + df} with a,b,c,d € K ; and up to homothety, we can pick in fact
a,b,c,d € O,, that is L' C L. Assume a has minimal valuation among {a,b, ¢, d},
then the matrix (¢%) can be transformed into (8 d_o%) by SLs(O,) right and left
multiplication that preserves the standard lattice O?. Hence L’ ~ aQ,®( —%)OU ~
"0, &t"O, for some n,m € N. We define d([L], [L']) = |n —m|, and one can check
that it defines a distance that does depend only on [L] and [L'].

This distance turns 7" into a graph whose vertices are classes of lattices [L] such
that vertices at distance 1 are linked by an edge. This graph is connected since
any two vertices admit representatives L, L’ such that L = O, ® O, and L' =
O, @td([L]’[L/])OU, hence a path joining L to L' can be constructed as L, = O, ®t*O,
with k= 0,...,d([L],[L]). In fact it can be shown that T is a tree, see [SB71].

1.3.2 Link of a vertex and ends of the tree

Given a vertex [L] € T, one can describe the set of vertices at distance 1 of [L] as
follows: for each such [L'] there is a basis of V such that O? is a representative of
[L] and that there is an unique representative L’ of [L] isomorphic to O, @ tO, in
this basis. Since tL C L' C L, it defines a map {[L'] : d([L],[L']) = 1} — kP! that
sends L' to the line L'/tL in L/tL ~ k? which turns out to be a bijection.

In general, there is a bijection between the set of vertices at distance n of [L] and the
lines in (O,/(t"))?, that is the points in the projective plane P((O,/(t"))?), hence
a bijection between "half-lines" in T starting from [L] and the projective space
P(O?) ~ PY(O,) ~ KP' (here O, = lim O, /(t") denotes the completion of O,).

n—oo

1.3.3 The SL, action: stabilizers of vertices, fixed points and

translation length

There is a natural isometric and transitive action of GL(V') on 7', induced by the

action of GL(V) on V.

Definition 1.3.1. The action of a subgroup G C GL(V) on T will be said trivial if

a vertex is fixed by the whole group.
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Lemma 1.3.2. For any g € GLy(K),[L] € T, fix a basis {e, f} of L € [L], and
n,m € Z such that {t"e,t™ f} is a basis of g - L. Then v(det(g)) = n + m.

Proof. In this basis, L ~ O2 and ¢ can be written as the matrix A (% %) B with
A, B € GLy(0O,). The result follows. O

Now we restrict to the SL(V') action. We say that an element g € SL(V') stabilizes

a vertex [L] € T if for any representative L we have g - L = xL for some = € K*.

Lemma 1.3.3. An element g € SL(V') stabilizes a vertex [L] iff for any representa-
tive g- L = L.

Proof. Assume that g - L = xL, then by Lemma [1.3.2] v(det(g)) = 2v(z) = 0 hence
r € O and zL = L. O

Furthermore, as SLy(O,) is the stabilizer of the standard lattice O?, we deduce the

proposition.

Proposition 1.3.4. The stabilizer in SLy(K) of any vertex of the tree T is a GlLg-
conjugate of SLa(O,).

Remark 1.3.5. Since for any g € SL(V'), v(det(g)) = 0, we know that the distance
d([L],g - [L]) = |n — m| is even, in particular SL(V') acts without inversion on T,

that is it can not fix an edge and exchange its end points.

Definition 1.3.6. Given g € SL(V), we define the translation lenght of g to be
equal to [(g) = min d([L], g - [L]).
[LleT

There are two ways for g € SL(V') acting on the tree:

1. Elliptic elements
If ¢ has fixed points, or alternatively {(g) = 0, then it will be called elliptic.

In this case, there is a basis of V such that 02 is fixed and ¢ is an element of
SL2(O,). The set of fixed points T}, is a subtree of T

2. Hyperbolic elements
If I(g) > 0, then g is called hyperbolic ; Ay = {s € T | d(s,g-s) = 1(g)}
is an infinite, globally fixed, axis on which ¢ acts by translation, and any
basis of V such that the standard lattice O? € A, provides the matrix form

(a2
9—< IO E

We prove the following lemma from [SB77, Corollaire 3, p.90|.
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Lemma 1.3.7. Let G be a subgroup of SL(V') acting on the Bass-Serre tree T'. If
every element g € G fizes a vertex of T, then the whole group has a fixed verter,

that is the action is trivial.

Proof. — First we prove that every two elements have a common fixed point.
Let g1,92 € I" which have no common fixed point, take two vertices s; and
S9, such that they realize the minimal distance [ between the fixed subtrees
T) and T». Then the segment [sy, s3] has no other point than s; fixed by

g1, so it’s image by g¢; is [s1, g1 - 52]. In the same way, it’s image by g, ' is

[g5" - s1,82]. Consider the action of the element g, g, € T.
g192 - $1 g1+ S2 g2 - S1

We prove that it acts on the pictured axis by translation of length 2[: by the
minimality of [, g5 1.5, and s; are at distance 2. It clear that s; and g1 - 51
are at distance at most 2. Now if d(sy, g1g2 - s1) < 2[, there exists an other
vertex than g; - so in the intersection [sq, g1 - 2] N [g1 - S2, 192 - $1]. Denote it
by s. Then g;' - s € [s1,82] N [s2,92 - 51] \ {52}, hence it is fixed by gy, what
contradicts the minimality of [.

Iterating this process, we see that g;go acts as an hyperbolic element, and
thus has no fixed point, which is a contradiction.

— Write {g1,...9,} a system of generators of I'. Assume that gy, ..., gx have a
common fixed point s, and take s' a fixed point of g, as near as possible
of s. So one of the g;’s, i = 1...k, do not fix any other point of [ss’] than
s ; applying the same argument as above gives that g, fixes s too, and

concludes the proof.
m

1.3.4 Curves and valuations

Examples of field extensions of k together with k-valuations are given by algebraic
varieties defined over k. In particular, pick X C X(I') an irreducible component of
the character variety, its function ring k[X] is a domain, and we denote by k(X) =
Frac(k[X]) its quotient field, called the function field of X. It is a general fact
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that this field is a k-valuated field, with valuations corresponding to hypersurfaces
W c X. We will be interested in the case where X is one dimensional, and we
refer to [Ful08] for details on what follows: there exists an unique curve X, which is
smooth and compact, called the smooth projective model of X, with a birational map
v: X --» X that is an isomorphism between open subsets and induces a canonical

field isomorphism v* : k(X) = k(X). There is a homeomorphism

X — {k-valuations on k(X)}

T v, f e oord(f)

where the set of valuations is endowed with the cofinite topology.

Remark 1.3.8. When the context will be clear, a curve X being given, we will

often denote by v a point in the smooth projective model X.

Definition 1.3.9. Let v € X be a point in the projective model of X. We will call
it an ideal point if v is not defined at v, equivalently the function ring £[X] is not a

subring of O,. Otherwise we will call v a finite point.

Example 1.3.10. Let X be the plane curve {z? — 4® = 0} in C?. Tt is a singular
affine curve, with function ring C[X] = C[U,V]/(U? — V?). The map C[X] —
C[T] that maps U to T? and V to T? induces an isomorphism between of fields
Frac(C[X]) ~ C(T). Moreover, it defines a birational map v : CP* — X C C? by
t — (t3,t?). Hence the smooth projective model of X is isomorphic to CP! (remark
that the singular point (0,0) is "smoothed" through v), and the ideal point is oco.
As a map CP' — CP?, v sends oo to [1: 0 : 0], the curve X U {00} C CP? is a (non

smooth) compactification of X.

1.3.5 Group acting on a tree and splitting

Let X be an irreducible component of irreducible type of X(I'), which is reduced
and one dimensional, and let p : I' — SLo(k(X)) be the tautological representation.
Let v € X a point in the smooth projective model of X, the pair (k(X),v) is a
k-valuated field, and we denote by T, the Bass-Serre tree described above. The
group I' acts simplicially on 7T, as a subgroup of SLy(k(X)) through the tautological
representation p. Although the representation p is defined up to conjugation, the

action on the Bass-Serre tree is well-defined.

39



Proposition 1.3.11. The action of I' on T, is trivial if and only if v € X is a finite

point.

Proof. By definition, for v € X a finite point, the ring k[X] is included in O,, which
means that v(Y,) > 0 for any v € I'. Equivalently, Tr(p(v)) € O, for any v € T,
and we want to prove that it is equivalent to p(y) to be conjugated to an element of
SLy(0,). Tt is clear if p(y) = £1d, if not there exists a vector e € k(X )? such that
{e, p(7)e} is a basis of the two dimensional vector space k(X)?, and in this basis
p(7y) acts as the matrix (_01 T ( ,}(7))) which lies in SLy(O,). The proposition follows
now from Lemma [[.3.7 O

Finite points and residual representations

If v is a finite point, Proposition [1.3.11] implies that the tautological representation

can be chosen, up to conjugation, to be of the form p : I' — SLy(O,). Such a rep-

resentation will be said convergent. Given a convergent representation p, we denote
mod ¢t

by p: I' = SLy(O,) —— SLay(k) the residual representation. If v corresponds to
the character y € X, then the representation p is a lift of x.

Ideal points and incompressible surfaces

Here M is a 3-manifold with OM = S' x S!, and ' = 7;(M). We pick an ideal
point v € X, and we know from Proposition that no representative p of
the tautological representation converges (sends the whole group I' into SLy(O,)).
Now we describe quickly how to construct, from the action of I' on T, a surface
> C M, said dual to the action. The reader will find many details about this
delicate construction in [Sha02, [Til03].

The main point is to construct a mi(M)-equivariant map f : M — T,. Pick any
triangulation K of M, and lift it to a m; (M )-invariant triangulation K of M ; then
pick a set of orbit representatives S for the action of 7 (M) on the set of 0-
simplices of K, and any map fo : S(© — T, from this set to the set of vertices of T},.
It induces an equivariant map from the 0-squeleton of K to T}, that we still denote
by fo : K© — T, Now it is possible to extend linearly this map to the 1-squeleton,
as follows: pick a set of orbit representatives S() for the action of 7;(M) on the
set of 1-simplices of K. Any edge o € S has endpoints mapped to some given
vertices through the map fy, and we extend in the obvious way fy to 0. Now there

is a unique 7 (M )-equivariant extension fi : KW — T, of f,, it is continuous, and
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can be made simplicial, up to subdivide the triangulation K. Repeat this process
up to obtain the desired simplicial, equivariant map f: M — T,

Now consider the set of midpoints F of the edges of T, the set f~(F) is a surface
S C M. This surface is non-empty because the action of m1 (M) on the tree T, is
non trivial, and orientable because the map f is transverse to E. Moreover it is
stable under the action of 71(M) on M, and hence its image through the covering
map M — M is a surface S C M, non empty and orientable, dual to the action. It

is worth to notice that it has no reason to be connected in general.

Remark 1.3.12. There is some kind of converse construction, which may explain
the use of the term "dual". Given S an oriented surface in M, and S the preimage
of S in the universal cover M, one can construct a tree Ty as follows: vertices are in
bijection with the connected components on M \5’ , and they are joined with an edge
when the corresponding components are separated by a component of S. Because
the surface S is m; (M )-invariant, this tree Ty comes with a simplicial action of the
fundamental group m; (M). Moreover, the stabilizers of vertices are the fundamental
groups of the corresponding connected components of M \ S and stabilizers of edges
are the fundamental groups of the corresponding connected components of S.

Whenever S is a surface produced by the action of the fundamental group on a
tree T, one has the following relation between Ts and T since Ty is a retract of
M, and the map f : M — T was constructed by extension to contractible cells,
the compostion T < M Iy T if well-defined and provides an injective (M )-
equivariant map ¢ : Ts — T, which can be made simplicial, after subdividing Ty is
necessary (subdividing Ts turns out to add parallel copies of S'in M in an equivariant
way). The map i has no reason to be an isomorphism, but it implies that the
stabilizers of vertices of Ts (namely fundamental groups of connected components
of M\ S) are included in the stabilizers of some vertices of T', and similarly for the

stabilizers of edges.
Definition 1.3.13. A surface X in a 3-manifold M is said incompressible if
1. X is oriented
2. For each component ¥; of ¥, the homomorphism 7(3;) — (M) induced
by inclusion is injective.
3. No component of ¥ is a sphere or is boundary parallel.
Remark 1.3.14. A compression disk D C M is an embedded disk in M such that

0D lies in S and is not homotopically trivial in S. The second condition above is

equivalent to saying that there is no compression disk in M.
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If S is a surface dual to a m; action on a tree T, there is a way to modify the
equivariant map f in order to avoid compression disks, spherical and boundary
parallel components, and hence to obtain a new surface X that is incompressible.
We refer the reader to the references given above, where a proof of this fact can be

found.

1.3.6 The split case.

Let X be an incompressible surface associated to an ideal point v € X. In this section
we suppose that ¥ is a union of n parallel copies ¥;,7 = 1,...,n and that each copy
splits M into two handlebodies M = M, Us,, M,. Consider V(X) a neighborhood of
¥ homeomorphic to ¥; x [0, 1], and we consider the splitting M = M; Uy sy M,. We
fix a basepoint p € ¥, and we will denote by m(X) the fundamental group of ¥
based in p. We identify m (V' (X)) to m(X), and the Seifert-Van Kampen Theorem
provides the amalgamated product 7 (M) = 7 (M) %5, sym1(Ms). A sketchy picture
is drafted in Figure [I.3]

Ml M2

Figure 1.3 — The splitting M = M, Uy (x) Ms.

Lemma 1.3.15. One can chose a conjugate of the tautological representation p :
I' — SLo(k(X)) that restricts to representations py and ps from m (M), 7 (Ms)
to SLa(k(X)) respectively ; such that py is convergent and that px, its restriction
to m (%), is residually reducible. Moreover, there is a convergent representation

ph 1 (Ma) = SLa(O,) such that ps = U,pyUt, with U, = (% 9).

n

Proof. Let s; € T, be a vertex in the Bass-Serre tree that is fixed by (M),
and fix a basis such that it corresponds to the lattice O?. Then there is a vertex
sy € T, fixed by m (M), such that d(sy,s2) = n. Moreover, assume that in this
basis s, has a representative of the form t"O, @& O,. The first observation is that
p1(mi(My)) C SLy(O,) because it stabilizes O?. Since px, fixes the first edge of the
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segment [s18s], in this basis it fixes the lattices O? and tO, ® O,, hence for all
vem(X), ps(vy) = <(28)) Z%), with ¢(y) € (t), hence px, is reducible.
Let pby = U poU,, then ply- sy = U py-s9 = U, ' sy = 51 and we have proved that

the representation pf, converges. O

1.3.7 The non-split case

Let S be an incompressible surface associated to an ideal point v € X which is,
again, union of n parallel copies S = S;U...U S, and we assume now that M \ S;
is connected. Hence [S;] # 0 € Hy(M;0M), and in particular each component of
0S; is a homological longitude. We say that S; is a Seifert surface in M if 0S; is
connected. Let V(S;) be a neighborhood of S; in M, and E(S;) = M\ V(S;). Tt
is a classical fact (see [OzaOll, Proposition 2|) that E(S;) is a handlebody if and
only if m (E(S;)) is free. In this case we say that the surface S; is free. It is the
case, for instance, as soon as M is small (does not contain any closed incompressible
surfaces), and a necessary and sufficient condition for a knot to contain non-free
Seifert surfaces is given in [0za00].

In the sequel we assume that the Seifert surface S; is free, say of genus g, and we
denote by H = E(S;) the genus 2¢ handlebody complement of S;. We assume that
oV (S) = S1US,. We have M = V(S) Ug,us, H, hence the HNN decomposition
m (M) = 71(H)*,, where we fix the basepoint p € Sy, and « : m(S1) — m(S,)
an isomorphism between those subgroups of 7 (M). This means that we have the
presentation 7y (M) = (m(H),v | vyo~t = a(y),Vy € m1(S1)).

Lemma 1.3.16. One can chose a conjugate of the tautological representation p :
m (M) — SLa(k(X)) such that the restrictions py : m(H) — SLa(k(X)) and p; :
m1(S1) = SLa(k(X)) are convergent. Moreover, p(v) = V,, with V,, = (_tf)n/g t”0/2>7
in particular n is an even integer, and the restriction p, : m(S,) — SLa(k(X)) is
equal to V,p1 V.71 Finally, the residual restricted representation py is reducible, and

if S; are Seifert surfaces, one has Tr(py(05;)) = 2.

Proof. We fix a vertex s in the Bass-Serre tree T', that corresponds to the lattice
O? and is fixed by m;(H), hence py is convergent. We denote by e; the edge in the
tree T incident to s that is fixed by m1(57), and the parallel copies of S; stabilize a
series of edges e; that form a segment in 7', which has U, - s; as an end point, as

depicted below.
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S1 Uy, - s1

€1 €9 €n

In particular, the representation p; is reducible by the same argument that in the
proof of Lemma [1.3.15] Now the element v € 71(M) acts on the tree T in the
following way: it sends the vertex s; to U, - s1, but it sends the incident edge e; to
en. Since it acts by isometries, the only possibility is to act as a central rotation with
center the mid-point of the segment [s1U,, - s1]. But the fundamental group m; (M)
acts without inversion, hence n is even, and p(v) is of the form U%RWU%_1 = Vi,
where R, = (_47}).

The last statement follows from [CCG™94|, where it is proven that the eigenvalues of
the matrix p;(0S7) are roots of unity, of order that divides the number of boundary
components of any surface 5;, hence those eigenvalues are equal to 1, and it achieves
the proof. n

1.4 Alexander module and character varieties

In this section we prove a theorem due independently to Burde and DeRham ([Bur67,
deR67]), that relies the so-called Alexander module of a 3-manifold M, and in par-
ticular roots of its Alexander polynomial, with some particular point in the character
varieties X (M).

