Exercice I. Dans \mathbb{R}^2 on définit la relation \mathcal{R} par : $(x,y)\mathcal{R}(x',y') \Leftrightarrow y=y'$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de $(x, y) \in \mathbb{R}^2$.

Exercice II. Dans \mathbb{C} on définit la relation \mathcal{R} par : $z\mathcal{R}z' \Leftrightarrow |z| = |z'|$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de chaque $z \in \mathbb{C}$.

Exercice III. Étudier la relation \Re définie sur $\mathbb{R}^{\mathbb{R}}$ (l'ensemble des applications de \mathbb{R} dans \mathbb{R}) par :

$$f\Re g \iff (\exists A > 0 \ \forall x \in R \ |x| > A \Rightarrow f(x) = g(x)).$$

Exercice IV. On définit la relation $\sim \text{sur } \mathbb{Z} \text{ par } x \sim y \iff x^2 \equiv y^2 \pmod{5}$.

- 1. Déterminer l'ensemble quotient.
- 2. Peut-on définir une addition quotient? une multiplication quotient?

Exercice V. Soit E un ensemble et $A \subset E$. On définit la relation sur $\mathcal{P}(E)$:

$$X \sim Y \iff X \cup A = Y \cup A.$$

- 1. Montrer que c'est une relation d'équivalence.
- 2. Soit $\phi: \mathcal{P}(E) \to \mathcal{P}(E \setminus A), X \mapsto X \setminus A$. Montrer que ϕ est compatible avec \sim (ie que la classe de $\phi(X)$ ne dépend que de la classe de X), et que l'application quotient associée est une bijection.

Exercice VI. Soit \mathcal{R} une relation sur E réflexive et transitive. On définit la relation :

$$x \sim y \iff x \mathcal{R} y \text{ et } y \mathcal{R} x$$

- 1. Montrer que \sim est une relation d'équivalence sur E.
- 2. Pour $x \in E$, on note \dot{x} la classe d'équivalence de x dans E. Sur E/\sim on aimerait définir :

$$\dot{x} \leq \dot{y} \iff x\mathcal{R}y$$

Quele condition faut-il vérifier pour cela? Montrer que cette condition est satisfaite dans le cas présent.

3. Montrer que \leq est une relation d'ordre sur E/\sim .