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WHAT IS CANTOR’S CONTINUUM PROBLEM?
KURT GODEL, Institute for Advanced Study

1. The concept of cardinal number. Cantor’s continuum problem is simply
the question: How many points are there on a straight line in Euclidean space?
In other terms, the question is: How many different sets of integers do there
exist?

This question, of course, could arise only after the concept of “number”
had been extended to infinite sets; hence it might be doubted if this extension
can be effected in a uniquely determined manner and if, therefore, the statement
of the problem in the simple terms used above is justified. Closer examination,
however, shows that Cantor’s definition of infinite numbers really has this char-
acter of uniqueness, and that in a very striking manner. For whatever “number”
as applied to infinite sets may mean, we certainly want it to have the property
that the number of objects belonging to some class does not change if, leaving
the objects the same, one changes in any way whatsoever their properties or
mutual relations (e.g., their colors or their distribution in space). From this, how-
ever, it follows at once that two sets (at least two sets of changeable objects of
the space-time world) will have the same cardinal number if their elements can
be brought into a one-to-one correspondence, which is Cantor’s definition of
equality between numbers. For if there exists such a correspondence for two sets
A and B it is possible (at least theoretically) to change the properties and rela-
tions of each element of 4 into those of the corresponding element of B, whereby
A is transformed into a set completely indistinguishable from B, hence of the
same cardinal number. For example, assuming a square and a line segment
both completely filled with mass points (so that at each point of them exactly
one mass point is situated), it follows owing to the demonstrable fact that there
exists a one-to-one correspondence between the points of a square and of a line
segment, and, therefore, also between the corresponding mass points, that the
mass points of the square can be so rearranged as exactly to fill out the line seg-
ment, and vice versa. Such considerations, it is true, apply directly only to
physical objects, but a definition of the concept of “number” which would de-
pend on the kind of objects that are numbered could hardly be considered as
satisfactory.

So there is hardly any choice left but to accept Cantor’s definition of equality
between numbers, which can easily be extended to a definition of “greater” and
“less” for infinite numbers by stipulating that the cardinal number M of a set 4
is to be called less than the cardinal number N of a set B if M is different from
N but equal to the cardinal number of some subset of B. On the basis of these
definitions it becomes possible to prove that there exist infinitely many different
infinite cardinal numbers or “powers,” and that, in particular, the number of
subsets of a setis always greater than the number of its elements; furthermore it
becomes possible to extend (again without any arbitrariness) the arithmetical
operations to infinite numbers (including sums and products with any infinite
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number of terms or factors) and to prove practically all ordinary rules of
computation.

But, even after that, the problem to determine the cardinal number of an
individual set, such as the linear continuum, would not be well defined if there
did not exist some “natural” representation of the infinite cardinal numbers,
comparable to the decimal or some other systematic denotation of the integers.
This systematic representation, however, does exist owing to the theorem that
for each cardinal number and each set of cardinal numbers® there exists exactly
one cardinal number immediately succeeding in magnitude and that the cardinal
number of every set occurs in the series thus obtained.? This theorem makes it
possible to denote the cardinal number immediately succeeding the set of finite
numbers by N (which is the power of the “denumerably infinite” sets), the next
one by N, efc.; the one immediately succeeding all N; where ¢ is an integer, by
N ., the next one by N4, efc., and the theory of ordinal numbers furnishes the
means to extend this series farther and farther.

2. The continuum problem, the continuum hypothesis and the partila
results concerning its truth obtained so far. So the analysis of the phrase “how
many” leads unambiguously to quite a definite meaning for the question stated
in the second line of this paper, namely, to find out which one of the N’s is the
number of points on a straight line or (which is the same) on any other contin-
uum in Euclidean space. Cantor, after having proved that this number is cer-
tainly greater than N,, conjectured that it is N;, or (which is an equivalent
proposition) that every infinite subset of the continuum has either the power of
the set of integers or of the whole continuum. This is Cantor’s continuum hy-
pothesis.