1.4.1 Reducible character in components of irreducible type

of the character variety

Definition 1.4.1. Let X be a one dimensional component of irreducible type of
the character variety X (M), v € X a finite point in the smooth projective model of
X, and p: m (M) — SLy(O,) a convergent representative of the tautological repre-
sentation. We will say the representation p is residually reducible (resp. residualy
abelian, irreducible, central) if the residual representation p : m (M) — SLy(k) is
reducible (resp. abelian, irreducible, central). Recall in addition that a character x
is said central if x(Y,)? =4 for all Y, € k[X].

Since X is of irreducible type, irreducible characters are dense in X hence for a
generic v € X, the tautological representation p will be residually irreducible. Nev-

ertheless, there may exists a finite set of points where it is residually reducible, they
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correspond to characters that are intersection points of X with a component of re-
ducible type of X(M). The following proposition uses crucially the hypothesis that
the first Betti number of M is 1.

Proposition 1.4.2. Let x € X a reducible character, v € X the associated valua-
tion, and p : I' = SLy(O,) a choice of convergent tautological representation. Then
the character x is not central, and in particular the representation p is not residu-
ally central. Moreover, one can choose the tautological representation p such that it

18 not restdually abelian.

Proof. In [Por97, Lemma 3.9], it is proved that a reducible character x; in a compo-
nent of irreducible type X of the character variety of a 3 manifold M with by (M) =1
cannot be central, because there exists a non abelian representation o : I' — SLa(k)
with character x;. It proves the first claim. It remains to show that such a non
abelian representation is realized as p, for some choice of tautological representation
p. We give a tree-theoretical argument.
Let T, be the Bass-Serre tree associated to v, and consider the action of I" on T,.
— As the tautological representation is convergent, the subtree 7 of fixed points
is non empty.
— The tree T is finite, because if not it would contain an half-line, hence from
Subsection the tautological representation would fix a line in @g and it
would contradict the irreducibility of p.

— The tree T is a segment: assume it contains a vertex of valence at least 3
u

v

Then ¢, u and v represents three distincts points in kP, fixed by the residual
representation p. Hence p(I') C {£1d} but it is a contradiction with the first
part of the proposition.

— We just proved that 7" is of the following form:
So  S1 82 Sn—1  Sp

Fix a basis such that s; is the lattice O, @ t'O,. Then for any ~v € T,
p(v) = <(é8)) Z%) € SLy(0,), with ¢(y) € (¢"). We conclude by noting that
for some v € T', we have b(y) € O} ; because if not there should be an other
fixed point at the left of sy. Finally, p is not residually abelian, and residually
reducible as soon as n > 0.

]
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1.4.2 Alexander module

Here we recall the basic theory of Alexander module. We assume for simplicity that
M’s first Betti number by (M) is equal to 1, despite the theory can be extended to
higher cases. We refer to [Rol76, BZH14| for proofs and details on this theory.

We call abelianization an epimorphism ¢ : m (M) — Z. As by(M) = 1, there are
two possible choices for the homomorphism ¢, but nothing we will state here will
depend on this choice. Moreover, we abuse of the term abelianization because we
omit the possibly non trivial torsion part of the abelianization of the fundamental
group.

We call the infinite cyclic covering the regular covering M with deck transforma-
tion’s group Z. Let Z = (t), we denote by A the group ring A = Z[Z] = Z[t*']. The
action of Z on M turns the homology groups H,(M) into A-modules, and we call

the A-module H; (M) the Alexander module. Notice it is the p-twisted homology of
M with coefficient in A.

Proposition 1.4.3. The A-modules H;(M) are trivial fori > 2, Ho(M) ~ Z[t*]/(t—

1) and the Alezander module is a torsion A-module.

Proof. Since M has a non-empty boundary, it has the homotopy type of a two
dimensional cell complex, that can be obtained by collapsing all 3-cells adjacent to
the boundary in any cell decomposition of M, hence H;(M) = 0 for i > 3. Moreover,
it follows from [Jac80, Chapter V| that any presentation of (M) obtained from
this cell decomposition has deficiency one, that is m (M) = (z1,...,zu|r1, - o Toe1)
and one can assume that ¢(x;) is a generator of Z. In fact this cell complex can
be chosen to be composed of an unique O-cell ey, n loops el,..., e} based in e,
corresponding to the generators 1, . ..,x, and n—1 disks €3, ..., 5! such that the
boundary of the disk €% follows the loops {e¥, k = 1...n} as indicated by the relator
T

Now we consider the complex Co(M) — Cy(M) — Cy(M), which is nothing but
A"t — A" — A. The first boundary map is given by the (n x n — 1) matrix
A = (p(0y15))ij, where ¢ : Z[['| — Z[Z] is the natural ring extension of the
abelianization homomorphism, and the operators 0,, are the Fox derivation oper-
ators (see [BZH14] for details). Theorem 9.10 from the given reference states that
this matrix has maximal rank, hence HQ(M ) = 0. The second boundary map is the
line matrix <<p(a:1) -1 ... o(x,)— 1), and the remaining part of the proposition

follows from the obvious fact that ¢(z;) = t. O
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Definition 1.4.4. Let Ay = ged({(n — 1) minors of A}) € Z[t*!], where A is the
matrix of the proof above. We call this polynomial the (first) Alezander polynomial
of M. Similarly, we call Ay(M) = ged({(n — k) minors of A}) € Z[t*!] the k-th
Alexander polynomaial of M.

Remark 1.4.5. It follows from the fact that A has maximal rank that none of
those polynomials are zero. A proof that they only depend on M and are in fact
topological invariants can be found in [BZH14]. Note that they are defined up to a

power of t.

The following theorem is due to Burde and DeRham [Bur67, [deR67], see [HPSPOI]
for a more recent treatment and improvement of the result. We give a proof of this
well-known fact because we did not find it in those terms in the literature, and we

will use some similar techniques along this manuscript.

Theorem 1.4.6. Let x € X be a reducible character in a component of irreducible
type of the character variety. Then there is A € k* such that A(N*) = 0 and for all
yem(M), x(Y,) = \eO) 1 e

Proof. As usual we fix v € X a point in the smooth projective model such that
v(v) = x, and p : m (M) — SLy(O,) a convergent tautological representation,
by hypothesis it is residually reducible, and we can choose it to be not residu-
ally abelian, by Proposition [1.4.2] Then the residual representation can be written
p(v) = ()‘W:) ”;fl)g)‘”) for some A € k*. We want to show that A\? is a root of the
Alexander polynomial Ay;.
— The first observation is that we know A to be different from +1 from Propo-
sition [LL4.2
— The group relation p(yd) = p(v)p(d) implies that the map u : I' — k satisfies
the relation u(70) = u(y) +A%u(§), hence u € Z'(I', \?) is a cocycle in the
A2-twisted cohomology of the group with coefficients in the field .
— Now we prove that the class [u] € H'(T', \?) is trivial iff the representation
p is abelian. Since A # £1, p being residually abelian is equivalent to p
being conjugated to a diagonal representation, that is to the existence of
a,b,c,d € k such that for all v € T,

a b APO) A=e(My () AP 0 a b
c d 0 2P0 - 0 N0 c d
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It is equivalent to

ad=?My(y) + oA = \¢(p

cA(y) =A™ (9)
ATPDu(y) + dA=#0) = dA—#0)

c=0
or , that is u is a coboundary.

uly) = (30 1)

— Since p is not abelian, we have proved that H'(T',\?) # {0}, consequently
Hy (T, \?) # 0. But the Universal Coefficients Theorem provides the isomor-
. _ 1

phism H, (M) @z, (521 = Hi(M,)?). Take A(t) € M1y (Z[tF]) a
presentation matrix for the Alexander module H; (M), then the matrix A(\?)
becomes a presentation matrix for H; (M, A\?). Since the latter is non trivial,
we deduce that Ayr(A\?), which is the greatest common divisor of the (n — 1)

minors of the matrix A(\?), is zero, and the theorem is proved.

]

Example 1.4.7. 1. For the trefoil knot, we recall that the tautological repre-

sentation is p : a +— (_(tgt +1) _lt) b= (Bj 7(;.2>. It is residually reducible
when t*> = —1. The curve ab~! € T is a meridian (that is its abelianization
is 1), and at the reducible characters p(ab™') has eigenvalue A\ = 4-ij?, thus

A? = —j, which is a root of the Alexander polynomial Ay, (t) =2 —t + 1.

2. For the figure-eight knot, the component of irreducible type and the compo-
nent of reducible type intersect when the trace of the meridian is ++/5. Thus

3i2‘/5, the roots of the Alexander polynomial

the square of the eigenvalues are
Ap(t) =12 — 3t + 1.

1.5 The Reidemeister torsion

In this section we give various definitions used for the Redemeister torsion. Refer-
ences are [Mil66], [GKZ94, Appendix A|, [Por97, Chapitre 0]. We stress out the fact
that we use a convention (namely, how we take the alternating sum in the definition
of the determinant of a complex) that corresponds to |[GKZ94|, but not to [Mil66].
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1.5.1 First definition

Given a finite complex C* of k-vector spaces

C0 Loy ot By L om
fix {c'}izo..n and {h'},—¢. ,, families of basis of the C*"’s and the H"’s, one can define
the torsion of the based complex tor(C*,{c'},{h'}) to be the alternating product
of the determinants of the base change induced by this choices. More precisely, we

have the exact sequences
02" =-C" —=B™ 50

0B =27 - H =0

that define B?, Z' and H*. Pick a system of basis {0’} of the B"’s, first one obtains
a basis of Z* for any i, given by a section H* — Z¢, and then a section Bit! — C!
provides a basis of C*: b LIh* LIb*"!, where the bars denote the image by the chosen
sections. Now compare this new basis with ¢!, and take the determinant of the
matrix which exchange those basis, denoted by [b* U hi LI b"*! : ¢]. One can show
that the alternating product of those determinants does not depend of the lifts and
of the system {b'} and we define

tor(C*, {c'}, {h'}) = [ L AT LB : D" € K /{x1}

)

1.5.2 Second definition: the Euler isomorphism

Recall that the determinant of a n-dimensional vector space V is det(V) = A™V.
Given L a one-dimensional vector space, for convenience of notations we will denote
by L®Y its dual vector space Hom(L, k). We define the determinant of a complex
det(C*) = @, det(C")®-1". The cohomology of this complex is naturally graded

by the degree, and we have the following theorem.

Theorem 1.5.1. There is a natural isomorphism
Eu : det(C*) = det(H*(C"))
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Proof. Again, we write the two exact sequences
02— C" — BT =0
0B —=Z2'-H -0
Then the proof reduces to the particular case of a short exact sequence:
Lemma 1.5.2. For an exact sequence of vector spaces
0—-A—-B—-C—0
one has an isomorphism
det(A) ® det(C) ~ det(B)

given, for any choice of basis {ay,...an} of A, {c1,...,cn} of C and of a section

C — B,c;— ¢, by
(@ Ao Nay) @ (1 Ao Aep) = ar A oo Nag NG N ... NGy,
O]

Definition 1.5.3. Given a complex C*, and a system of basis {c'} of the C"s,
c={c,....c, }, then A =c| A ... A, is a basis of det(C"), and then we denote
by ¢ = ®,(A )Y’ the induced basis of det(C*).
Then the torsion of the based complex is defined by

tor(C*, {c'}) = Eu(c) € det(H*(C*))
Remark 1.5.4. The two definitions coincide in the following sense:

tor(C”, {c'}, {h'}) = tor(C", {¢'}) @ (Ah)*C

1.5.3 Third definition: torsion of an exact complex (Cayley

formula)

If the complex is exact, one has the following alternative description: pick a system
of basis {c'} of the C?’s that induces, for each i, a splitting C* = ker d; ® K*, where
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K' is a supplementary of kerd; in C?. Then each d; restricts to an isomorphism
d),, : K' = kerd;, and we define

tor(C*, {¢'}) = [ det(d),.) "

Again, it’s defined up to sign since we haven’t fixed an order for the basis.
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Chapter 2
The adjoint torsion

Let X be a component of irreducible type of the augmented character variety X (M)

and k(X)) its function field. In this chapter we will study the action of the funda-
mental group (M) on the Lie algebra sly(k(X)), and the Reidemeister torsion of
the twisted complex C*(M, Ad op) for this action. It is what we will call the adjoint
torsion. First we will define it as a rational differential form over Y, the smooth
projective model of X, and then we will study its poles and zeros, in particular we
will observe that the torsion is regular on the affine part X of the Riemann surface
Y. We will deduce a "genus formula" that gives a relation between the topology
of the augmented character variety and the Euler characteristic of incompressible
surfaces in M produced through the Culler-Shalen theory. This chapter contains

the results of the article [Benl6].

Notation. The convention that we follow here for the torsion is convenient to ex-
press it as a differential form on the character variety. Many authors use the opposite
convention, for instance in Section we use some computations of Jerome Dubois
with the other convention. On the other hand, it is the convention taken in [GKZ94,
Appendix A].

The results of this chapter are summarized in the following theorems:

Theorem 2.0.1. Let X be a component of irreducible type of the augmented char-
acter variety, and let x be a point in X, with corresponding valuation v. Then the
adjoint torsion tor(M,Adop) vanishes at v with order given by the length of the

torsion part of the O,-module Hy(M,Ad op),. In particular tor(M, Adop) is reqular
on X, and does not vanish if v projects onto a smooth point of X (M).

The striking point of this theorem, and the more simple to state, is that the torsion

defines a regular differential form on X, which was not expected from the definition.
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On the other hand, its zeros are included in the pre-image S of the singular locus
of X (M) through the covering map X — X, but not every point z € S will be a
zero of the torsion. For instance, the pre-image of an intersection point with normal
crossing between two components of irreducible type in X (M) will not, neither
will generically be the pre-image of an intersection point between a component of
irreducible type and the component of reducible type. We do not know any example
of such a zero, and it is related with the fact that we do not know any component

of irreducible type with an intrinsic singularity, like a cusp or a self-crossing.

Theorem 2.0.2. Let y € Y be an ideal point of the smooth projective model of a
component of irreducible type X of the augmented character variety, and let v be the
corresponding valuation on k(Y'). Assume that y detects an incompressible surface
) C M, such that 3 is connected or is the union of n parallel homeomorphic copies,
that the restriction ps, 1s not abelian and that the complement of any connected
component of X in M s the disjoint union of two handlebodies. Then we have the
following bound on the order of tor(M,Adop) at y:

v(tor(M,Adop)) < —nx(X) —m

where m = n if px is not residually abelian, and else m = length(H'(3, Ad opy).

Unless y is an annulus (see the example of the trefoil knot Section , which remains
true for torus knots in general), there is no reason for the order of tor(M, Ad op) at
y to be negative. In fact, it is not the case for the four non-torus examples we have

computed. From this observations we adress the following question:

Question 2.0.3. Is there a hyperbolic knot such that the adjoint torsion form has

a pole on the augmented covering of a geometric component?

A somehow related question is the following, which comes naturally after considering

the examples at the end of this chapter:
Question 2.0.4. Is the inequality of Theorem [2.0.2| an equality 7
We deduce from Theorem [2.0.2] the following corollary:

Corollary 2.0.5. Assume that X (M) holds a one-dimensional component X such
that every irreducible characters x € X are smooth points, and that for each ideal
point y in its smooth projective model of the augmented variety Y one can produce

an incompressible surface ¥, with n, connected components and which verifies the
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hypothesis of Theorem [2.0.2. Futhermore, assume that the Alezander polynomial of
M has simple roots. Then

—x(Y) < Z —nyX(Ey) —my

where my, is defined as in Theorem [2.0.3,

The two first sections of this chapter are devoted to the definition of the adjoint
torsion as a differential form on the augmented character variety, and we detail
several computations of this form. In the third section we give a proof of Theorem
2.0.1] and some interpretation of those results in terms of torsion in the Kahler
differential’s module and of Alexander invariants. In the fourth section we begin
with an explicit topological computation of the torsion form of the trefoil knot,
which has inspired the general proof of Theorem that follows, and we conclude

by checking our results on a series of examples.

2.1 The twisted complex with adjoint action

In this section we study the complex of twisted cohomology of M in the adjoint

representation.

2.1.1 Tangent space, differential forms and twisted cohomol-
ogy

The results of this section can be found in [Marl5|. It’s a well-known result [LMS85],
Wei64] that the tangent space of the character variety at an irreducible character is
isomorphic to the first group of twisted cohomology with the adjoint action. Saito’s
Theorem allows us to prove it in the skein context. This results can serve as a
motivation to study the adjoint-twisted complex, which appears to be related with

the geometry of the character variety.

Definition 2.1.1. Let p: I' — SLy(k) be a representation. The action by conjuga-
tion of the group SLy(k) on its Lie algebra induces an action of I" on sly(k), called
the adjoint action. We define the complex C*(M, Ad op) of twisted cohomology for

this action with coefficients in sly (k).
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Theorem 2.1.2. Let x be an irreducible character, and p : m (M) — SLa(k) a rep-
resentation which lifts x. Then we have an isomorphism T, X (M) ~ H'(M, Ad op),

where the cohomology coefficient is sly(k) with the adjoint action.

Sketch of proof, see [Marll]. Recall that the Zariski tangent space at a point x is
defined as the set of morphism ¢. : B[['] — k[e]/(¢?) such that ¢y = x. Given a
cocyle ¢ € HY(M, Ad op), one produces a tangent vector at the point y, by taking
the character associated to p. : I' — SLa(k[e]/(g?)), where p. = (Id +ep)p. Then

Saito’s Theorem ensure this map is invertible. O

Definition 2.1.3. Given a ring A, and a A-algebra B, we define the B-module
of A-derivations QJ, /a4 toO be the free B-module generated by the db’s, divided by
the relations {Va € A,da = 0, Vby,by € B,d(b; + by) = db; + dbs and d(biby) =
bidby + badby }. If X is an irreducible algebraic variety with function field k(X), we
denote by Q}c( X)/k the k(X)-vector space of rational differential forms over X. It is
a classical fact (see [Liu06] for instance) that its dimension as a k(X)-vector space

is the dimension of X as a variety over k.

Recall that X (M) is the augmented character variety (see Section with al-
gebra of functions B[M] = B[M] ®c( C(OM). The module of differential Qpp /x
is generated by d(Y, ® 1) for v € m(M) and by d(1 ® Z,) for v € m(0M), with
dY,®1)=d(1® Z,)+d(1® Z.,-1) for any v € m(0M). The following proposition

is adapted, as well as its proof, from [Marl5, Proposition 4.1].

Proposition 2.1.4. Let X be a component of irreducible type, with function ring
k[X] ~ B[T|/p. Let p : T — SLo(k(X)) the tautological representation, and
H,(M,Adop) the twisted homology with adjoint action on sly(k(X)) coefficients.

Then there are isomorphisms
Qpryn @5 #(X) = Hi(M, Adop) ~ Quxyn

Proof. For any vy € T', we denote by p(7)o the trace-free matrix p(y) — 5 Tr(p(7)) Id.

Recall that C(M,Adop) is generated by elements of the form ¢ ® [v], and that

@y =—-¢ahl
We construct a morphism of B[I']-modules

Qpry/n — Hi(M, Ad op)

d(Y, ®1) = p(v)o ® []
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Notice that it induces
SN 1 a2 o
dleZ-)e (7 L )eh =" o)

where A\, \™! are the eigenvalues of the matrix p(y). It induces a k(X)-linear map

v QB[F]/!@ X ]C(X) — HI(M, Ad Op)
To construct the reciprocal map, we define A = k(X)) ®eQpp/, ® k(X), and extend
from [Mar15] the map o : B[M] — A by

Y@l—=Y,®1l+edY,®1)

1®Z,—»1® 2, +ed(1® Z,)

From the Theorem of Saito, we can produce a representation p. : m (M) — SLa(A)
such that x,. = ¢, and it follows that the map £® [y] — £ Tr(¢p-(7)p(v) ") induces
an inverse of the map W. We obtain the first isomorphism.

For the second one, first notice that the natural injection {25/, ® k(X) — Qi(x)/n
is an isomorphism, then it’s a classical fact that the map Qg ® k[ X] — Qixyye 18

onto, its kernel being the k[X]-module p/p?. We conclude the proof by noting that
p/p? Qk[X] k(X) = 0 because X (M) is supposed to be reduced. O

2.1.2 Computation of the twisted cohomology

In this section we assume that X is a one dimensional component of X (M), of
irreducible type. We denote by H the matrix (§ %), and by 7* : H(M,Adop) —
H'(OM, Ad op) the morphism induced by the inclusion OM C M.

Proposition 2.1.5. Let p: m (M) — SLa(k(X)) be the tautological representation,
then H°(M,Adop) = H(M,Adop) = 0 fori >3 ; H'(M,Adop) is one dimen-
sional and H*(M,Adop) ~ k(X), via the homomorphism n +— Tr((r*n)H).

Proof. Pick a cellular complex with only 0, 1 and 2-cells, that has the same homotopy
type than M, then H'(M, Adop) = 0,Vi > 3. By definition H°(M, Ad op) is the set
of Ad op-invariants vectors, hence it is trivial because p is not abelian (see [Por97,
Chapitre 0]. A classical equality is that dim 5/, = dim X, thus Proposition m
together with Universal Coefficients Theorem imply that dim H'(M, Adop) = 1.
The Euler characteristic of M is 0, thus dim H?(M, Adop) = 1 too.
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Let us make the last isomorphism to be explicit: the long exact sequence of the pair
(M,0M) ends with

.. = H*(M,Adop) I H*(OM, Adop) — H¥(M,0M, Ad op)

Poincaré duality makes the last term vanish. As 71 (9M) is abelian, H°(OM, Ad op)
is not trivial, and so is H?(0M, Ad op) ; hence r* is an isomorphism.

Now we use the construction of the augmented variety: up to conjugacy the re-
striction py : m (OM) — SLa(k(X)) is of the form (§ ,2.), hence its adjoint ac-

0 A7t
tion on sly(k(X)) leaves the vector space spanned by H invariant. In other words,
H°(OM, Adop) is generated by H, and the result follows. O

2.2 The adjoint torsion as a differential form

In this section we define the torsion of the adjoint complex as a rational differential
form on the augmented character variety. We give an explicit relation with previous

work of Joan Porti, Jerome Dubois and others.

2.2.1 The torsion of an Adop-twisted cellular complex

Here we consider the case of the torsion of the cellular complex C*(M, Ad op) with
coefficients in sly(k(X)) twisted by a representation p : m (M) — SLy(k(X)). We

pick the basis of sly(k(X)) given by the vectors

e=(oo) ()=

Any cellular decomposition of M provides a Z[ry(M)]-basis of C;(M) for any i,
denoted by {é},...&;"}. We will denote by f{ , € C*(M, Adop) the map that sends
¢; on E and extend it in an Ad op-equivariant way, and similarly we obtain a basis
fr=A{fi g Fips Fogr k = 1.0} which is a basis of C*(M, Ad op). As in Section [L.5]
we denote by ¢ = @, (A [

Definition 2.2.1. We define the Reidemeister adjoint torsion of the twisted complex
as

tor(M, Ad op) = Eu(c) € det(H" (M, Adop))
Remark 2.2.2. It does not depend on a choice of the lifts of the cells e} in the
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universal cover of M (because the Adjoint map is unimodular) nor of the basis
{E,F, H} (because the Euler characteristic x(M) vanishes) ; neither it depends on

the conjugacy class of p.

2.2.2 The Reidemeister torsion form

Again we pick X to be a component of irreducible type of the augmented char-
acter variety X (M), and we fix p : m (M) — SLy(k(X)) a tautological repre-
sentation. Since H°(M, Adop) is trivial and H*(M,Adop) is canonically isomor-
phic to k(X) from Proposition , the torsion of the adjoint complex is an el-
ement of det(H*(M,Adop)) ~ det(H'(M,Adop))*. But det(H'(M,Adop))* =~
HY(M,Adop)* ~ H;(M,Adop) ~ Qi(x)/k> the first isomorphism comes again from
Proposition [2.1.5] the second from the Universal Coefficients Theorem and the third
from Proposition [2.1.4]

Definition 2.2.3. The Reidemeister torsion form is the rational differential form
tOI‘(M, Ad Op) S Qk(X)/k

2.2.3 Examples and computations

We give a relation between the torsion form as we defined it above and the previous
work of J.Porti and then J.Dubois in [Por97, [Dub06, DHY09]. As Dubois computed
explicit formulae in many cases, this will permit us to perform direct computations

in several examples.

Proposition 2.2.4 (see also Corollary 4.2 of [Por97]). Given a finite point x in
a component of irreducible type X of the augmented character variety, and v a

valuation corresponding to x, we fix u a class in w(OM). Then the following holds:

1 2
tor(M, Adop)(v) = — dY,
(M Adop) (1) = e,
where 1,(M,Ad op) is the torsion in the sense of Porti-Dubois at the point v, rela-

tively to the curve p.

Remark 2.2.5. Here we use the convention of [Por97], that corresponds to ours.

In [Dub06] for instance, the torsion defined is the inverse of the latter.

Remark 2.2.6. Notice that 7, makes sense only when v is not a critical point of

Y. If we pull-back this formula on the augmented variety by setting Y, = Z,+ Z !
then the formula becomes rational: tor(M, Adop) = %%
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Proof. The torsion in the sense of Porti-Dubois is defined pointwise as a function on a
smooth open subset U of the character varierty, and it is proved in [Por97] that it is in
fact analytic. For v € U, pick any generator P of H°(OM, Ad op). Then one obtains
basis of H'(M,Adop),i = 1,2, as follows: since we assumed that p is not a critical
point of the trace function Y),, the restriction map H*(M,Adop) — H* (1, Adop) is
an isomorphism. The latter is identified to k via H'(u, Adop) — k, f — Tr(Pf(u)),
and the composition of those maps is simply the differential dY},. Then the generator
of HY(M,Adop) is fixed to be dYM_l(l). For the generator of H?(M,Adop), pull-
back 1 via the isomorphisms H?(M, Adop) — H*(OM, Ad op) 22, k, where op(f) =
f(P). But P appears both in H! and in H?, hence the torsion does not depend on a
choice of P. Finally, we have chosen H to be a generator of H?(M, Adop), and the
isomorphism H; (M, Adop) = Qiyyx provides a term po(u), we need to normalize

by ,/1&&;0—1({:))2), and the result follows. m

Example 2.2.7 (The trefoil knot). Recall that the tautological representation of
the component of irreducible type X C X (M) is given by the formulae:

B t 1 (=i 0
p<a>—(_(t2+1> _t>,p<b>—<0 _j2)

In [Dub06], for any boundary curve p, 7,(p) is a constant 1/k that does not depend
on p. Take p the meridian ab™!, Y, = (j — j?)t, Z, = u, then

tor(M, Ad op) = k:d—s

It has no zeros, and two poles at zero and infinity, as expected its divisor’s degree

is -2 because the smooth projective model Y of X is isomorphic to CP!.

Notation. In the following examples, we will use the notation f(t) ~ g(t) to say
that f and g are equivalent around ¢t = 0, up to a factor that does not depends on

t, that is f and ¢ have the same vanishing order at t = 0.

Example 2.2.8 (The figure-eight knot). Here we take p to be the longitude of M,

denote its trace by Y, = z* — 52% + 2, then 7,(z,y) = 5 — 22* and one obtains

tor(M, Adop) = (5_3%. A careful examination shows that it has no poles, and
o
zeros only at infinity: take x = 1/t a local coordinate, 7 Yot . » hence

each of the four ideal points contribute as a zero of order 1. The divisor’s degree of

the torsion is 4, that confirms the fact that the Riemann surface Y has genus 3.
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Example 2.2.9 (The knot 5;). This example arises from [DHY09|]. The fundamen-

tal group is isomorphic to 7 (M) = {(u,v| vw = wu) where w = v v luvu=tvL
The component of irreducible type of the character variety is described by the Riley
polynomial ¢(S,U). In our setting, with x = Tru = Trov and y = Truwv, then

r=S3+83 and y = S + S~! — U, we obtain
X =X"(M)={(zr,y) € k| —2*(y—D(y—2)+y’ —y’ =2y +1=0}

This affine curve compactifies with two points at infinity: an ordinary double point
corresponding to the two directions x = oo,y = 1 or y = 2, and a simple point
x = y = oo. Apart from this, the variety is smooth. By the Noether-Pliicker

A

formula, its genus is (d — 1)(d — 2)/2 — §, with d = 4 and § = 1, hence g(X) = 2.

=g givesa2:1map Y — X, that ramifies at 22 = 4. The

Hurewitz formula implies x(Y) = 2x(X) — 6 = —10, hence Y is a curve of genus 6.
From [DHY09] again, with p a longitude, 7, = 5z*(y — 2) — 2?(5y* + Ty — 31) +
7(y? —y—3),and Y, = (y* — 6y* + 12y — 8)z'% — (3y* — 10y® — y* — 68)2® + 3(y° —
43y3 + 48y + 86y — 116) 25 + (y° + 6y° — 23y* — 28y> + 96y> + 28y — 105)x* + (25 —
y® — 16yt + 6y° + 40y — 9y — 34)2? + 2.

As tor(M, Adop) = \d/y“_4, we compute the vanishing order of the torsion at the

2_
T Yu

The extension o + o~

3 different ideal points:

1. mN%,le—f—tz,thenTuNi dYi

) m

" 1
2.y~ 243 then 7y~ g, —eas
. 1 ayy ~ dt and tor ~ tdt

. 1
3. x ~ Y ~ then again 7, ~ =
: t(1—2t2)° 2(1—2t2) w7 ¥ 7 t
( ) ( ) VY324

~ % and tor ~ t3dt

~ 9 and tor ~ tdt

Finally, notice that Y — X does not ramify at infinity, hence to each ideal point
of X correspond 2 ideal points of Y, and the divisor’s degree of tor on Y is 10, as

expected.

Example 2.2.10 (The knot 6,). This example arises from [DHY09| too. The funda-
mental group is 7 (M) = (u,v| vw = wu) where w = (vu~*v~1u)?2. The irreducible

type part of the character variety is

X ={(z,y) € C* |2*(y -2 —2*(y + (y = 2)(2y = 3) + (v° = 3y — 1)(y — 1) = 0}

The two ideal points are non ordinary double points:

1. When y — 2, 2 — oo, we have a double point of type "y? —a%”, its /-invariant
is 3.
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2. When y, z — oo, we have a double point of type 7y? — 287, its d-invariant is
4.

A

Hence g(X) = (d—1)(d —2)/2—.6; = 10 — 3 — 4 = 3. The covering map ¥ — X
given by a + a~! = z ramifies in eight finite points, thus y(Y) = —16.

When desingularizing X one obtains four ideal points, the same kind of computations
as in Example are shortened as follows:

1. x~ t(1+1at2)7 Y ~ 1+2at2 with a a root of 4a® +6a + 1 then in both cases 7 ~ t%,

d\ dt
~ ~ + and tor ~ tdt

2. T~ e Yy~

t(1—2)° ) then 7 ~ L odr % and tor ~ t5dt
3.~

1
2(1—12 % X

1 1 dA
t1_2e 1617 —25t0)° Y ™ (I 22 1611_2510)° then 7~ 1, 5 ~ tdt and tor ~ tdt

Then notice that ¥ — X is not ramified at infinity, thus the divisor’s degree of tor

is 16, as expected.

2.3 The torsion at a finite point

Recall that X is a one-dimensional component of the character variety X (M) of
a 3-manifold M with boundary a torus, and the same homology as a circle. The
curve Y is the smooth projective model of a double covering of X, namely the
augmented character variety. Throughout this section v € Y is a finite point, and
p:I'— SLy(0O,) is a convergent tautological representation (see Proposition
and what follows). We prove the following:

Theorem (Theorem [2.0.1)). The differential form tor(M, Adop) vanishes at v with
order the length of the torsion part in the O,-module Hy(M,Adop),. In particular
tor(M, Ad op) has no poles nor zeros if v projects on a smooth point of X (M).

Definition 2.3.1. Let M be a torsion O,-module, then M = @, 0, /(t}) and we
define its length to be equal to ). n,.

2.3.1 Proof of Main Theorem 1

Definition 2.3.2. We will say that a complex of O,-modules C* is rationally exact
if C* ® k(YY) is an exact sequence.

The following theorem is the key argument in the proof of Main Theorem 1. We
explain the statement in the simple case of a rationally acyclic complex O A

O;". Since the complex is generically acyclic, we deduce that n = m and that the
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morphism A in injective. Now the torsion of the rational complex is (det A)~!, hence
its valuation is given by —v(det A) = — length(O!'/im A).

Theorem 2.3.3. [GKZ9J), Appendiz A, theorem 30] Let v be a valuation on k(Y),
and C* a rationally ezact based complex of free O,-modules, with basis {c'};. Then
the following holds:

v(tor(C* @ k(Y), {c'}:)) = Y _(~1)F length(H*(C"))

k

We will denote by t an uniforming parameter of O,, that is an element ¢ € k(Y") with
v(t) = 1. Hence the one-dimensional vector-space Qg(vy/k is generated by dt. In the
sequel we denote by f € k(Y) the function such that tor(M, Adop) = fdt (more
precisely, tor(M, Adop) = fdt® H*). The strategy is to construct a rationally exact
based complex of O, modules C* with tor(C*) = f, and then use Theorem [2.3.3|

Let us denote by D* the trivial complex
0 — Qb — H(OM, Adop);

Lemma 2.3.4. The O,-module Qo, . 1s free of rank one, with dt as a generator.

Proof. The O,-module Qo is free because Qo,/ @ k =~ (t)/(t?) ~ k (it is the
cotangent space at v). Its rank is one because [Liu06, Proposition 1.8, Chapter 6]
implies that Qe, x ® k(Y) =~ Qiv)/k, and it is one-dimensional by [Liu06, Example
1.6 and Lemma 1.13, Chapter 6]. Finally, again [Liu06l, Proposition 1.8, Chapter 6|

gives Qo, /1 =~ Q) w/k® O, hence dt is a generator since it generates {1 0/k- O

Let o : C'(M,Adop), — Qf defined by o(f)(d(Y, ® 1)) = Tr(f(7)po(v)), and
81 C2(M, Adop), — H2A(M, Adop), — H2(OM, Adop), — HY(OM, Adop)? is the

composition of the reduction mod im d, the restriction map and the Poincare duality.

Proposition 2.3.5. The maps o and (B induce a morphism of complexes of O,-

modules ¢ : C*(M, Ad op), — D* that is rationally a quasi-isomorphism.