But, although Cantor’s set theory has now had a development of more than
sixty years and the problem is evidently of great importance for it, nothing has
been proved so far relative to the question what the power of the continuum
is or whether its subsets satisfy the condition just stated, except (1) that the
power of the continuum is not a cardinal number of a certain very special kind,
namely, not a limit of denumerably many smaller cardinal numbers,® and
(2) that the proposition just mentioned about the subsets of the continuum is

1 As to the question why there does not exist a set of all cardinal numbers, see footnote 12.

2 In order to prove this theorem the axiom of choice (see: A. Fraenkel, Einleitung in die Mengen-
lehre, 3rd ed. Berlin, 1928, p. 288 ff.) is necessary, but it may be said that this axiom is, in the
present state of knowledge, exactly as well founded as the system of the other axioms. It has been
proved consistent, provided the other axioms are so. (See my paper quoted in footnote 13.) It is
exactly as evident as the other axioms for sets in the sense of arbitrary multitudes and, as for sets
in the sense of extensions of definable properties, it also is demonstrable for those concepts of
definability for which, in the present state of knowledge, it is possible to prove the other axioms,
namely, those explained in footnotes 17 and 21.

3 See F. Hausdorff, Mengenlehre, 1sted. (1914), p. 68. The discoverer of this theorem. J. Kénig,
asserted more than he had actually proved (see Math. Ann. 60 (1904), p. 177).
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true for a certain infinitesimal fraction of these subsets, the analyticalt sets.’
Not even an upper bound, however high, can be assigned for the power of the
continuum. Nor is there any more known about the quality than about the
quantity of the cardinal number of the continuum. It is undecided whether this
number is regular or singular, accessible or inaccessible, and (except for Konig's
negative result) what its character of confinality* is. The only thing one knows,
in addition to the results just mentioned, is a great number of consequences of,
and some propositions equivalent to, Cantor’s conjecture.®

This pronounced failure becomes still more striking if the problem is con-
sidered in its connection with general questions of cardinal arithmetic. It is
easily proved that the power of the continuum is equal to 2%, So the con-
tinuum problem turns out to be a question from the “multiplication table” of
cardinal numbers, namely, the problem to evaluate a certain infinite product (in
fact the simplest non-trivial one that can be formed). There is, however, not one
infinite product (of factors >1) for which only as much as an upper bound for its
value can be assigned. All one knows about the evaluation of infinite products
are two lower bounds due to Cantor and Koénig (the latter of which implies a
generalization of the aforementioned negative theorem on the power of the con-
tinuum), and some theorems concerning the reduction of products with different
factors to exponentiations and of exponentiations to exponentiations with
smaller bases or exponents. These theorems reduce’ the whole problem of com-
puting infinite products to the evaluation of N,“®« and the performance of
certain fundamental operations on ordinal numbers, such as determining the
limit of a series of them. N,®2 and therewith all products and powers, can
easily be computed?® if the “generalized continuum hypothesis” is assumed, i.e.,
if it is assumed that 28%«=N,,, for every «, or, in other terms, that the number
of subsets of a set of power N, is N.1. But, without making any undemon-
strated assumption, it is not even known whether or not m <» implies 2™ <2*
(although it is trivial that it implies 2™ <2%), nor even whether 280 <2%1,

3. Restatement of the problem on the basis of an analysis of the foundations
of set theory and results obtained along these lines. This scarcity of results,
even as to the most fundamental questions in this field, may be due to some ex-
tent to purely mathematical difficulties; it seems, however (see Section 4 below),
that there are also deeper reasons behind it and that a complete solution of

4 See the list of definitions at the end of this paper.

5 See F. Hausdorff, Mengenlehre, 3rd ed. (1935), p. 32. Even for complements of analytical sets
the question is undecided at present, and it can be proved only that they have (if they are infinite)
either the power Noor N; or continuum (see; C. Kuratowski, Topologie I, Warszawa-Lwow, 1933,
p. 246.)

6 See W. Sierpinski, Hypothese du Continu, Warsaw, 1934.

7 This reduction can be effected owing to the results and methods of a paper by A. Tarski
published in Fund. Math. 7 (1925), p. 1.