Proof. Let us draw the diagram
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Qb —2 HO(OM, Adop):

CO(M, Adop), 4 €1 (M, Adop),  C2(M, Adop),

First we need to show that this diagram commutes. It is clear from the definition
that Bod = 0. Now for any ¢ € C°(M,Adop), and for any v € T', we have
a(dQ)d(Y, ® 1) = Tr(d((7)po(7)). As d((7) = p(7)¢p~"(7) — ( and as for any £ €
sla(0,), Tr(€po(y)) = Tr(€p(7y)), we conclude that a(d¢)d(Y, ® 1) = Tr[po(7),¢] =0
as expected.

Similarly, if v € m(0M), then p(y) = () ,% ) and we can compute directly that

a(dQ)d(1 @ 2,) = Tr(d(7) (3 ) ) =o.

Now we prove that the complexes C*(M, Ad op) and D*®k(Y") are quasi-isomorphic.
We have H'(M, Adop) =~ Hy(M,Adop)* =~ Qs = Qp, , @k(Y), the first isomor-
phism comes from the Universal Coefficient Theorem, the second from Proposition
, and the third is a classical fact of algebraic geometry, see [Liu06, Chapter 6].
The very same proof as the end of the argument in Proof of Proposition [2.1.5] per-
mits us to conclude that H*(M,Adop) ~ H°(OM, Adop)*. Since p is not abelian,

HY(M, Adop) = 0 and this concludes the proof. O

Definition 2.3.6. The cone of the morphism of complexes ¢ is defined as the
complex D* & C**1(M, Ad op),:

CO(M, Adop), & CY(M, Adop), 2% C3(M, /Ad,), & U, 2> H(OM, Adop);

The preceding lemma asserts that the complex Cone(¢) is rationally exact. More-
over, it is naturally a based complex, by the natural basis of C*(M, Adop),, the
duals of dt € Qo, i, and of H € H°(OM, Ad op),. Then the torsion of this complex
is (see [GKZ94, Appendix A, Proposition 18])

tor(Cone(¢) @ k(Y')) = totro(rc(’?(ﬁ ifii)lj))

(2.1)
We deduce the following lemma:

Lemma 2.3.7. Recall that v is a finite point of Y, and that dt is a generator of
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Qo,/k;, we express the torsion form as tor(M,Adop) = fdt for some f € k(Y). The
torsion of the complex Cone(¢) ® k(Y) is % e k(Y)

Proof. By construction tor(D*®k(Y)) = dt®@ H*, and the result follows from fromula

2. =

Now we can apply Theorem to the rationally exact complex Cone(¢), and
obtain v(f) = >_,(—=1)""!length(H*(Cone(¢))). Now we compute the cohomology
of this complex.

The exact sequence 0 — D* — Cone(¢) — C*1(M, Adop), — 0 induces the long
exact sequence in cohomology: 0 — H°(Cone(¢)) — H'(M,Adop), = Qo —
H'(Cone(¢)) — H*(M,Adop), — H°(OM, Ad op)’ — H?(Cone(p)) — 0

Lemma 2.3.8. The morphism « is surjective.

Proof. We construct a section s : £, , — HY(M,Adop), as follows. Let 6 :
Qo,/k — O, be a morphism of O,-modules, equivalently, by the universal property
of 2, 0 is a k-derivation O, — O,. We define s(0) € H'(M, Adop), by the formula
s(0)(v) = 0(p(7))p(y) ! where by 6(p(~y)) we mean that we apply 6 to each coefficient
of p(7). We compute directly that Tr s(6(y)) = 6(det p(y)) = 0, and that s(0(~d)) =
5(0(7)) + Ad op(g)s(0(9)).

Then a o s(0)(Y,) = Tr(8(p(7))) = 0(Y,), and the lemma is proved. O

Lemma 2.3.9. The morphism « is injective, hence H°(Cone(¢)) = {0}.

Proof. By the Universal Coefficient Theorem, H'(M, Adop), ~ H;(M,Adop)! ~
O, because Hy(M,Adop) ~ k(Y). The lemma follows.

O

Lemma 2.3.10. Denote by T the torsion part of the module Hy(M,Adop),. The
O,-module H*(Cone(¢)) is isomorphic to the torsion module T.

Proof. Again by Universal Coefficient Theorem, there is an isomorphism
H*(M,Ad op), ~ Hy(M,Adop)* @ Ext(H,(M,Adop),, O,) ~ O, & T

As « is surjective and H°(OM,Adop): ~ O,, we deduce that H'(Cone(¢p)) ~
ker(H?*(M,Adop), — H°(OM,Adop)}) ~T O

Lemma 2.3.11. The map H*(M,Adop), — H°(OM,Adop)* is surjective, hence
H?(Cone(¢)) = {0}.
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Proof. Under the isomorphism H?(OM, Ad op), ~ H°(OM, Ad op)*, this map is just
the last one of the long exact sequence of the pair (M,0M). O]

Proof of Main Theorem 1. Now we just have to fit together the arguments: write
tor(M, Adop) = fdt, the vanishing order of tor(M, Adop) at v is given by v(f) =
—v(tor(Cone(d) ® k(Y))) = length(H"'(Cone(¢))) = length(T). O

2.3.2 Interpretation of the Theorem: singularities and Alexan-

der module

The aim of this section is to provide a geometric signification to the length of the
module H;(M, Adop), that appears in the statement of the Main Theorem 1.

Notice that if v corresponds to an irreducible character, H; (M, Adop), ~ Qg ®
O,. If v(v) is a smooth point, the latter is isomorphic to the localization of the mod-
ule of differentials at v: H;(M, Adop), ~ Qo, /i, and this is simply O,.. Hence we are
interessed by the cases when v(v) is not a smooth point of Y, or does correspond
to a reducible character. This case is a singular case too: here v corresponds in
X (M) to an intersection point of a component of irreducible type and the reducible

component. We treat both cases.

Singularities at irreducible characters

One has the following exact sequence 0 — T" — Qpry /. ® Oy — Qo, /1 provided by
the normalization map v. Thus length(7") is an invariant of the branch of v at the
singularity v(v). We do not know any general formula, but we are able to compute
it directly if a curve equation is given. Notice that this general question relies on
the (still open) following problem: given a point of a curve x € X, is it true that
x is smooth iff Qp, ; ~ O, 7 See [Ber94| for a survey of the topic. We treat some
examples of plane singularities.

Assume x = (0,0) € k%, and C is the curve defined by the polynomial X? — Y9,
with p < ¢. The singular point x has multiplicity p ; pick Z a pre-image of x by the
normalization v : C' — C, and denote its discrete valuation ring by ©. Denote by

n = ged(p,q),p' = £,¢' = L. The normalization v : A} — C' is given by
EIX,Y]/(X?P =YY — E[S]
X877 — 57
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We compute Qo, /p = O,dX & O, dY/(pXP~1dX — qY97'dY), thus Qo @ O =
OdX & OdY/(pST P~ VdX — qSP@=DdY). The morphism Qo,  ® O — Qox sends
dX to ¢/SY'dS and dY to p'SP”~'dS. The kernel of this morphism is generated
by pdX — ¢ STPdY € Qo,/r ® O, and its annihilator is (nST®=1). Hence T ~
O/(S7®=1) and length(T) = ¢'(p — 1).

Singularities at reducible characters

In this section we focus on v € Y that corresponds to a reducible character. It is
precisely the case when it corresponds to an intersection point of the component
of irreducible type corresponding to Y with the reducible component. By Section
we can pick the tautological representation p : I' — SLy(O,) to be not
residually abelian.

We need to study the O,-module H;(M,Adop),, but here we do not dispose of

an interpretation in terms of the cotangent space. The strategy is the following:

!
recall that we can write Hy (M, Adop), = O, & P O,/(t™), so we need to compute
i=1

> ni. First we consider Hy(M,Adop), ® O,/(t) ~ Hi(M,Adop), it is a k-vector
space whose dimension will be the integer [ + 1. Then we prove that under some
hypothesis, all of the n;’s are equal to 1.

Up to conjugacy, we know that we can fix the tautological representation p : I' —
SLQ(OU) such that V'}/ c F,ﬁ("}/) = ()\tﬂ(jw) )‘_A‘pjl)(:)(W)) for some A € k* such that
Anr(A?) =0, see Section [1.4.2]

Lemma 2.3.12. The O,-module Ho(M, Ad op), is trivial.
Proof. Using twice the Universal Coefficient Theorem, we have
Ho(M,Ad op), @0, O/ (t) ~ Hy(M,Adop) ~ H°(M, Ad op)*
and the last term is trivial since p is not abelian. O]

This section aims to relate the order of the torsion at such a finite point v where
the tautological representation is residually reducible, with the order of A\? as a root
of the Alexander polynomial. We will denote by C*(M, ky+2) the complex of group
cohomology of I with coefficients in &k twisted by the action of A2, resp. A72. As
we proved in Section [[.4.2] the map u : I' — k is a non trivial cocycle in the first
cohomology group H'(M, \?).
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Let fix some notations: the adjoint action of p on sly(k) has the following matrix in
the basis {E, H, F'}:
A2 —2u =A%
Adop=10 1 A2 (2.2)
0 0 A2

The I'-module sly(k) will be denoted by Adop, and K will be the submodule
span, (E, H) with the induced I'-action given by (AO2 _12“) We denote by ky-2 the
submodule span, (F'). From the matrix (2.2]) we obtain the short exact sequence of
['-modules:

0= K — Adop = ky—=2 — 0

that gives rise to the long exact sequence:

0— HY(M,K) — H*(M,Adop) — H'(M,\?)
— H*(M,K) — H*(M,Adop) — H*(M,\"%) =0 (2.3)

Notice that H°(M, \?) is trivial as soon as there exists v € T" such that A\?(vy) # 1,
i.e. as soon as p is not central as a character.

Similarly, there is the short exact sequence of I'-modules:
0—=>ke—>K—=>k—0

where ky2 denotes the submodule span, (E) and k denotes the submodule span, (H),

hence we obtain the following exact sequence

0— HO(M, k) — H'(M,\?) = H'(M, K)
— HY(M, k) S H* (M, \2) > HX(M,K) =0 (2.4)

Definition 2.3.13. We define the cup-bracket:
[[U.]: H(T,Adop) x H'(I',Adop) — H*(T", Ad op)
(€1, G2) = ([G UG s (7, 0) = [Gi(y), Adop(y)¢2(6)])

Definition 2.3.14. We define the first order deformation of p as the map & €
C'(M, Ad op) such that in SLy(O,/(t?)), the mod (¢?)-reduced tautological repre-
sentation is given by p' = (Id +t£)p.
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The following lemma recalls the fact of deformation theory (see [Gol84) section 1.4]
for instance) that ¢ is a cocycle in H*(M, Ad op) and that [UE] = 0 in this context, in
other words, £ lies in the kernel of the morphism B : H'(M, Adop) — H*(M, Ad op)
that sends a cocycle ¢ on the cup-bracket [¢ U &].

Lemma 2.3.15. The first order deformation & of p is a cocycle, and B(§) = 0 €
H?*(M,Adop).

Proof. The first claims follows from the fact that, for all v,d € G, p/'(v0) = p'(7)p/(0)
mod(#?). Moreover, let p” = (Id +t£ + t*n)p be the mod(¢*) representation : I' —
SLy(O,/(t*)). Again, p” is a group homomorphism, hence a direct computation
gives n(vd) = n(vy) + Ad op(7y)n(6) +&(v) Ad op()E(0). This equality can be written
as dn(v,0) = EUE(y,0) € H* (I, Adop ® Adop), hence £ UE = 0. On the other
hand,

d€?(v,0) = €2(70) — £2(7) — Adop(7)€*(9)
= (£(7) + Adop(7)£(8))* = £2(7) — Ad op(7)€%(9)
E(7) + £(v) Ad op(7)E(8) + Ad op(y) (£(0))E(7)
+ (Ad op(7)£(6))* — £2(7) — (Ad op(7)E(6))?
= &(7v) Adop(7)€(8) + Ad op(7)(£(6))E(7)
—[EU&l(v,6) +26UE(v,9)

hence [ U] =d(2n— &%) =0 € H*(T,Adop). O
The theorem is the following;:

Theorem 2.3.16. Let v € Y a finite point, assume that the tautological rep-
resentation p : I' — SLo(O,) is residually reducible with residual representation

ply) = (’WOM Af;j?g@) and denote by r > 1 the order of \? as a root of the Alexan-
der poynomial Ayr. Assume moreover that the morphism B has maximal rank, i.e.

ker B = k(). Then the torsion form’s vanishing order at v is bounded by 2r — 2.

Remark 2.3.17. In the generic case when A? is a simple root, then the technical
assumption is automatically satisfied and the theorem always holds: thus in this

case tor(M, Ad op) does not vanish at v.

Proof. As \? is a root of order r of the Alexander polynomial, the Alexander module
Hy (M, k[t*!],) has (t — A?)-length equal to r, in other words, its (t — A?)-torsion is of
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the form @ tk[t with Z n; = r. In particular 1 <[ < r and from the Universal

)\2 n;
i=

Coefﬁc1ents Theorem, one obtalns that dim H'(M,\*) =1 € {1,..r}. If l = r, then
we use Proposition (postponed at the end of this section) to conclude that the
map ¢ in the sequence is injective, hence dim H'(M, K) = dim HY (M, \*)—1 =
r — 1. Otherwise [ < r — 1, and as dim(H'(M, k)) = 1, again by sequence the
inequality dim(H'(M, K)) <r — 1 holds.

Now we consider the sequence (2.3). As the Alexander polynomial is symmetric, we
know that dim(H'(M,\?)) = dim(H' (M, \?)) < r. A careful observation of this
exact sequence is now enough to prove that dim H*(M, Adop) < 2r — 1. We denote

this dimension by m.

Consider the sequence of I'-modules

0 = sb(0,/(1) 5 sl(0,/(12)) 224 81,(0, /(1)) — 0

From this we get

0— HY(M,Adop) — H'(M,Adop’) & H' (M, Adop)
By H(M, Adop) — HX(M,Adop') — H2(M,Adop) — 0 (2.5)
where Adop’ denotes the homology of the complex with coefficients in sly (O, /(t?)).

By Lemma below, the connection operator is nothing but the map B we
defined above.

We write H,(M,Adop), = O, ® @ O,/(t"), hence we have H'(M,Adop) =

0,/ (t)ee, O,/ (t). Moreover we have Hl(M Adop) ~ O,/ (B)adp, O,/ (tmnr2),
and by the Universal Coefficients Theorem,

HY(M,Adop’) ~ Hom(H,(M,Adop’),0,/(t*)) ~ H,(M,Adop')

The first terms of equation ([2.5) become
0—0,/(hedD0./(1) 5 0,/(t) @EB(’) J(#min(mi2)) @@O /(t)

The image of p is the kernel of B, thus it is a copy of O,/(t) generated by £. Hence
the image of i is O,/(t) ® @, O,/(t™"2) and a simple count of dimensions
proves that n; = 1 for all 4. In conclusion H,(M,Adop), ~ O, ® (O, /(t))™ !
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the torsion vanishes at order m — 1 < 2r — 2. O

Lemma 2.3.18. The connexion operator in the sequence 1s the map B :
H'(M,Adop) — H*(M,Adop), ¢ = [€U(].

Proof. We draw the diagram

0 — CY(M,Adop) C*(M, Adop) CH(M,Adop) — 0
d d d
0 — C*(M,Adop) C*(M,Adop) C?*(M,Adop) — 0

with exact rows. We pick ¢ € Z'(M, Adop), and we lift it to ¢ € CY(M,Adop).
For 7,0 € T, we compute d((y,8) = ¢(7) + Adop(7)C(6) + H(E(y) Adop(7)¢(6) —
Adop(7)C(8)E(Y)) = dC(7,0) + t[E UC](v,6). As d¢ = 0, the result follows. O

Proposition 2.3.19. Recall that r is the order of A\*> as a root of the Alexander
polynomial. If dim H'(M, \?) = r, then the morphism 6 : H' (M, k) — H?*(M, \?)

1S 1njective.
The proof consists of the following succession of lemmas.
Lemma 2.3.20. The morphism 6 : H' (M, k) — H?*(M,\?) is the map ¢ +— 2uUp.

Proof. Again, we draw the diagram

0 — CYM,N2) —— CY (M, K) —— C(M, k) — 0

e

0 — C?(M,\2) —— C*(M, K) —— C*(M, k) — 0

with exact rows.

Pick ¢ € C1(M, k) such that dp = 0. Take ¢ € C*(M, K) defined by ¢(v) = ¢(7)H.
Then compute dp(7y,d) = ¢(v0) —P(y) —v.¢(6) Observe that by the adjoint matrix
[F3) we have 1.3(6) = Adop(y),, B(6) = B(6) — 2u(1)p(8)E. As p € Z}(M, k), we
get that ¢(76) = &(v) + ¢(0), thus

dp(vy,0) = —2u(y)p(0)E
The conclusion follows. O]
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The multiplication by t — A? induces the short exact sequence of I'-modules:
0 — E[t21], 225 k[tH1), — kye — 0 (2.6)
Lemma 2.3.21. The sequence above induces the following long exact sequence:
0 — H' (M, \*) — H\(M,k[t™"),) — H\(M,k[t™"],) — H*(M,)\*) =0 (2.7
Proof. Let’s write the long exact sequence in homology induced by
o= HY (M N — H*(M, k[t¥Y),) — H*(M, k[t*™'],) — H*(M,)\*) — ...

First, let’s prove that the first and the last arrows of this sequence are 0’s. We
remark that the missing term on the right is H3(k[t*!]) ~ 0. Then as the missing
term on the left is H'(k[t*'],) ~ Ext(Ho(M, k[tF'],), k[tT']) ~ k[t=']/(t — 1) by the
universal coefficients theorem, we obtain that the map induced by multiplication by

t— M\
(t-X%)

HY (M, K[t*],) —— H' (M, k[t*],)

is surjective, thus the first map on the left is H*(M, k[t*'],) 2% H' (M, )\?).

Now, we have the universal coefficients theorem that gives the following isomor-
phism H?(M, k[t*'],) ~ Ext(Hy (M, k[t*'],), k[t*']). Since Hy(M, k[t*'],) is a tor-
sion module, the latter is Hy (M, k[t*'],) itself, that ends the proof of the lemma. [

We denote by 6 : HY(M, \?) — H?(M, \?*) the composition of the first and the third
map in the sequence ([2.7)).

Lemma 2.3.22. 0(2) = A\ 2pyz, in particular 2X*0(u) = 6(p).

Proof. Again, consider the sequence:
0 — H' (M, *) — H*(M,k[t™'],) — H*(M, k[t*"],) — H*(M, ) *) = 0

Then the same kind of computation as in the proof of Lemmas [2.3.18] and [2.3.20]
gives the result. We sketch the proof: given z € H'(M,\?), first lift it as Z(t) €
C'(M, k[t*'],). Denote by D : C*(M, k[t*!],) — C*(M, k[t*'],) the boundary map
; then send Z on f_zg\z;) € C*(M, k[t*'],), and then take the evaluation at ¢ = A?. The
result is precisely |, _,DZ(t) = A"%puz € H*(M, \?) O

Lemma 2.3.23. If dim(H'(M,\?)) = r, then the map 0 is an isomorphism.
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Proof. Consider the endomorphism A of Hy (M, k[t*'],) induced by the multipli-

cation by (t — A?). Its kernel (and cokernel) is exactly @ LGl

= /\2) because teh di-

mension of the vector space (H'(M, \?)) is equal to r, hence 6 is an isomorphism
ker A — coker A. O

Proof of Proposition[2.3.19. The map 6 is an isomorphism, in particular 6(u) # 0,
hence d(¢) # 0 and J is injective. O

2.4 The torsion at an ideal point

In this section we consider v € Y an ideal point. We denote by ¢ an uniforming
parameter of the valuation ring O,.

We mentioned in Section [L.3] the construction of Marc Culler and Peter Shalen: such
an ideal point induces an action of m; (M) on a simplicial tree T,. In [Sha02], Shalen
explains how one can produce a so-called dual surface ¥ to the action of m (M) on
T,. Moreover, this surface can be chosen to be incompressible in the manifold M,

that is such that the inclusion map m(3) — 7 (M) is injective.

Definition 2.4.1. We say that ¥ C M is free is its complement M \ ¥ has a free

fundamental group.
This section is devoted to the proof of the following theorem:

Theorem (Theorem [2.0.2). Let M be a 3-manifold with boundary a torus and ra-
tional homology of a circle ; and let v € Y an ideal point in the smooth projective
model of a one dimensional component of irreducible type of the augmented charac-
ter variety. Assume that an incompressible surface ¥ associated to v is connected
or is the union of n parallel homeomorphic copies, is free, is not the Seifert surface,
and assume that the restricted tautological representation ps, : m(X) — SLa(O,) is

not abelian. Then the following inequality holds:
v(tor(M,Adop)) < —nx(X) —m
where m = n if px, is not residually abelian, and m is the length of the torsion module

HY (X, Adopy), if ps is residually abelian.

Remark 2.4.2. 1. Notice that since Ho(M,0M) = Z generated by the incom-
pressible Seifert surface, any incompressible non-Seifert surface with bound-

ary is homologically trivial, hence is separating.

73



2. Moreover, it is a consequence from [Prz83, Proposition 4.3| that as soon as

M is irreducible and small, any incompressible surface X is free.

3. Finally, the hypothesis that the irreducible tautological representation p :
m1 (M) — SLy(k(Y')) remains irreducible (or at least does not become abelian)
is generic, in the sense that it is Zariski-open in the character variety of X.
Moreover, if X contains the character of a faithful representation, then the
tautological representation p : m (M) — SLa(k(X)) is faithful, thus py is
abelian iff 7 (X) is abelian, that is iff ¥ is an annulus. On the other hand,
ideal points in character varieties of torus knots produce incompressible annuli
in their complement. Since we can compute "by hand" the torsion in those
cases (see below Section , we do not attempt to treat the case when py,
is abelian. Finally, we observe that the conclusion of Theorem remains
true (even the equality of Question [2.0.4)).

2.4.1 An example: a direct computation of the torsion of the

trefoil knot using its incompressible non-Seifert surface

The trefoil complement M carries an unique incompressible, non Seifert surface,

which is an annulus. It is depicted on Figure [2.1]

The complement of this incompressible annulus A is the disjoint union of two solid
torii, M is the "interior" of T', and M, its "exterior".

Recall the following presentation of the fundamental group m (M) = (a,b| a* = b%),
where a is the generator of the infinite cyclic fundamental group of M, b is the
generator of the infinite cyclic fundamental group of M, and a? = b3 = wu is the

generator of the fundamental group of A.

We recall the description of the component of irreducible type X of the character
variety X (M). Notice that the subgroup (u) is the center of (M), hence any
irreducible representation must send it onto {+1d}. Moreover, if p(u) = Id, then
p(a) = £ 1d what would imply that p is reducible. Hence we fix p(u) = — Id, and we
can choose, up to conjugacy, p(b) = <_0j _(;.2>, where j is a primitive third root of
1. If the upper-right entry of p(a) was 0, then again p would be reducible, hence we
can fix, up to conjugacy that preserves the diagonal matrix p(b), this entry to be 1.
Now observe that the Cayley-Hamilton identity p(a)?*—Tr(p(a))p(a)+1d = 0 implies

Tr(p(a)) = 0, and the identity det(p(a)) = 1 leads us to the following expression of
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Figure 2.1 — On the left, the classical diagram of a trefoil knot, with an incompress-
ible M&bius band in its complement. On the right, the red curve is an embedding
of the trefoil knot in a torus 7. The complement of a tubular neighborhood of this
curve in this torus is an incompressible annulus, which is the orientation covering of

the Mobius band on the left.

B t 1 (-5 0
p(a)—(_(tQH) _t>,p(b)—<0 _j2>

In particular X is a rational curve, parametrized by t.

The aim of the present section is to compute "by hand" the order of the Reidemeister
torsion form when t goes to infinity, that is the asymptotic of the torsion of the
complex C°(M, Adop) — C* (M, Ad op) — C*(M, Ad op).

The splitting M = M; Uy M, provides the following exact sequence of complexes
0— C*(M,Adop) — C*(My,Adop)) & C* (M, Adop) — C*(A, Adop) — 0
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that induces the long exact Mayer-Vietoris sequence H:
0 — H°(M,Adop) — H°(M;,Adop) ® H*(M,, Adop) — ...

— H'(A,Adop) — H*(M,Adop) — 0

The sequence ends there because M; and A are homotopic to a circle, hence they
do not have homology in degree greater than one. Since p : m (M) — SLo(C(t)) is
irreducible, HO(M, Ad op) = {¢ € sh(C()| p(1)Cp(r)~" = ¢, ¥ € m(M)} = {0},
HY(M,Adop) ~ C(t) because X is one dimensional, and so is H%(M, Ad op).

This sequence allows us to use the following formula (see [Mil66])

or(H)

where we need to specify some choices of basis of the involved complexes.

The representation restricted to M; is generated by p(a), which is conjugated to
(¢ 2). The twisted complex is CY( My, Ad op) ~ sl,(C(¢)) Aot 71, CY(M,Adop) ~
sly(C(1)). The matrix Adop(a) — Id = <§ % _82> has rank 2, hence HO(M;, Ad op)
and H'(M;,Adop) are one-dimensional C(t) vector-spaces. The matrix p(a) pro-
vides a choice of generators for both H°(M;, Adop) and H'(M;, Adop). With this

choice of basis, the torsion tor(A/;) € C* is a constant independent of ¢.

The same arguments show that H°(M,, Adop) ~ H*(M,, Ad op) ~ C(t), with com-
mon generator given by the matrix H = ({ %) ; again the torsion tor(M,) is a
constant.

Finally, the map Adop(u) — Id is trivial, hence H°(A, Adop) ~ H'(A, Adop) ~
sly(C(t)), we choose the classical basis {H, F/, F'}. In this basis tor(A4) = 1.

By a simple count of dimension, one sees that the sequence H splits into two subse-

quences

0 — HO(M;,Ad,) ® HO(My, Ad,) <% HO(A,Ad,) & H'(M,Ad,) -0  (2.8)

0 — H' (M, Ad,) ® H' (M, Ad,) 2% H'(A,Ad,) 2 H*(M,Ad,) -0  (2.9)

As we identify H'(M, Ad,) to the Zariski tangent space, we pick as a basis the vector
Ot = L(p)p~" that sends a to the matrix (o', ') and b to 0. On the other hand,
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a1(C1, () = (1 — ¢ and we compute the map ¢; by a "diagram chasing":

0 — CO(M,Ad,) —° CO(M;, Ad) ® CO(Ma, Ad,) —2°— CO(A, Ad,) — 0

E

0— CH(M, Ad,) . CH(M, Ad,) ® CI(M%AdP)

d d
J1

CL(A,Ad,) — 0

We need to represent the system (A, M; U My, M) as a CW-complex to describe

explicitly the maps involved in the previous diagram:

—

D1 v D2

e

Figure 2.2 — This represents a cellular decompositon of M with one 0-cell e, three 1-
cells a, b and u corresponding to generators of w1 (M), w1 (Mz) and 71 (A) respectively
and two 2-cells Dy and D, representing the relations a?> = v = b®. The 1-cells are
oriented from the bottom to the top, and 2-cells clockwise.

Then C°(M, Ad,) ~ C°(M;,Ad,) ~ C°(A, Ad,) ~ sly(C(t)) generated by the unique
0-cell e ; CH(M,Ad,) ~ sly(C(t)) - a ® sla(C(¢)) - b ® sla(C(t)) - z, CH(M;,Ad,) ~
sla(C(t))? generated by a and z (resp. by b and z), and C*(A, Ad,) ~ sly(C(¢)) - 2.
Finally, i1(Ga, GrC2) = (G &) @ (60 C2) and j1(Gar &) @ (6,6.)) = G — & The
degree zero maps are defined as usual.

Now we are ready to compute d;: pick ¢ € sly(C(t)) = C°(A,Ad,) and lift it to
(®0 e C°M,Ad,) & C°(Ms,Ad,). Then d(¢ & 0) = (Adye ¢ —¢,0) @ (0,0) €
C'(Mi,Ad,) ® C'(Ms, Ad,), and thus one obtains 6;(¢) = [( o) ¢ —¢,0,0)] €
HY(M, Ad,).

Finally, the torsion of the sequence is the determinant of the basis {1 (p(a) ®
H),57'(0t)} in {H,E,F}. A direct computation shows that Ad,q) F — F = ot,
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hence we compute the determinant of the basis {p(a), H, F'} in {H, E, F'}, hence

t 1 0
1 0 0| = —1. As an element of det(H°(M;,Ad,) & H°(M,Ad,))* ®
—(#*+1) 0 1

det(H(A, Ad,)) ® det(H'(M,Ad,))*, then tor = —dtlg(/;f/\/\lf, where dt is the
dual basis of 0t.

Now consider the second part of the sequence
0 — H' (M, Ad,) @ H' (M, Ad,) 2 H'(A, Ad,) 2 H*(M,Ad,) =0
First, we compute d5 from the diagram:
0 — C'(M,Ad,) L» CY(M,Ad,) ® CY(M2,Ad,) L» C'(A,Ad,) — 0

d d d
0 — C2(M, Ad,) —2— C2(M; Ad,) & C2(My, Ad,) —— C2(A, Ad,) — 0
Notice that C?*(M,Ad,) ~ sly(C(t)) - D1 @ sla(C(t)) - Dg, and that this direct sum
corresponds to C?(Mj, Ad,) & C*(Ma, Ad,).
We pick ¢ € C'(A, Ad,) ~ slo(C(t)) and we lift it to (0,¢) @ (0,0) € C'(M;,Ad,) ®
C'(My,Ad,). Then we compute the coboundary map

d :C*(My,Ad,) ® C*(Msy, Ad,) — C*(My, Ad,) & C*(Ms, Ad,)
(M1,&1) @ (m2,&2) = (m + Adp@) - m — &) O (n2 + Adp)y 72 + Ad e n2 — &)

Hence d((0,¢) & (0,0)) = =¢ @ 0 and 62(¢) = [(—¢,0)] € H*(M, Ad,).

Now we need to find a basis of H*(M,Ad,) ~ H*(OM,Ad,) ~ H°(OM,Ad,)*. The
vector space H°(OM,Ad,) is generated by any trace-free matrix commuting with
7 (M) ; pick ab™' = z as a meridian, that is a curve that encircles the knot once.
Then the trace-free matrix p(ab~!)y commutes with p(z), and thus commutes to
every element of 71 (0M), we fix it as a basis of H°(OM, Ad,). To deduce a basis of
H?*(M,Ad,), we need to compute the map H*(M,Ad,) — H*(OM,Ad,), using the
following cellular decomposition of M. We shall furnish some explanations on how
we produce such a cellular decomposition: the first point is to recall that the trefoil
can be drawn lying on a 2-torus embedded in the 3-sphere in the usual way, as in

picture 2.1 Another way to draw it, more schematically, is the following depicted
in Figure 2.4
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bg AuBffl

Figure 2.3 — Here is depicted a cellular decomposition of the boundary of M. The
e’s denote O-cells, a’s,b’s and u’s are 1-cells and 2-cells are denoted using capital
letters. Cells denoted identically are identified.

Figure 2.4 — An other picture of the trefoil in a 2-torus

The torus that holds the knot splits the 3-sphere into two solid tori 77 and T5. A
slice of each of those tori is depicted on the figure [2.5] with red points corresponding
to the knot crossing the boundary of the disk. "Flowing" those points toward the
center retracts the slice of the knot complement on a graph, as shown here. Now we
can define an equivariant cellular map ¢ : 9M — M between lifts of those cellular
decompositions to universal covers: ¢(éy) = €,¢0(€1) = a-€,¢(é2) = b-€,¢(a1) =
i, ¢(az) = a-a,¢(b) = b, ¢(ba) = b-b,d(bs) = b - b, ¢(A) = Dy, ¢(B) = Dy, (C) =
a- Dy, (D) =b*- D,.

Then

¢* : H*(M,Ad,) — H*(OM, Ad,)
(CD1? CDQ) = (<D27 CDU Adp(a) 'QD1 ) Adp(bQ) '§D2>
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Figure 2.5 — The complement M of the knot K retracts on the union of the red
radial segments. The boundary dM, in green on the figure, can be seen as foliating
the disks A, B,C and D of figure by half-segments from a; or b; to u or u'.

Now we claim that (F,0) € H?(M,Ad,) is dual to the choice of basis p(ab™t)o
H°(OM), we the evaluation against the vector [A + B + C' + D] ® p(ab™)
Hg(aM, Adp)I

€
S

Tr(¢*(F,0)((A+ B+ C + D) ® p(ab")o)) = Tr((F + Ad ) -F)p(ab~)o)
(s e )
+1 ¢ (2 +1)2 —t/2
=1

Again, the torsion is the determinant of the basis {p(a), H,—F} in the standard
basis {H, E, F}, which is equal to 1. Seen as an element of the vector space
det(H'(M;,Ad,) ® H' (M, Ad,)) @ det(H'(A, Ad,))* ® det(H?*(M, Ad,)), one con-

clude that HAEAF
tor(2.9)) =
Or pla) A H @ plab—)g
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We normalize p(ab™!) in order to have consistent choice with the previous subsec-
tion: |p(ab™)o| = +/Tr(p( = V12 — 4, and finally

dt
2 —4

tor(M, Ad op) =

It is not rational, but on the double cover of the character variety given by u+u=! =

t, one obtains

tor(M, Adop) = —

2.4.2 Proof of theorem [2.0.2] the case when py is not residu-

ally abelian

In this section we prove Theorem [2.0.2in the case where py; is not residually abelian.
This case is the generic case, nevertheless computational evidences suggest that there
are many examples where it is not the case, hence we will treat the residually abelian
case in the next section.

Recall from Section that there the splitting M = M; Uy, My provides represen-
tations p; : m1(M;) — SLa(k(Y)) with p; convergent, and py = U, phU, ', where the
matrix U, is ({5 9).

it induces the following Mayer-Vietoris exact sequence of k(Y')-vector spaces H:
0— H'(M,Ado p) Hl(Ml,Ad op1) @ H'(My, Ad ops)

T8, (s, Adops) % HA(M, Adop) — 0

In this sequence the missing term on the left H°(X, Ad op) is trivial because py is not
abelian. Moreover, we can consider the complexes: C*(X, Ad opy) and C*(M;, Ad op;),
t = 1,2, with their natural geometric bases cs, ¢y, o, and with a choice of bases
hs, hq, he of their homology groups. That allows us to define their torsion tor(3, hy),
tor(M;, h;) € k(Y). We pick any basis of H'(M, Adop), and again H as a basis of
H?*(M,Ad op). Then we have the following theorem of Milnor [Mil66]:

Theorem 2.4.3.

tor(M;) tor(Ms)
tor(X)

tor(M, Adop) = tor(H) € Quy)/k

This equality (and the left-hand side term) does not depend on the choice of bases

we made.
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Proposition 2.4.4. The terms tor(M,), tor(Msy) and tor(X) lie in O

Proof. Those factors are torsion of based complex of k(Y')-vector spaces with based
homology, hence they lie in k(Y)* by definition. Since the representations p;, pl
and py, are convergent, one can define the complexes of O,-modules C*(X, Ad opx),,
C*(M;y,Ad opy), and C*(Ms, Ad opl), with their homology groups. Moreover, we
could have chosen the bases cx, ¢1, ¢o, hx, hi, ho of the paragraph above to generate
those terms as O,-modules, because C*(3, Adopy)., ..., H*(M;, Adop;), are free
O,-modules (see Remark , and those choices do not affect the computation of
the torsion. To be precise, we assume that we have chosen for instance a basis hy
of the free O,-module H'(M,, Adop)), that spans H*(M,, Ad op}) as a k(Y)-vector
space, and that it is mapped on a basis through the isomorphism of k(Y")-vector
spaces H'(My,Adopl) — H'(M,,Adopy). Finally, the map H'(M;, Adop;), —
H'(3, Ad opy), identifies the basis hy to a sub-basis of hy.