8 For regular numbers N, one obtains immediately:

Nacy‘(ka) = &akl’l:ZR“ = Naﬂ-l-
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these problems can be obtained only by a more profound analysis (than mathe-
matics is. accustomed to give) of the meanings of the terms occurring in them
(such as “set,” “one-to-one correspondence,” eéc.) and of the axioms underlying
their use. Several such analyses have been proposed already. Let us see then
what they give for our problem.

First of all there is Brouwer’s intuitionism, which is utterly destructivein
its results. The whole theory of the N’s greater than N, is rejected as meaning-
less.® Cantor’s conjecture itself receives several different meanings, all of which,
though very interesting in themselves, are quite different from the original prob-
lem, and which lead partly to affirmative, partly to negative answers;!® not
everything in this field, however, has been clarified sufficiently. The “hali-
intuitionistic” standpoint along the lines of H. Poincare and H. Weyl** would
hardly preserve substantially more of set theory.

This negative attitude towards Cantor’s set theory, however, is by no means
a necessary outcome of a closer examination of its foundations, but only the
result of certain philosophical conceptions of the nature of mathematics, which
admit mathematical objects only to the extent in which they are (or are be-
lieved to be) interpretable as acts and constructions of our own mind, or at least
completely penetrable by our intuition. For someone who does not share these
views there exists a satisfactory foundation of Cantor’s set theory in its whole
original extent, namely, axiomatics of set theory, under which the logical system
of Principia Mathematica (in a suitable interpretation) may be subsumed.

It might at first seem that the set theoretical paradoxes would stand in the
way of such an undertaking, but closer examination shows that they cause no
trouble at all. They are a very serious problem, but not for Cantor’s set theory.
As far as sets occur and are necessary in mathematics (at least in the mathe-
matics of today, including all of Cantor’s set theory), they are sets of integers,
or of rational numbers (i.e., of pairs of integers), or of real numbers (z.e., of sets
of rational numbers), or of functions of real numbers (.e., of sets of pairs of real
numbers), eéc.; when theorems about all sets (or the existence of sets) in general
are asserted, they can always be interpreted without any difficulty to mean that
they hold for sets of integers as well as for sets of real numbers, efc. (respectively,
that there exist either sets of integers, or sets of real numbers, or. .. eic.,
which have the asserted property). This concept of set, however, according to
which a set is anything obtainable from the integers (or some other well defined

9 See L. E. J. Brouwer, Atti del IV Congresso Internazionale dei Matematici (Roma 1908), p.
569.

10 See L. E. J. Brouwer, Over de gondslagen der wiskunde (Amsterdam and Leipzig, 1907) I,
9; III, 2.

i See H. Weyl, Das Kontinuum, 2nd ed. 1932. If the procedure of construction of sets de-
scribed there (p. 20) is iterated a sufficiently large (transfinite) number of times, one gets exactly
the real numbers of the model for set theory spoken of below in Section 4, in which the continuum-
hypothesis is true. But this iteration would hardly be possible within the limits of the half intuition-
istic standpoint.
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objects) by iterated application!? of the operation “set of,”*® and not some-
thing obtained by dividing the totality of all existing things into two categories,
has never led to any antinomy whatsoever; that is, the perfectly “naive” and
uncritical working with this concept of set has so far proved completely self-
consistent.!

But, furthermore, the axioms underlying the unrestricted use of this concept
of set, or, at least, a portion of them which suffice for all mathematical proofs
ever produced up to now, have been so precisely formulated in axiomatic set
theory that the question whether some given proposition follows from them can
be transformed, by means of logistic symbolism, into a purely combinatorial
problem concerning the manipulation of symbols which even the most radical
intuitionist must acknowledge as meaningful. So Cantor’s continuum problem,
no matter what philosophical standpoint one takes, undeniably retains at least
this meaning: to ascertain whether an answer, and if so what answer, can be
derived from the axioms of set theory as formulated in the systems quoted.

Of course, if it is interpreted in this way, there are (assuming the consistency
of the axioms) a priori three possibilities for Cantor’s conjecture: It may be
either demonstrable or disprovable or undecidable.® The third alternative
(which is only a precise formulation of the conjecture stated above that the diffi-
culties of the problem are perhaps not purely mathematical) is the most likely,
and to seek a proof for it is at present one of the most promising ways of attack-
ing the problem. One result along these lines has been obtained already, namely,
that Cantor’s conjecture is not disprovable from the axioms of set theory, pro-
vided that these axioms are consistent (see Section 4).

It is to be noted, however, that even if one should succeed in proving its
undemonstrability as well, this would (in contradistinction, for example, to the
proof for the transcendency of ) by no means settle the question definitively.,

12 This phrase is to be understood so as to include also transfinite iteration, the totality of sets
obtained by finite iteration forming again a set and a basis for a further application of the operation
“set of.”

18 The operation “set of &’s” cannot be defined satisfactorily (at least in the present state of
knowledge), but only be paraphrased by other expressions involving again the concept of set, such
as: “multitude of x’s,” “combination of any number of x's,” “part of the totality of x's”; but as
opposed to the concept of set in general (if considered as primitive) we have a clear notion of this
operation.

14 Tt follows at once from this explanation of the term “set” that a set of all sets or other sets
of a similar extension cannot exist, since every set obtained in this way immediately gives rise to
further application of the operation “set of” and, therefore, to the existence of larger sets.

15 See, e.g., P. Bernays, A system of axiomatic set theory, J. Symb. Log. 2 (1937), p. 65; 6
(1941), p. 1; 7 (1942), p. 65; p. 133; 8 (1943), p. 89. J. von Neumann, Eine Axiomatisierung der
Mengenlehre, J. reine u. angew. Math. 154 (1925), p. 219; cf also: bid., 160 (1929), p. 227; Math. Zs
27 (1928), p. 669. K. Godel, The Consistency of the Continuum Hypothesis (Ann. Math. Studies
No. 3), 1940.

16 Tn case of the inconsistency of the axioms the last one of the four a priori possible alterna-
tives for Cantor’s conjecture would occur, namely, it would then be both demonstrable and dis-
provable by the axioms of set theory.
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Only someone who (like the intuitionist) denies that the concepts and axioms of
classical set theory have any meaning (or any well-defined meaning) could be
satisfied with such a solution, not someone who believes them to describe some
well-determined reality. For in this reality Cantor’s conjecture must be either
true or false, and its undecidability from the axioms as known today can only
mean that these axioms do not contain a complete description of this reality;
and such a belief is by no means chimerical, since it is possible to point out ways
in which a decision of the question, even if it is undecidable from the axioms in
their present form, might nevertheless be obtained.

For first of all the axioms of set theory by no means form a system closed in
itself, but, quite on the contrary, the very concept of set'” on which they are
based suggests their extension by new axioms which assert the existence of still
further iterations of the operation “set of.” These axioms can also be formulated
as propositions asserting the existence of very great cardinal numbers or (which
is the same) of sets having these cardinal numbers. The simplest of these strong
“axioms of infinity” assert the existence of inaccessible numbers (and of num-
bers inaccessible in the stronger sense) >N . The latter axiom, roughly speak-
ing, means nothing else but that the totality of sets obtainable by exclusive use
of the processes of formation of sets expressed in the other axioms forms again a
set (and, therefore, a new basis for a further application of these processes).!®
Other axioms of infinity have been formulated by P. Mahlo.}® Very little is
known about this section of set theory, but at any rate these axioms show
clearly, not only that the axiomatic system of set theory as known today is
incomplete, but also that it can be supplemented without arbitrariness by new
axioms which are only the natural continuation of the series of those set up so
far.