Now we prove that the torsions of this complexes lie in O}: let us perform the
computation for, say, M;. The complex is C°(M;, Adop;), A CH(My, Adopy),.
Since H°(M,;,Adopy), is trivial, the matrix A is the matrix of an injective O,-
linear morphism. Moreover, H'(M, Ad opy), is free, hence the determinant of the
restriction A : C°(M;, Adop;), — im(A) is an invertible: det A € OF as claimed. [

Since tor(M), tor(Ms) and tor(X) take values in O, the valuation of tor(M, Ad op)

is determined by the torsion of the exact sequence H.

Remark 2.4.5. 1. As we wish to compute the valuation of the torsion, it would
be better to study a complex of O,-modules, having in mind Theorem [2.3.3]
That will be the first step of the proof.

2. Notice that we have isomorphisms: k(Y) = H'(M,Adop), 1~ (4p)p~" and
H?(M, Adop) =5 k(Y), A s Te(AOM)H).

3. Since py is residually non abelian and so are pq, p), the only cohomology
groups that are non trivial as O,-modules for them are H'(M;, Adop,),,
H'(M,, Ad oply), and H'(3, Ad opx),. Moreover it comes from Universal Co-
efficients Theorem that they are free modules because the following k-vector
spaces H°(M;, Adop;) and H(X, Ad ops) are trivial.

Lemma 2.4.6. The sequence of k(Y')-vector spaces
0= k(Y) L HY (M, Adopy) & H (M, Adoph) 2 HY (S, Adops) > k(Y) = 0
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is exact, where the morphisms are given by dy : 1 — ((%p1)py", (%p’z)p’zfl) ,dy -
(€15 G2) = G = UnQU, " = G — ( iy t””) and & : X — Te(A([0X)) H).

t™"zo —x9

Proof. We just used the isomophism H'(M,, Adoph) = H'(Ms,, Adop,) given by
G+ U,CU ! and rewrite the sequence. Then we compute the morphisms dy, dy
and o:

., d _ . d N 1
Unl(EPQ)/blUn = UnIE(UnpéUn 1)<Unpl2 1Un I)Un
_ d / —ld / /dU{l ;—1
= (o0 + Uy 2 Unply + po—i=Un)pl
d _ 1 _
= (7P2)rh 't o (PN '—N)

where the matrix N is (}J). Observe then that the last term on the right is the
boundary of Ny = N — %Id, and the first assertion follows. The second is clear.
For the third point, the naturality of the Mayer-Vietoris sequence and the exact

sequence of a pair provide the following diagram.

HY(S, Adop) — O H2(M, Adop)

H (9%, Ad op) —— H2(OM, Adop) —— H°(OM, Ad op)*

As the second vertical arrow is an isomorphism, it’s enough to compute the compo-
sition HY(X, Adop) — HY(0X2, Adop) — H?*(OM,Adop) — k(Y), which is simply
A= Tr(A([0X])H). O]

Now each term of the sequence can be thought as an O,-module tensorized by k(Y),
but the map d> does not restrict to a morphism of O,-module. Hence in the sequel

we will consider the exact sequence H;:

0— k(Y) L HY (M, Adopy) & H (M, Adopl) 22 HY(S, Adops) > k(Y) = 0

where we just have multiplied dy by t". We will denote by Dy this new map,
which restricts to morphism of O,-modules H*(M;, Adopy), ® H' (M, Ad op}), LDz,
Hl(zu Ad OpE)v-
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From now on we suppose that the choices of bases we made hy,h; and hy gave
splittings H'(My, Adop,) & H'(My, Adopl) = kerdy @ Ey, and H' (3, Adopy) =
dQ(El) @ Es. Let Ag be the restricted map D2|E1 B — d2<E1>

Lemma 2.4.7.

1
tor(H;) = Mc, with ¢ € O,

Proof. Considering the definition of the torsion of Section[1.5.3] the following equal-
ity holds:

det(d; : k(Y) = dy(k(Y))) det(d : By — k(Y))
det AQ

tor (Ht) =

Then we conclude the proof noting that the numerator lies in O}. O

Hence we are now reduced to compute v(det(Ay)).

To do this, the idea is the following: recall that the completion of the valuation ring
O, is isomorphic to k[[t]], the ring of formal series. Consider a matrix A € M,,(O,)
as a formal series A = Y t'A;, with A; € M, (k), the problem is to compute the
valuation of its determinant. If det Ay # 0, then A is invertible, det A € O} and
v(det A) = 0. If not, we have k" Ao k" which is not invertible and define H 0(Ag) =
ker Ag, H'(Ag) = coker Ay, hence HY(Ag) ~ H'(Ap) # 0. Pick P,Q € GL, (k) such
that PAyQ = (8 InOH,O ) is diagonal, where ry = dim ker Ay, and I,,_,, is the (n —ry)
identity matrix. Then to compute det A, it’s enough to compute the determinant
of the rg x ry first block of A; + tAs,.... More precisely det A = t™ det A} + o(t"°),
where A is the restriction of > t'A;, 1 to H°(Ag) ® k[[t]], followed by the projection
E[[E]]" — H'(Ao) @ K[[t]].

One proceeds by induction, the argument is formalized in the following lemma:

Lemma 2.4.8. Let A : O} — O; a morphism such that det A # 0. Working in
the completion O, if necessary, we define Asog = A /Ay = %Azi restricted to
H(A5;(0)) ® K[[t]] followed by the projection k[[t]]""Zk=0" — H'(A:(0)) @ k[[t]],
and r; = dim ker A>;(0).

Then det(A) = t="ic, with ¢ € O;.

Proof. Define the sequence (r,), as in the lemma. As det A # 0, there is an iy such
that r;,, = 0. Take 0 < i < i, after fixing appropriated bases of ker A>;_1(0), one
write A>;(0) as a diagonal matrix, with r;_; zeros on the diagonal, and 1’s after.
Then the classical formula for the determinant tells us that det A>; = t" det A>; 11+
o(t"), and the result follows by induction. O
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We will apply this lemma to the morphism A,. Recall that for py, ph, ps : I' —
SL2(0,), we have the so-called residual representations pi, p2,ps @ I' — SLa(k)
taking values in the residual field k. Moreover, ps = p1x = Unph U, ! is reducible,

non abelian, thus we have as in Section [2.3.2}

Lemma 2.4.9. The residual representations have the form

I N N S et
Pz = Ay AL y P22 = 0 A\l
with A € HY (X, k*),u; € HY (X, A72),uy € HY(Z, ky2) non trivial.

Proof. The expression of pyyx follows from the conjugacy formula p; = U,phU,*
when restricted on 71(X), the w;’s are non trivial because the residuals representa-
tions are not abelian.

]

The former sequence becomes residually H:
0= k2 HY (M, Adop) & HY(Ms, Adops) 22 HY(S, Adoprs) % k — 0

with dy (1) = (v1,v2), and Do(Cy, G) = 2o 2 F', where 2y 5, denotes the lower-left entry
of (s, restricted to m(2).
Again (see Section , the triangularity of the adjoint action of p; x provides the
following splittings:

0—= Ky = Adopyy = k2 — 0

0= Ky = Adopys; = ky—2— 0
0—=>ky-—2—>K —k—0

and thus the exact sequences of k-vector spaces:
0— HY(X, Ky) — HY(Z,Adopyx) & HY(Z,172) = 0

0— H(X, k) — H (S,\7%) = H'Y(X,K,) — HY(Z, k) = 0

and
0— Hl(E, Ky) — Hl(E,Ad op1y) = ...

We denote by j the composition H'(3, A7) — H(X, K;) — H'(3, Adopy 5).
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Lemma 2.4.10. The space ker j is one dimensional, more precisely, it is generated
by the image of HY(X, k) in H (32, Adopy), that is by Oy s H = —2u, F.

Proof. We compute 0y n H = ﬁLgHﬁilE — H, and obtain the claimed result. m
The inclusion ¥ C M, induces i : H'(My, Adopy) — H* (X, Adopyx).

Lemma 2.4.11. The map jopoi: H'(My, Adopy) — H' (X, Adop; 5) has a kernel
of dimension at least —x(X)/2 + 1.

Proof. Notice that we know dim H'(2, Adops) = —3x(2), dim H}(2, \?) = —x(X)
and dim H'(M;, Adop;) = —3/2x(X2). As p is onto, ker p has dimension equal to
dim H' (2, Ad opy x)—dim H' (3, N?) = =3x(Z)—(—x (%)) = —2x(X). If i is injective
and if kerp and imi intersect transversally, then dimkerp Nimi = —y(X)/2. We
define the integer s by the formula dimkerp Nimi = —y(X)/2 + s. Finally, by the
preceding lemma ker j has dimension 1. Moreover, p o i(vy) = u; # 0 € ker j hence
the dimension of ker(jopoi) = —x(X)/2+ 1+ s. If s = —x(X), then poi =0, but
uy # 0, hence the result. O

Now we can give a proof of Theorem [2.0.2}

Proof. First we compute 7o, the dimension of the first homology group of H, i.e.
HY(H) = ker Dy/imd;. From the preceding lemma, dimker Dy > —x(3)/2 + 1 +
(—=3/2x(2)) = —2x(X¥) + 1. Hence 1y > —2x(X). Now the higher order maps

—o(Dy), for i = 1,...,n— 1, remains zero when restricted to ker(D-), hence each

d'L
dit
ri;i =1,...,n — 1 is greater than —2x(X). Let r = .. i, we have from Lemma
that det(Dy) > —2nx(X) + r, and v(tor(H;)) < 2nx(X). Finally, observe that
t77k2) tor(H,) = tor(H). Since rk(dy) = —3x(X) — 1, the theorem is proved. O

2.4.3 The case when py is residually abelian

In this section we treat the case when the residual reducible representation py; is
abelian. This case is motivated by the example of the figure-eight knot complement,
see Remark In fact, if ¥ is two holed torus, as soon as the boundary curve
will be mapped to £ Id by ps, then the representation py, will be residually abelian.
Computational evidences suggest that it is always the case. Remark that in this
case, the eigenvalues of py(0X) are necessarily +1 because they are roots of unity
with order that divides the number of boundary components of the surface X.

The main difference with the previous case is the following:
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Lemma 2.4.12. The O,-module H'(X, Ad ops),, is isomorphic to O;gX(E)EBOU/(tm)

for some positive integer m.

Proof. Again H°(X, Ad opy) is trivial because px is not abelian, but in this case we
have HY(X, Ad opy) ~ k. The Universal Coefficients theorem gives

0 — H(Z,Adops), ®o, O,/(t) = H°(X,Adops) —

Tor(H'(X, Adops),, O, /(t)) = 0

It follows that the torsion part of the module H'(X, Adops)v is isomorphic to

O, /(t™) for some m, and the lemma follows. O

Again, we pick basis ¢;, cs; of the complexes of k(Y')-vector spaces C*(M;, Ad op;),
C*(X, Ad opy) and basis h;, hy of their first homology group (the only one that is

not trivial). We want to use the formula:

tor(M;) tor(Ms)
tor(X)

tor(M, Adop) = tor(H)

Proposition 2.4.13. The terms tor(M;) and tor(Ms) lie in OF, but tor(X) has

valuation m.

Proof. The first part of the statement works in the same way than the proof of

Proposition [2.4.4]

Recall that ¥ has the same homotopy type that a wedge of —yx(X)+ 1 circles, hence
the complex C*(X, Ad opy) looks like

sy (k(Y)) = sly(k(Y)) X+

and to compute its torsion it is enough to compute the determinant of the co-
restricted isomorphism k(Y)* — k(Y)3. But this map induces a morphism of O,-

modules 02 — O3 whose co-kernel is isomorphic to O, /(t™), hence the result. [

Again, we need to focus on the term tor(#), where the exact sequence H is:
0 — H'(M,Adop) — H'(M;,Adop,) ® H'(M,, Ad op,)
— H'(X, Adopy) — H*(M,Adop) — 0
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We consider rather the sequence H;:
0— k(Y) L HY(M,,Adop) & H (M, Adopl) =2 HY(S, Adops) > k(Y) — 0

for n the number of parallel components in ¥, and the very same arguments that in

the previous section lead to the lemma:

Lemma 2.4.14 (Lemma [2.4.7)). Let Ay be the restriction of tdy as above Lemma

[2.4.7. Then

1
tOI'(Ht> = MC, with ¢ € O:

Since py, = p1x is abelian, so is pax, hence we can write px(y) = ()‘(Ow )\,?(w> for

all v € m(X), with A € H'(X, k*). Consequently we have the decomposition
HY(X,Adops) = H' (X, ) @ H' (X, k) @ H' (S, 7?)
Lemma 2.4.15. The dimension of the kernel of the induced map

H'(My, Adopy) — H' (3, Ad ops)

T2 Y2
CQ = ( ) — ZQ7ZF
Zo —X9

isd > —x(X)/2.

Proof. We observe that this map factors through the maps H'(M,, Adopy) —
HY (X, Adopg) & HY(X,A72) — H'(X,Adopy). Since kerp = HY(Z, )@ H (2, k)

we find that the dimension d is at least

d > dim H*(My, Ad opy) + dim H* (3, \) + dim H'(%, k) — dim H'(3, Ad ops,)
= =3/2x(3) = x(X) = x(Z) + 1 = (=3x(2) + 1)
= —x(X)/2

[
Lemma 2.4.16. The valuation of the torsion v(Hy) is smaller than n(2x(X) + 1).
Proof. By Lemma [2.4.8] the map
Ay (HY(My, Adopy) @ HY (M, Adop)))/(im H* (M, Ad op)) — im(A,)
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has determinant greater that the sum of the dimensions of the kernels of the residual

maps

D2 = A2|t:() : (Hl(MhAd Oﬁl) D HI(MQ,Ad Oﬁg))/k — Hl(E,AdOﬁE)
[C1, Go] = 2o 0 F
and

di di—l
@hZOAQ : ker(dti—l

fori=1,...,n—1.
But dim ker D, is at least dim H*(M;, Adop;) +d —1 = —2x(Z) — 1, and the maps

li—0l2) = H'(2, Ad opy,)

% 1—0\y are identically zero on ker Dy, hence the sum of the kernels dimensions is
at least —n(2x(X) 4+ 1). The lemma follows now from Lemma above. O

Lemma 2.4.17. The valuation of the sequence H is v(tor(H)) < —nx(X)

Proof. Tt follows from the fact that (%) tor(H,) = tor(H), and rk(dy) = —3x(%) —
1 [

Proof of Theorem second part. Using Milnor’s formlula, we know that

v(tor(M, Adop)) = v(tor(H)) — v(tor(X)) < —nx(X) —m

2.4.4 Back to Examples

1. The trefoil knot.

The incompressible surface ¥ is an annulus, hence py : Z — SLy(k(t)) is
abelian, and the theorem cannot apply. Nevertheless the torsion has a pole
of order one at ideal points corresponding to X, hence the equality of theorem

remains true.

2. The figure-eight knot.
There are two incompressible surfaces »; and Y, that are two-holed tori,
and the torsion vanishes at order 1 at each ideal point. Again the equality
1 =—x(%;) —1holds form=n=1

3. The knot 5.2.

There are two incompressible surfaces ¥; and 3, (see Figure [1] in the intro-
duction), and we have y(X1) = —4,x(X2) = —2. At the ideal points, the
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torsion vanishes at order 1 (corresponds to ¥;) and 3 (corresponds to X5),
thus the equality of Theorem holds.

. The knot 6.1.

Again, there are two incompressible surface, the first of Euler characteristic
—2 (a two-holed torus), and the second of Euler characteristic —6 (a two-holed
genus 3 surface). At the corresponding ideal points, the vanishing order of
tor(M, Ad op) is 1, respectively 5, that corresponds again with the equality

case of the theorem.