That these axioms have consequences also far outside the domain of very
great transfinite numbers, which are their immediate object, can be proved;each
of them (as far as they are known) can, under the assumption of consistency, be
shown to increase the number of decidable propositions even in the field of
Diophantine equations. As for the continuum problem, there is little hope of
solving it by means of those axioms of infinity which can be set up on the basis
of principles known today (the above-mentioned proof for the undisprovability
of the continuum hypothesis, e.g., goes through for all of them without any
change). But probably there exist others based on hitherto unknown principles;
also there may exist, besides the ordinary axioms, the axioms of infinity and

17 Similarly also the concept “property of set” (the second of the primitive terms of set theory)
can constantly be enlarged, and furthermore concepts of “property of property of set” efc. be in-
troduced whereby new axioms are obtained, which, however, as to their consequences for proposi-
tions referring to limited domains of sets (such as the continuum hypothesis) are contained in the
axioms depending on the concept of set.

18 See E. Zermelo, Fund. Math. 16 (1930), p. 29.

19 See: Ber. Verh. Sichs. Ges. Wiss. 63 (1911), pp. 190-200; 65 (1913), pp.269-276. FromMahlo’s
presentation of the subject, however, it does not appear that the numbers he defines actually exist.
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the axioms mentioned in footnote 14, other (hitherto unknown) axioms of set
theory which a more profound understanding of the concepts underlying logic
and mathematics would enable us to recognize as implied by these concepts.

Furthermore, however, even disregarding the intrinsic necessity of some new
axiom, and even in case it had no intrinsic necessity at all, a decision about its
truth is possible also in another way, namely, inductively by studying its
“success,” that is, its fruitfulness in consequences and in particular in “veri-
fiable” consequences, 7.e., consequences demonstrable without the new axiom,
whose proofs by means of the new axiom, however, are considerably simpler
and easier to discover, and make it possible to condense into one proof
many different proofs. The axioms for the system of real numbers, rejected
by the intuitionists, have in this sense been verified to some extent owing
to the fact that analytical number theory frequently allows us to prove
number theoretical theorems which can subsequently be verified by elementary
methods. A much higher degree of verification than that, however, is conceiv-
able. There might exist axioms so abundant in their verifiable consequences,
shedding so much light upon a whole discipline, and furnishing such powerful
methods for solving given problems (and even solving them, as far as that is
possible, in a constructivistic way) that quite irrespective of their intrinsic neces-
sity they would have to be assumed at least in the same sense as any well
established physical theory.

4. Some observations about the question:In what sense and in which direc-
tion may a solution of the continuum problem be expected? But are such consid-
erations appropriate for the continuum problem? Are there really any strong
indications for its unsolubility by the known axioms? I think there are at least two.

The first one is furnished by the fact that there are two quite differently de-
fined classes of objects which both satisfy all axioms of set theory written down
so far. One class consists of the sets definable in a certain manner by properties of
their elements,?® the other of the sets in the sense of arbitrary multitudes, irre-
spective of, if, or how they can be defined. Now, before it is settled what objects
are to be numbered, and on the basis of what one-to-one correspondences, one
could hardly expect to be able to determine their number (except perhaps in
case of some fortunate coincidence). If, however, someone believes that it is
meaningless to speak of sets except in the sense of extensions of definable prop-
erties, or, at least, that no other sets exist, then, too, he can hardly expect more
than a small fraction of the problems of set theory to be solvable without making
use of this, in his opinion essential, characteristic of sets, namely, that they are

20 Namely, definable “in terms of ordinal numbers” (z.e., roughly speaking, under the assump-
tion that for each ordinal number a symbol denoting it is given) by means of transfinite recursions,
the primitive terms of logic, and the e-relation, admitting, however, as elements of sets and of
ranges of quantifiers only previously defined sets. See my papers quoted in footnotes 13 and 19,
where an exactly equivalent, although in its definition slightly different, concept of definability
(under the name of “constructibility”) is used. The paradox of Richard, of course, does not apply
to this kind of definability, since the totality of ordinals is certainly not denumerable.
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all derived from (or in a sense even identical with) definable properties. This
characteristic of sets, however, is neither formulated explicitly nor contained
implicitly in the accepted axioms of set theory. So from either point of view, if
in addition one has regard to what was said above in Section 2, it is plausible
that the continuum problem will not be solvable by the axioms set up so far,
but, on the other hand, may be solvable by means of a new axiom which would
state or at least imply something about the definability of sets.?