90



Chapter 3
The acyclic torsion

Here M is a compact connected orientable 3-manifold, whose boundary is a torus. In
this chapter we pick X a one-dimensional component of irreducible type of the char-
acter variety X (M), and denote by k(X) its function field. Here we consider the
action of the fundamental group 7 (M) on the 2-dimensional vector space k(X)?
through the tautological representation p : (M) — SLs(k(X)), and the corre-
sponding cohomological complex C*(M, p). When this complex is acyclic (for in-
stance when X is a component of the character variety of a hyperbolic manifold
that carries the holonomy character, say a geometric component), the Reidemeister
torsion tor(M, p) of this complex defines a rational function on the complex curve X.
We prove that the zeros of this function are precisely the characters x, € X where
the residual cohomology group H'(M, p) are not trivial, and that this function is
regular (it has no poles on X). Moreover, we consider X a smooth projective model,
and show that an ideal point of X is a pole of the torsion function if it detects an
incompressible surface that splits M into two handlebodies and which satisfies the
following condition: the boundary slope v is known (see [CCGT94]) to be mapped
by the limit representation on a matrix with eigenvalue a root of unity. Moreover the
order of this root of unity divides the minimal number of boundary components of
any component of the incompressible surface > associated to this ideal point by the
construction of Section [I.3] We assume that the root of unity is 1, and we will say
that the boundary curve has trivial eigenvalues. Such an assumption is motivated
by numerical computations, and by the fact that it occurs in many known examples.
In fact it has been a difficult task to find roots of unity different of £1 with this
construction, see [Dun99| for the first known example. The results of this chapter

are the core of the paper [Benl7|, we summarize them in the following theorems:
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Theorem 3.0.1. Let X be a one dimensional component of the character variety
X(M) and p : m (M) — SLa(k(X)) the tautological representation. Assume that the
complex C*(M, p) is acyclic. Then tor(M, p) is a reqular function on X. Moreover
its order at a point x € X is given by the length of the torsion module H*(M, p).,
where v is the valuation associated to x on the function field k(X). In particular it
vanishes if and only if HY(M, p) is non trivial, where p is the residual representation
p:m(M) L SLy(0,) _mod 1, SLo(k) whose character is x.

Theorem 3.0.2. Let x € X be an ideal point in the smooth projective model of
X, and assume that an associated incompressible surface ¥ is a union of parallel
homeomorphic copies ¥; such that M \ ; is a (union of) handlebodie(s). If the
curve v = 0¥ € m (M) has trivial eigenvalues, then the torsion function tor(M, p)

has a pole at x.

The proof of this theorem recovers two cases, treated separately in Section [3.3.1),
where the components of the incompressible surface split M, and Section [3.3.2]
where they do not. The hypothesis on the boundary eigenvalues is discussed in the
beginning of Section [3.3.1], on the other hand it is automatically satisfied in Section
0.5.2)

If M is hyperbolic, the question whether the torsion defines a non-constant func-
tion is motivated by the fact that the torsion is known to be locally constant on
the character variety of torus knots. The first computation of non constant torsion
function has been performed by Teruaki Kitano in [Kit94] for the figure-eight knot.
In [DFJ12], Nathan Dunfield, Stefan Friedl and Nicholas Jackson study the twisted
Alexander polynomial of hyperbolic knots. It is a Laurent polynomial A,(¢) associ-
ated to the character y of a representation of the fundamental group, and it follows
from its definition that A (1) = tor(M,p)(x). It is conjectured from numerical
evidences that this polynomial considered at the holonomy representation carries a
lot of topological information on the manifold M, as fiberness, chirality, genus and
volume. If the torsion was constant, it would suggest a disproof of this conjecture.
As an immediate corollary we obtain that the twisted Alexander polynomial is not
constant.

Recall that a connected surface ¥ € M is free if M \ S is a union of handlebodies.

Corollary 3.0.3. Let M be a hyperbolic manifold and X be a geometric component
of its SLy(C) character variety. Assume that an ideal point of X detects an incom-

pressible surface which is connected or union of parallel free copies, and such that
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the eigenvalue of its boundary curve is 1. Then the torsion function is not constant

on the component X.

The relation with twisted Alexander polynomial suggests an other interpretation of
the vanishing locus of the torsion: given an irreducible representation p : m (M) —
SLo(k), one can construct a semi-simple representation p : m (M) — SL3(k) by
defining 5 = (4V). A classical dimensional argument (see [HP15, Section 5| for
instance), shows that if p is deformable into irreducible representations in the char-
acter variety X (M, SL3(k)) then it necessarily exists a reducible, non semi-simple
representation p’ with the same character, namely g = (§5) where 2z : w1 (M) — k?
represents a non trivial class in H'(M, p). More generally, given A € k* and a

surjective abelianization map ¢ : m (M) — Z, it is proven in [HP15| that if the

A?p 0
0 A2

the Twisted Alexander Polynomial A,(\?) vanishes. A converse statement is proved

representation p, = ( ) is deformable into irreducible representations, then
in the case when \® is a simple root of the Twisted Alexander Polynomial. Our
Theorem [3.0.1] is a first step in a proof of a general converse statement when A = 1,
saying that if A,(1) = 0 then there exists a non trivial z € H'(M, p), hence a non
semi-simple p’ as above, generalizing an basic fact from the SLy-case.

This chapter divides into three sections, in Section 1 we define the torsion as a
rational function on a component on the character variety, in Section 2 we prove
Theorem [3.0.1], and in Section 3 we prove Theorem [3.0.2]

3.1 The torsion function

Let X be a one-dimensional, reduced component of irreducible type of the character
variety X (M), recall that a component of irreducible type means that it contains the
character of an irreducible representation. In Section we defined p : m (M) —
SLo(k(X)) the tautological representation, up to conjugation. Hence the torsion of
the twisted complex C*(M, p) of k(X )-vector spaces is well-defined, and is an element
of the homological determinant vector space tor(M, p) € det(H*(M, p)). The first
statement of the following proposition follows directly from this definition. Recall
that X is a geometric component if it carries the holonomy character of a hyperbolic
structure on M. In Section[I.3.4] we have seen that for any x € X there is a valuation
v on k(X), and a choice of a convergent tautological representation p : m (M) —
SLy(O,). The reduction mod t map O, — k defines a residual representation p :
m (M) — SLs(k) whose character is the point x. We denote by H*(M,p), the

93



cohomological O,-modules and by H*(M,p) the residual cohomological k-vector

spaces.

Proposition 3.1.1. If the complex C*(M, p) is acyclic, then the Reidemeister func-
tion tor(M, p) € k(X)* defines a rational function on the curve X. In particular, it

18 the case if X is a geometric component.

Proof. We just have to show that if X is a geometric component, then H' (M, p) = 0
for all 7. Since M has the homotopy type of a two-dimensional CW complex, it has
no homology in rank greater that 2.

The space of invariants HY(M, p) = {z € k(X)?|p(7)z = 2,V € 7 (M)} is non triv-
ial if and only if Tr(p(v)) = 2 for all v € m (M), but the tautological representation
is irreducible, thus H°(M, p) = 0.

We know that the Euler characteristic x(M) is zero, hence it is now enough to prove
that H'(M,p) = 0. The Universal Coefficients Theorem provides isomorphisms
HY(M, p), ® k(X) ~ H'(M, p) and H' (M, p) ~ H' (M, p), ® k, hence it is enough
to show that for some x € X, one has H'(M, p) = 0. Tt follows from Ragunathan’s
vanishing theorem (see for instance [MP12, Theorem 0.2]) that it is the case if x is

the character of a holonomy representation. O]

Remark 3.1.2. As soon as there exists a character x € X such that H'(M, p) is
trivial, the proposition applies and the torsion defines a well-defined function on the
curve X. If follows from the semi-continuity of the dimension of H*(M,p) on X
that in this case, H'(M, p) is trivial for all but a finite numbers y € X. It has been
the way to define almost everywhere the torsion function on X, the novelty here
is that it is defined a priori even at characters y with non trivial first cohomology
groups. Indeed, we will show in the next section that the torsion vanishes exactly

in those points.

3.2 The case of a finite character

3.2.1 Proof of Theorem [3.0.1]

In this section we give a proof of the following theorem:

Theorem (Theorem [3.0.1). Let X be a one dimensional component of the character
variety X (M) and p : 1 (M) — SLao(k(X)) the tautological representation. Assume
that the complex C*(M, p) is acyclic. Then tor(M, p) is a reqular function on X.
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Moreover its vanishing order at a point x € X is given by the length of the torsion
module H*(M, p),, where v is the valuation associated to x on the function field
k(X). In particular it vanishes if and only if H'(M, p) is non trivial, where p is the
residual representation p: w (M) 2 SLy(O,) _medty SLy (k).

The main tool of the proof is the following theorem already used in Section
Recall that a complex of O,-modules C* such that C* ® k(X)) is an exact complex is
said rationally exact, and that the length of a torsion O,-module &0, /(t"*) equals

Enk.

Theorem 3.2.1. |[GKZ9j, Theorem 30] Let x € X a character, and v a valuation
on k(X) associated to x. If C* is a rationally exact based complex of O,-modules
with basis {c'}, then

v(tor(C* ®@ k(X),{c'})) = > _(—1)" length(H*(C"))
k
Proof of Theorem[3.0.1. Since the complex C*(M, p) is acyclic, the theorem above
applies. Now notice that the H'(M,p), are torsion modules. As a submodule
of a free module, H°(M,p), is trivial. Then Proposition implies that no
character y € X is central, in particular H°(M,p) is trivial. But the Univer-
sal Coefficients Theorem provide the isomorphisms H°(M,p) ~ Hy(M,p)*, and
Ho(M,p) ~ Ho(M,p), ® k, thus we have proved that Hy(M, p), is trivial. Again
by the U.C. Theorem we have Ext(H'(M, p),, O,) ~ Hy(M, p), = {0}, and we con-
clude that H*(M, p), ~ Ext(H'(M, p),, O,) = {0} because its a torsion module. In

conclusion we have proved the first part of the theorem
v(tor(M, p)) = length(H*(M, p),)

Now HZ%(M, p), being trivial is equivalent to H?(M,p) being trivial which is the
same that H'(M, p) being trivial, and the theorem is proved. ]

3.2.2 Some computations and examples

We compute the torsion function on a series of examples of twist knots, and deter-
mine its zeros on the character variety. A presentation of the fundamental group of
the Whitehead link can be computed to be

m1(La2) = (a,b, ] b= AaA™, A a A al[A, a][A a7 = 1)
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Figure 3.1 — A diagram of the Whitehead link. a,b and A are depicted generators of
the fundamental group, and p is a counter-clockwise oriented longitude of the circle
component.

The J(2,2n)-twists knots, n € Z, are obtained as % Dehn filling along the cir-
cle component. The additional relation is thus u® = X, where pu = ba~'b~'a.
Notice that the second relation in the presentation above is [\, u] = 1, hence is
redondant whence p" = X. Figure [3.2] shows positive and negative twist knots,
for n = 4+1. Hence we obtain the following presentation of twist knot group
m1(J(2,2n)) = (a,b|(ba= b7 a)"a = b(ba=*b"1a)"), or {a, \|u™ = \) where the curve
p is the curve ba=*b~'a = [\, ][\, a7 !].

We define a tautological representation of the character variety X (2,2n) of the twist
knots J(2,2n) by

s 1 s 0
pla) = <0 81) ,p(b) = (y R sl>

We will use the variable z = s + s~!. A direct computation shows (see [Kit96], for
or et(p( 2"
instance) that tor(M, p) = detlplgr)) _ det(ploy))

= Telplo-D) @)
ring Z[m .

, Where p is extended linearly to the

det((1+p(p)+..Ap()" 1) (1=p(b)+p(ba~ ") =p(ba~'b~1)) 1)
2—x

— Ifn > 0, we obtain tor(M, p) =
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A} 0
b
o 0

Figure 3.2 — The diagram above if .J(2, 2), the trefoil knot. The one below is J(2, —2),
the figure-eight knot.
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— If n < 0, we obtain tor(M, p) = det((p(u)*1+4--+p(u)")(1;fib)+p(ba*1)—p(ba“b”)))

The trefoil knot J(2,2)

The character variety equation is given by X (2,2) = {(z* —y — 2)(y — 1) = 0}.
The component of irreducible type X is thus {y — 1 = 0}. We compute the torsion

function in Clz, y]/(y — 1), it is tor(M, p) = L2252 = 2, the torsion is constant.

The figure-eight knot J(2,-2)

Let X = {222 +y*—2%y—y—1 = 0} the component of irreducible type of X (2, —2).
We have tor(M, p) = (42? — 2?y+y* —y — 62 +3) /(2 — x) = 22 — 2 in C[X], hence
there is a zero at the point {z = 1,y = 1}, with multiplicity 2.

The knot 5;5: J(2,4)

Here X = {—2*(y—1)(y —2) +y*> —y* — 2y + 1 = 0}, and tor(M, p) has two double
zeros when x = y are roots of 22 — 3z + 1.

The knot 6,: J(2,-4)

Here X = {a*(y —=2)* —2*(y + D(y —2)(2y = 3) + (v’ =3y = )(y — 1) = 0}, and
tor(M, p) has three double zeros when z = y are roots of z® — 42% + 3z + 1.

Remark 3.2.2. We observe that each time we have found a zero for the torsion,
it had multiplicity 2 and {tor(M,p) = 0} € X N{x = y}. We have checked that
this inclusion is strict. We have no precise interpretation of those phenomenon, we
think that it comes from the computation of the torsion on the character variety of

the Whitehead link .

3.3 The torsion at ideal points

3.3.1 The split case

In this section we give a proof of the following theorem:

Theorem (Theorem m, the split case). Let x € X be an ideal point in the smooth
projective model of X, and assume that an associated incompressible surface ¥ is
a union of n parallel copies 1 U ... U X, and that each copy splits M into two
handlebodies. If the curve v = 0% € m (M) has trivial eigenvalues at x, then the
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torsion function tor(M,p) has a pole at x. In particular in this case the torsion

function is non-constant.

Recall from Section that from an ideal point 2 € X one can produce an incom-
pressible surface ¥ € M. In this section we will make the following assumptions on
DI%

1. The surface X is a union of homeomorphic parallel copies > U ... UX,.

2. The complement of any ¥; in M is the disjoint union of two handlebodies
M1 and MQ.

3. The eigenvalue of p(9%) is the trivial root of unity 1.

Remark 3.3.1. This assumptions are motivated by the fact that it is the way it
appears in simple examples we can produce: for instance consider the figure-eight
knot’s classical diagram in Figure , and the non-orientable surface 3. obtained by a
"checkerboard" coloring. The boundary of its neighborhood is an orientable surface
Y., which turns out to be incompressible. It is detected by the point {z = 0o,y = 2}
of the component of irreducible type of the character variety of the figure-eight
knot. It easy to see on the picture that its complement is the union of two genus
2 handlebodies, and a computation shows that the root of unity associated to the
boundary curve 9% = uv~tu"tvuvu 2o tuvu o et s 1.

We have performed numerous computations in the case of a two-holed torus with
the help of the software SageMath. We have produced reducible representations of
the free group on three generators, that come from irreducible representations of
the closed genus two surface obtained by gluing together the boundary components.
We have observed that the torsion will vanish whenever the image of the boundary
curve has eigenvalues equal to 1 (and we proved the theorem in this case), on the
other hand we produced several examples with eigenvalue -1 where the torsion did

not vanish.

Recall from Section that we have the splitting M = M; Us M,, it induces
the following exact sequence of complexes of k(X )-vector spaces 0 — C*(M, p) —
C*(Ml, /01) D C*<M2,p2) — C*(E, pz) — 0.

Notation. Since we have picked a base point p € ¥ in Section [1.3.6] we will abuse
of the notation 7 (3) to designate m(X1). In the same way, we denote by C*(%, px)

the twisted cohomological complex of ;.
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M«

Figure 3.3 — The figure-eight knot, with a non orientable checkerboard surface %,
and generating loops u, v of its fundamental group

Lemma 3.3.2. One has the following isomorphism of k(X)-vector spaces:
d: H' (M, p1) ® H (My, p2) = H'(3, ps)

Proof. Recall that C*(M, p) is acyclic and H’(M;, p;) = {0} for any j > 2,i=1,2
because M; have the same homotopy type that a one-dimensional CW complex.
Now p; are irreducible by Lemma [1.3.15] hence p; are irreducible and in particular
there is v; € m(M;) such that Tr(p;(7;)) # 2. Thus H°(M;, p;) = {0}. The lemma

follows now from the Mayer-Vietoris sequence. [

Lemma 3.3.3. The O,-modules H'(Mj, p1)y, H' (Ma, ph),, H' (X, ps), are free of
rank —x(21), —x(X1) and —2x(X;) respectively.

Proof. The Mayer-Vietoris sequence of Lemma implies that H°(X, ps,) = {0}
since H°(M;, p;) = H°(M, p) = {0}, and similarly H?*(%, p) = {0}. Now H' (%, ps),
is free of rank —2x(X), and the lemma follows. O

We pick bases of the complexes of k(X )-vector spaces C*(My, p1), C*(Ma, p2) and
C*(%, px) and of their homology groups H'(M, p;), H*(Ms, p;) and H*(Z, ps). We
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also pick a basis for the acyclic complex C*(M, p). We have the following formula
due to Milnor [Mil66], that does not depends on the choices:

Proposition 3.3.4. The torsion of the complex C*(M, p) can be expressed as

tOI‘(Ml, hl) tOI‘(MQ, hg)

tor(M, p) =
OI'( ’p> tOI‘(E, hg)

tor(H, hy, he, hs) € k(X)*

where H is the Mayer-Vietoris sequence of Lemma[3.5.3.
The following is identical to Proposition [2.4.4] hence we refer to it for a proof.
Proposition 3.3.5. The terms tor(M;), tor(Ms) and tor(X) lie in O

Remark 3.3.6. As a consequence of this proposition, it is enough to compute the
term tor(H, hi, hi, hi;), which is just the inverse of the determinant of the following
map (see Section [1.5.3)):

0 : Hl(Mlvpl) D Hl(MQ’pIQ) = Hl(ZypE)
(21, 22) = (Zy = UnZo))s
that is 6 is the composition of d with ¢. We compute now det(6).

For this purpose we observe that the relation Vy € m(X), p1(7) = Unph(v)U,?
implies that the corresponding residual representations have the following form,

when restricted to m(X):

m):( () 0 )pm):(w Alwmm)
Aua(y) AHy)) 0 A7)

for some u; € HY(X, A\72),us € H(X, A\?). Consequently one has the splittings
0— HY(S, A S HY(S, prs) 2 HY(S,A) = 0

0= HYS, ) 2 HY(S, pos) B HY(E, A -0

More precisely, if say z; € H'(3, p1) has the form z(y) = (2183) then the first
splitting is given explicitly by the morphisms 41 (y1) = () and pi((5})) = 1.

Notation. Here, and in the sequel, we will denote by p; and py the residual rep-

resentations obtained from p; and p),. We will denote by p;y the restriction of
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pi » m(M;) — SLa(k) to m(X) through the map m;(X) — m1(M;) induced by inclu-
sion. Similarly, we will denote by pa s, the restriction of py to m(9Mz), and pa

the restriction of py to any curve ~, in particular v = 9.

We need to prove that the torsion has a pole at the ideal point x. Denote by v the

valuation associated to x, that means that the determinant of the map

0 : H'(My,p1) ® H'(My, p) = H'(, px)
(Zla Zg) — (Zl — UnZQ)\g

has positive valuation. Consider the k-linear map 6 : H*(My, py) © H'(My, py) —
H'(%, px;) which is # modulo t, it maps (21, 22) onto 2}, — (yg(?z ).

Lemma 3.3.7. The torsion has a pole at = iff 6 is not an isomorphism.

Proof. 1t is clear from the fact that det(f) = (det8)(0), that is v(det(d)) > 0 iff

det(0) = 0. O
Let us prove that det(d) = 0. Let OM; be the boundary of My, and v = 9% C M,
the union of boundary curves of . Since ¥ is incompressible and 0% C dM, all
the components of 9% are parallel in OM because it is a torus, in particular they
define the same free homotopy class. Assumption 3 implies that ps(y) = (§ 1), hence
H*'(v, pa) is not trivial. The long exact sequence for the coefficients of C*(v, p2.-)
ends with
o= HY(y, poy) 2 HY (7, k) = 0

There are two possibilities, namely py(y) = Id or not, but in any case, the map
Pyt HY(v, p2~) — H'(7, k) is not zero.
On the other hand, the inclusion ¥ C M, provides the sequence

HY(OMy, Y paon,) — HY(OMy, paons,) — H (X, pas) — H*(OMs, 3; paons,) — 0
(3.1)
Denote by A the union of small annulus neighborhood of the components of v in
OM,. By excision, we have H?(OM,3; paon,) ~ H?*(A,0A; ps,). Now Poincaré-
Lefschetz duality implies that it is the same that Hy(A, p2 ), and by homotopy this
is Ho(7, p2,). Again by duality we obtain H' (v, pa ).

We summarize that in the following commutative diagram:
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HY(Ms,, p2)

ZaMg
HY (OM3, paors,)

ix |
HYS, A ——2 o HY(S, poy) — 2 HY(S, A1) — 0

iag iaz

1~ 5 Py 1
H (%p2,'y)) H (771{7) —0
0

i

Lemma 3.3.8. The composition map F : H'(Ma, ps) LN HY(OMs, paons,) —
HY(Z, pox) 2 HY(Z, A7) is not an isomorphism.

Proof. The first observation is that dim H'(M,, py) = w =dim H' (X, \71).
Thus it suffices to prove that the map F' is not onto. But if it was, it would have a
non-trivial image in H'(7y, k) through the map igs. On the other hand, the vertical
sequence HY(OMy, prons,) —2 HY(S, pax) -2 H'(y,pa,) is exact by equation
, and the commutativity of the diagram shows that igx, 0 F' = 0, and the lemma

is proved. O
Proof of Theorem[3.0.3 We just have to observe that 0: H' (M, p))SH (My, py) —
H'(Z, p1x) is the direct sum of

1. the injective map H'(My, p1) — H* (X, p1x) induced by inclusion

2. the map H'(Ms, py) — HY(E, pos) 2 HY(S, A1) 2 HY(S, prs) which is
il (¢] F

The first map has maximal rank —y(X), but the second has rank smaller than
—x(X) by Lemma m Hence 6 is not onto, hence det(f) = 0. By Lemma we

conclude that the torsion vanishes at x, and the theorem is proved. O

3.3.2 The non-split case

In this section we prove the following theorem:
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Theorem (Theorem m, the non-split case). Let x € X be an ideal point in the
smooth projective model of a component X of the character variety, that produces
an incompressible surface S in M which is a union of parallel copies S1U...US, of
a Seifert surface. Then the torsion function tor(M, p) has a pole at z, in particular

it 18 non-constant.

In this section we assume that the incompressible surface associated to x is a union of
parallel Seifert surfaces. Recall from Section that we fix a base-point p € Sy,
and that we identify m(S) with 7(S1). We have the following splitting M =
H Ug,us, V(S), where V(S) is a neighborhood of S homeomorphic to S; x [0, 1]
with OV(S) = S; U S,. We identify as well m(V(S)) with m(S). Given « :
m1(S1) = m1(Sy), one can write the fundamental group of M as an HNN extension
m(M) = (m(H),v | vyw™ = a(y),Vy € m(9)).

We denote by p; : m(S) — SLy(O,) the restriction of p to m(S), and by p, :
71(S,) — SLo(k(X)) its restriction to m1(S,) = vm(S)v™!, hence we define p,(7) =
Vop1(7)V, ! for v € m(S). The splitting above induces the following exact sequence

of twisted complexes:
0— C*(M,p) = C*(H, pu) ® C*(S, p1) = C*(5, p1) & C*(S, pn) = 0

The following proposition recaps the series of lemmas in Section [3.3.1] we refer to

the corresponding lemmas for proofs, that translate in exactly the same way here.
We use the isomorphism H'(S, p,) — HY(S,p1), Z— U, (%%)Z.

Proposition 3.3.9. The vanishing order of the torsion at the ideal point v € X is

given by computing —v(det @), where the isomorphism 0 is given by

0: Hl(HapH> @H1(87p1) - H1(57p1) @Hl(S,pl)
(Zv, Z3) = ((Zy = Za)|s,Un (9 0) (Z1 — Zs)|s)

Since we want to show that v(det ) > 0, we focus on the residual map ; it is of the

form

0. H'(H,pr) ® H'(S, ps) — H'(S, ps) © H' (S, ps)

0
(21,22) — (21‘5—22’5’,— )
T1|s — T2|s
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x.
where z; = ( Z) . We show that it has a non trivial kernel.
Yi

Lemma 3.3.10. The kernel of the map

v H'(H, pyr) — H'(S, ps)

0
21—
<—~’01’S>

Proof. The relation p, = V,p;V, ! implies that the residual representation p; has

has dimension d > —x(S).

the form, for v € m(S), p1(y) = (’\(J) A*?(v) ) Hence we have the exact sequence

0— HY(S, XY — HYS,p1) — H'(S,\) =0

We denote by p} : m1(S) — SLy(O,) the representation pi(v) = (5 §) p1(v) (1),

and the map 1 is the composition

H'(H,py) — HY(S,p)) — H(S,\) ~ H'(S,\™") — H'(S, p1)

() ()= ()

We show that the composition H'(H, pg) — H'(S,A7!) is not surjective, and it is
enough to prove the lemma by a count of dimensions.

To see that it is not surjective, notice that it factors through the composition
HY(H, py) — HYOH, psrr) — H'(S, p)). Now we have the exact sequence of the
pair (0H, S):

0 — C*(0H, S; por) — C*(H, porr) — C*(S, py) — 0
hence the long exact sequence in cohomology provides
HY(0H, porr) — H' (S, py) — H*(0H, S, porr) — 0

but by excision, H2(OH, S, parr) =~ H*(0S x [0,1],9S5, pas), the latter is Hy(dS x
[0,1], pas) by Poincaré-Lefschetz duality, which is H(9S, pas)-
We deduce the diagram:
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oo F
HY(S,\) HI(S, 1) HI(S M) — 0
HY(DS, pos) HY(DS, k) — 0
0

We conclude because the commutativity of the diagram and the exactness of the

vertical arrows imply that the map F' cannot surjective. n

Proof of Theorem[3.0.3. We prove that the map residual map 6 is not an isomor-
phism, hence its determinant vanishes and it proves the theorem. To see that we

show that it is not surjective, in particular the map

H'(H,py) ® H'(S, ps) — H'(S, ps)

0
(2’1,22) — —
$1\S—932|s

is not surjective: the first part of the map has rank strictly less than —x(S) by
Lemma [3.3.10 and the second part has rank —y(.S). It proves the theorem. O
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Appendix A

Proof of Saito’s theorem

Let us recall the statement of the theorem. The proof we present here is adapted

from an unpublished version of [Sai94].

Theorem A.0.1. Let R be a k-algebra, and x : B[I'] = R an R-character. Assume
that x is irreducible, that is x(As ) € R* for some o, B € I', and let A, B € SLy(R)
such that Tr A = x(Ya), Tr B = x(Y3), Tr AB = x(Yap). Then there exists a unique
representation p : I' — SLo(R) whose character is x and such that p(a) = A,

p(B) = B.

In the sequel we will denote by ¢ : I' — R the map ¢(v) = x(Y,).We first introduce
the following definition:

Definition A.0.2. An R-valued form is a map h : I' — R such that Vv, €
L, h(v8) + h(76 1) = ¢(7)h(d). A form will be called homogeneous if h(e) = 0.

Remark A.0.3. By the trace formula, the map ¢ is a (non-homogeneous) form. If

h is a homogeneous form, then clearly h(vy) + h(y~!) = 0, hence
h(70) + h(67) = ¢(7)h(8) 4+ ¢(0)h(7) (A1)
Lemma A.0.4. Let h be a homogeneous form, denote by Vs, = {v € I : h(y) = 0}.
Then the following holds:
1. Yy eV, Vn € Z,A4" € V},.
2. V6 € Vi,Vy € T, h(vd) = h(dy71).
3. If41,...,0m € V), such that 6;0; € V}, for any i < j, then for any permutation

og€S8, and anyy €', h(d1...0m7) = h(6sq) - - - Oo(m)Y)-
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Proof. 1. By definition h(y™) = h(yy"™') = d(y)h(y""') — h(r"2) = 0 by
induction.

2. We have h(vd) = ¢(y)h(6) —h(yd~) but h(d) = 0 and h(dy~1)+h(yd~ 1) =0,
hence h(vd) = h(6y71).

3. We first remark that Equation implies that if ¢;,0;,0;0; € V4, so
is 0;0;, hence all the ¢;0; lie in Vj. It is enough to show the result for
o= |i i+ 1) a transposition. Applying successively item 2 one finds
h(61...6,7) = h(iya...0m70; " ... 0,4 ). Then we apply again item 2 with
(8;110;) " and we obtain the equality h(6; . .. ) = h(0i110:0i40 - . . OOy - ... 0 Y),
finally we conclude by applying item 2 again for getting back with §;_1,...d;
on the left hand-side.

O

Lemma A.0.5. Let h be a homogeneous form, with h(a) = h(B) = h(af) =
Then for any v € ', x(Aag)h(y) = 0.

Proof. For any v € T, let us compute ¢(a)h(y) = h(ary) + h(a™1y) hence

¢(a)*h(v) = d(a)(h(ay + h(a™'7)) = h(a®y) + h(a™y) + 2h(7)

In the very same way,

d(B)*h(v) = h(B*y) + h(B~*y) + 2h(7)

and
o(aB)*h(v) = h((B)*y) + h((aB) ") + 2h(7)

Now

o(aB)p(B)(h(ay) + h(a'y))

(Ba)(hBavy) + h(Ba™y) + (B ay) + h(B~ a ™ y))
((Ba)*y) + ( )+ h(Bapa™v) + h(a"?y)

(@®y) +h(B~ a™ B ay) + h(7) + h((aB) )

¢(a)p(B)p(aB)h(y)

L |
? > ©

Finally we obtain

X(Aap)h(7) = 6(a)*h(7) + ¢(8)°h(7) + ¢(aB)*h(7) — d(a)d(B)d(aB)h(v) — 4h(7)
= h(8%y) — h(BaBa™ ) + h(B~?y) = h(B™'a" "B ay) + h((aB)?y)
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— h((Ba)*y)

and using Item (3| of Lemma we easily see that the latter is zero, and the lemma
is proved. O

Before we start with the proof of Saito’s theorem, we prove the following lemma
that will be used in the sequel. We fix the notations for this lemma and for the

proof of the theorem: let «, 3 be elements of I' satisfying the hypotheses of the
theorem. For any v € I', we define the vector T, = <¢(7) o(ay) o(67) ¢(a57)>

ole)  ola)  9(B)  o(ab)
o)  ¢(a®)  oaf) ¢(a?B)
¢(B)  daf) o8  olas?)

¢(aB) d(a®B) o(ap?) ¢(a?B?)
det(M) = —x(Aqp)* hence M € GLy(R) in the following. We will denote by T% the

column-vector transpose of T,.

and the matrix M = . A computation gives

Lemma A.0.6. Assume that x(A,g) € R*, then for any~y,d € T, p(v0) = T, M T¢.

Proof. For 6 € T, we define Hs : ' — R by Hs(y) = ¢(70) — T, M~ 'T%. Then Hy is
a form since Hs(vn) + H&(v‘ln) ¢(ynd) + d(v"'nd) — (Toy + Tyry) M'T5, and
the trace relation ¢(vy') + ¢(v 1) = ¢(v)d(y') implies that Hs(yn) + Hs(v1n) =
o(1)0(n6) + ¢(3) T, M T = é(7) Hs(n).

T

Ty
Moreover, from | = M we deduce that Hs(e) = Hs(a) = Hs(B) = Hs(af) =

B

Tugs

0, that is Hj is homogeneous and satisfies the hypothesis of Lemma [A.0.5] hence for

any v € I', x(Aap)Hs(y) = 0 and we conclude that Hs(y) = 0 for all 6 € I, thus

the lemma is proved. O

Proof of Saito’s Theorem. Let us define

p: I' — MQ(R)
~ (14 4 B AB)M'T!

Here we consider the vector MﬁlTé’s entries to be 2 x 2 scalar matrices. We need

to check that the map we defined does satisfy all the requirements of the theorem.
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L (se) pla) p(8) plap)) =(1a A B AB)M(T! T, Tf T.,)but
the right hand matrix is exactly the matrix M, hence p(e) = Id, p(a) =
A, p(B) = B, p(af) =

Tr(p(7))

Tr(Ap(7))

TH(Bp())

Tr(ABp(7))

(Tr Id TrA TrB Tr AB) M~'T! and thus the left hand side term is pre-

Trl Tr A Tr B Tr AB [

] TrTA TrA? TrAB TrA’B . ] , ]

cisely M—T }; but item [1|implies that

TTB TrAB TrB? TrAB?
TrAB TrA*’B TrAB? Tr(AB)?

Tr 1l Tr A Tr B Tr AB

] TrTA TrA?> TrAB TrA’B | . ]

the matrix is nothing but M.
TrB TrAB TrB? TrAB?

TrAB TrA’B Tr AB? Tr(AB)?

2. For any v € T, = T! since by definition, we have Tr(p(v)) =

Tr p(7)p(0)
Tr Ap(v)p(5)

(
Tr Bp(7)p(0)
Tr ABp(7)p(6)

3. Let us prove that for any v6 € T', p(vd) = p(7)p(9). Let C =

p(7)p(6) p(7) p(7)
Ap(mpd) | | Ar(v) | Ap(y) St
Then | o) | = | Boty |70 | Bty | A B AB) M=
ABp(7v)p(d) ABp(7) ABp(7)
p(7) p(7)A p(v)B p(7)AB

Ap(7) AP(V)A Ap(v)B  Ap(v)AB M
| :

Bp(v)  Bp(v)A  Bp(v)B  Bp(y)AB
ABp(y) ABp(v)A ABp(v)B ABp(v)AB
Using item [2| and the trace relation we can compute the traces of the previous

matrix, for instance

Tr(ABp(7)B) = Tr(AB) Tr(p(7) B) — Tr(B—1A""p(y)B)
= o(aB)(y8) — Tr(A™ p(v))
= p(apyB) + ¢play™) = Tr(Ap(y ™)
= ¢(aBp)
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o(y)  dlyva)  e(v8)  d(vap)
olay)  dlaya)  olayB)  dlayap) MOTL
o(By)  ¢(Bya)  @(BVB)  B(Byap)
o(apy) olapya) ¢laByB) élapyal)

We obtain C' =

¢(79)
But from Lemmal|A.0.6{we know that ¢(vd) = Tvang and so C' = o(ayd)
P(B70)
P(aBy0)
Tr(p(v9))
and from the first item, C' = Tr(Ap(v9))
Tr(Bp(v9))
Tr(ABp(79))

Let then X = p(vd) — p(7)p(d), then the latter equality is equivalent to
Tr(X) = Tr(AX) = Tr(BX) = Tr(ABX) = 0. We observe that M is a
Gram matrix for {I, A, B, AB} with respect to the non-degenerate bilinear
form (M, N) +— Tr(MN). As det(M) € R* we know that {I, A, B,AB} is a
basis of Ms(R), and so X = 0, which proves that p is a group homomorphism.
. A direct computation shows that T2 = ¢(v)T,,+ 1. = 0, in particular p(v)?—
Tr(p(7))p(7) + ple) = 1 and det(p(7)) = 1 for any v € G.

. Finally, we prove the unicity as follows: for any representation p’ that satisfies

Tr(p(7)) Tr(p'(7))

the statement of the theorem, we have Tr(Ap(v)) = Te(Ap (7))
Tr(Bp(v)) Tr(Bp'(7))
Tr(ABp(7)) Tr(ABp' (7))

for any v € ', hence p = p’ and the theorem is proved.
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