The latter half of this conjecture has already been verified; namely, the
concept of definability just mentioned (which is itself definable in terms of
the primitive notions of set theory) makes it possible to derive the generalized
continuum hypothesis from the axiom that every set is definable in this sense.??
Since this axiom (let us call it “A”) turns out to be demonstrably consistent with
the other axioms, under the assumption of the consistency of these axioms, this
result (irrespective of any philosophical opinion) shows the consistency of the
continuum hypothesis with the axioms of set theory, provided that these axioms
themselves are consistent.?® This proof in its structure is analogous to the con-
sistency-proof for non-Euclidean geometry by means of a model within Eu-
clidean geometry, insofar as it follows from the axioms of set theory
that the sets definable in the above sense form a model for set theory in
which furthermore the proposition A and, therefore, the generalized con-
tinuum hypothesis is true. But the definition of “definability” can also be so
formulated that it becomes a definition of a concept of “set” and a relation
of “element of” (satisfying the axioms of set theory) in terms of entirely
different concepts, namely, the concept of “ordinal numbers,” in the sense
of elements ordered by some relation of “greater” and “less,” this ordering
relation itself, and the notion of “recursively defined function of ordinals,”
which can be taken as primitive and be described axiomatically by way of an
extension of Peano’s axioms.? [Note that this does not apply to my original
formulation presented in the papers quoted above, because there the general
concept of “set” with its element relation occurs in the definition of “definable
set,” although the definable sets remain the same if, afterwards, in the defini-
tion of “definability” the term “set” is replaced by “definable set.”]

2 D, Hilbert’s attempt at a solution of the continuum problem (see Math. Ann. 95 (1926), p.
161), which, however, has never been carried through, also was based on a consideration of all
possible definitions of real numbers.

2 On the other hand, from an axiom in some sense directly opposite to this one the negation
of Cantor's conjecture could perhaps be derived.

2 See my paper quoted in footnote 13 and note Proc. Nat. Ac. Sci. 25 (1939), p. 220. I take this
opportunity to correct a mistake in the notation and a misprint which occurred in the latter paper:
in the lines 25 to 29 of page 221, 4 to 6 and 10 of page 222, 11 to 19 of page 223, the letter a
should be replaced (in all places where it occurs) by u. Also, in Theorem 6 on page 222 the symbol
“=" should be inserted between ¢q(x) and ¢«(x'). For a carrying through of the proof in all de-
tails the paper quoted in footnote 13 is to be consulted.

% For such an extension see A. Tarski, Ann. Soc. Pol. Math. 3 (1924), p. 148, where, however,
the general concept of “set of ordinal numbers” is used in the axioms; this could be avoided, with-
out any loss in demonstrable theorems, by confining oneself from the beginning to recursively de-
finable sets of ordinals.
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A second argument in favor of the unsolubility of the continuum problem on
the basis of the ordinary axioms can be based on certain facts (not known or not
existing at Cantor’s time) which seem to indicate that Cantor’s conjecture will
turn out to be wrong;® for a negative decision the question is (as just explained)
demonstrably impossible on the basis of the axioms as known today.

There exists a considerable number of facts of this kind which, of course, at
the same time make it likely that not all sets are definable in the above sense.?
One such fact, for example, is the existence of certain properties of point sets
(asserting an extreme rareness of the sets concerned) for which one has suc-
ceeded in proving the existence of undenumerable sets having these properties,
but no way is apparent by means of which one could expect to prove the exist-
ence of examples of the power of the continuum. Properties of this type (of sub-
sets of a straight line) are: (1) being of the first category on every perfect set,?
(2) being carried into a zero set by every continuous one-to-one mapping of the
line on itself.28 Another property of a similar nature is that of being coverable
by infinitely many intervals of any given lengths. But in this latter case one has
so far not even succeeded in proving the existence of undenumerable examples.
From the continuum hypothesis, however, it follows that there exist in all three
cases not only examples of the power of the continuum,? but even such as are
carried into themselves (up to denumerably many points) by every translation of
the straight line.30

And this is not the only paradoxical consequence of the continuum hy-
pothesis. Others, for example, are that there exist: (1) subsets of a straight line
of the power of the continuum which are covered (up to denumerably many
points) by every dense set of intervals, or (in other terms) which contain no
undenumerable subset nowhere dense on the straight line,3 (2) subsets of a
straight line of the power of the continuum which contain no undenumerable
zero set,® (3) subsets of Hilbert space of the power of the continuum which con-
tain no undenumerable subset of finite dimension,® (4) an infinite sequence 4
of decompositions of any set M of the power of the continuum into continuum

% Views tending in this direction have been expressed also by N. Lusin in Fund. Math. 25
(1935), p. 129 ff. See also: W. Sierpinski, ¢bid., p. 132.

% That all sets are “definable in terms of ordinals” if all procedures of definition, 7.e. also
quantification and the operation £ with respect to all sets, irrespective of whether they have or can
be defined, are admitted could be expected with more reason, but still it would not at all be justi-
fied to assume this as an axiom. It is worth noting that the proof that the continuum hypothesis
holds for the definable sets or follows from the assumption that all sets are definable, does not go
through for this kind of definability, although the assumption that these two concepts of definabil-
ity are equivalent is, of course, demonstrably consistent with the axioms.

27 See W. Sierpinski, Fund. Math. 22 (1934), p. 270 and C. Kuratowski, Topologie I, p. 269 ff.

28 See N. Lusin and W. Sierpinski, Bull. Internat. Ac. Sci. Cracovie 1918, p. 35, and W. Sier-
pinski, Fund Math. 22 (1934), p. 270.

29 For the 3rd case see: L.c. 6, p. 39, Th. 1.

30 See W. Sierpinski, Ann. Scuol. Norm. Sup. Pisa 4 (1935), p. 43.

8t See N. Lusin, C. R. Paris 158 (1914), p. 1259.

32 See W. Sierpinski, Fund. Math. 5 (1924), p. 184.

8 See W. Hurewicz, Fund. Math. 19 (1932), p. 8.
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many mutually exclusive sets 4; such that, in whichever way a set 45, is chosen
for each 4, II;(M —A43,) is always denumerable.® Even if in (1)-(4) “power of
the continuum” is replaced by “N;” these propositions are very implausible;
the proposition obtained from (3) in this way is even equivalent with (3).

One may say that many of the results of point-set theory obtained without
using the continuum hypothesis also are highly unexpected and implausible.3
But, true as that may be, still the situation is different there, insofar as in those
instances (such as, e.g., Peano’s curves) the appearance to the contrary can in
general be explained by a lack of agreement between our intuitive geometrical
concepts and the set-theoretical ones occurring in the theorems. Also, it is very
suspicious that, as against the numerous plausible propositions which imply the
negation of the continuum hypothesis, not one plausible proposition is known
which would imply the continuum hypothesis. Therefore one may on good
reason suspect that the role of the continuum problem in set theory will be this,
that it will finally lead to the discovery of new axioms which will make it possible
to disprove Cantor’s conjecture.

Definitions of some of the technical terms

Definitions 4-12 refer to subsets of a straight line, but can be literally transferred to subsets of
Euclidean spaces of any number of dimensions; definitions 13-14 refer to subsets of Euclidean
spaces.

1. T call “character of confinality” of a cardinal number m (abbreviated by “cf(m)”) the smallest
number # such that m is the sum of #» numbers <m.

2. A cardinal number m is regular if ¢f(m) =m, otherwise singular.

3. An infinite cardinal number m is inaccessible if it is regular and has no immediate predecessor
(i.e., if, although it is a limit of numbers <, it is not a limit of fewer than m such numbers);
it is inaccessible in the stronger sense if each product (and, therefore, also each sum) of fewer
than m numbers <m is <m. [See: W. Sierpinski and A. Tarski, Fund. Math. 15 (1930), p. 292;
A. Tarski, Fund. Math. 30 (1938), p. 68. Fromn the generalized continuum hypothesis follows
the equivalence of these two notions. This equivalence, however, is a much weaker and much
more plausible proposition. N evidently is inaccessible in both senses. As for finite numbers,
0 and 2 and no others are inaccessible in the stronger sense (by the above definition), which
suggests that the same will hold also for the correct extension of the concept of inaccessibility
to finite numbers. ]

4. A set of intervals is dense if every interval has points in common with some interval of the set.
[The end-points of an interval are not considered as points of the interval.]

5. A zero-set is a set which can be covered by infinite sets of intervals with arbitrarily small

lengths-sum.

. A neighborhood of a point P is an interval containing P.

. A subset 4 of B is dense in B if every neighborhood of any point of B contains points of 4.

. A point P is in the exterior of 4 if it has a neighborhood containing no point of 4.

. A subset 4 of B is nowhere dense on B if those points of B which are in the exterior of 4 are
dense in B. [Such sets 4 are exactly the subsets of the borders of the open sets in B, but the
term “border-set” is unfortunately used in a different sense. ]

10. A subset A4 of B is of the first category in B if it is the sum of denumerably many sets nowhere

dense in B.

O 0o

3 See S. Braun and W. Sierpinski, Fund. Math. 19, (1932), p. 1, proposition (Q). This proposi-
tion and the one stated under (3) in the text are equivalent with the continuum hypothesis.
3 See, e.g., L. Blumenthal, Am. Math. Monthly 47 (1940), p. 346.
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11. Set A is of the first category on B if the intersection 4 - B is of the first category in B.

12. A set is perfect if it is closed and has no isolated point (s.e., no point with a neighborhood con-
taining no other point of the set).

13. Borel-sets are defined as the smallest system of sets satisfying the postulates:
(1) The closed sets at Borel-sets.
(2) The complement of a Borel-set is a Borel-set.
(3) The sum of denumerably many Borel-sets is a Borel-set.

14. A set is analytic if it is the orthogonal projection of some Borel-set of a space of next higher
dimension. [Every Borel-set therefore is, of course, analytic.]

15. Quantifiers are the logistic symbols standing for the phrases: “for all objects x” and “there
exist objects x.” The totality of objects x to which they refer is called their range.

16. The symbol “£” means “the set of those objects « for which - - - ”?

PERSONNEL AND TRAINING PROBLEMS IN STATISTICS
S. S. WILKS, Princeton University

1. Introduction. A report* has been prepared by the Committee** on Applied
Mathematical Statistics of the National Research Council to: (1) analyze some
factors contributing to the recent extraordinary growth of interest in the use
of statistical methods, (2) present some information on the current and future
needs of statistically trained personnel, (3) examine the impact of these needs
on present training facilities, and (4) indicate some steps which might estab-
lish a training program adequate to meet these growing needs. This is a summary
of the report.

2. Statistical organizations. As a simple indication of growth of interest in
statistical methods, the Committee describes the formation and recent growth of
statistical organizations. The American Statistical Association, founded more
than 100 years ago, had a membership of 1700 in 1935. By the end of 1946 it
had nearly 4000 members. The Institute of Mathematical Statistics, formed in

* “Personnel and Training Problems Created by the Recent Growth of Applied Statistics in the
United States,” a report by the Committee on Applied Mathematical Statistics, National Research
Council, Washington, D. C., NRC Reprint and Circular Series No. 128, May, 1947, 17 pp.

** Luther P. Eisenhart, Chairman, Former Chairman Division of Physical Sciences, National
Research Council

Samuel S. Wilks, Secretary, Professor of Mathematical Statistics, Princeton University

Chester 1. Bliss, Biometrician, Connecticut Agricultural Experiment Station

Edward U. Condon, Director, National Bureau of Standards

Harold O. Gulliksen, Professor of Psychology, Princeton University

Lowell J. Reed, Vice-President of the University, and Professor of Biostatistics, School of
Hygiene and Public Health, The Johns Hopkins University

Charles F. Roos, President, The Econometric Institute, Inc.

Walter A. Shewhart, Research Engineer, Bell Telephone Laboratories

Hugh M. Smallwood, Director, Department of Physical Research, General Laboratories,
U. S. Rubber Company

Frederick F. Stephan, Professor of Sociology and Statistics, Cornell University
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